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Abstract

The selfadjoint boundary layer problem, described by the second or-
der linear differential equation is considered. The solution is presented
as a sum of the reduced solution and layer solution which is approxi-
mated by the truncated orthogonal series where certain Legendre-type
polynomials were used as the orthogonal basis. The layer solution is
constructed upon the layer subinterval determined according to the
asymptotic behavior of the exact solution by the use of apropriate re-
semblance function. This domain decomposition depends on the degree
of chosen spectral approximation. The coefficients of the truncated or-
thogonal series are determined by the collocation method. The upper
bound for the error function is constructed and the numerical example
is included.
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1. Introduction

We shall consider the selfadjoint boundary layer problem
(1.1) Ly = —£*y"(z) + g(z)y(z) = f(z) = € [0,1)
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(1.2) Gy = (4(0),y(1)) = (4, B)
where € > 0 is a small parameter, A, B € R, f(z),g(z) € C?[0, 1].
The solution of the problem (1.1), (1.2) represents the stationary state

of the evolution equation

ay zazy _
ot —£ W +7($$t)y - QD(.’II,t), z € [0$1],t >0

with the conditions
v(0,8) = 4,y(1,1) = B,t > 0,y(z,0) = 3°(2) = € [0,1],
which is the mathematical model for the diffusion-flow problems known in

fluid mechanics and heat conduction.

Under the asuumption that
(1.3) g(z)>K*>0,K€ER

we know that the problem (1.1), (1.2) is inverse monotone and that it has
the unique solution y(z) € C?[0,1]. We also know that the reduced solution

(1.4) w(z) = f(z)/9(2)

sufficiently well approximates the exact solution out of the boundary layers,
which occure at ¢ = 0 and £ = 1. From the asymptotic theory we have that

11—z

(1.5)  |y(@) — g (@) < Cre~ = + Coe= ™52 4 Cac® 2 € (0,1)

and we can see that the layer length is of order 0(¢).

The problem (1.1), (1.2) has already been investigated by the author
in a few of her papers, see e.g. [1]. In those researchies the modification
of standard spectral approximation was used, after the determination of
numerical layer length. Here that procedure will be altered to the special
domain decomposition, and instead of classical orthogonal polynomials, the
Legendre-type polynomials of special kind will be used as the orthogonal
basis.

Legendre-type polynomials represent a polynomial set which satisfy fourth
order differential equation
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(1.6) (12 — 1)%y" +'8t(t2 — 1)y + 16(¢2 — 1)y"+
+8ty’ — n(n + 1)(n2 +n4+2)y=0

and they were introduced by H.L. Krall in 1940. In his paper [4] A. Krall
investigated some of their properties. Denoting them by P,(t), he has shown
that they satisfy three term recurrence relation

(2n +1)(n? + n+ 2)
(n+1)(n?—n+2)
n(n? + 3n + 4)
(n+1)(n2-n+2)

(1.7) Popi(t) = tPo(t)—

Pa_1(t), Po(t) = 1, P_1(8) = 0

and that
(1.8) P,(1)=1,P,(-1)=(-1)"VYn € N.

The author has already used similar polynomial set in her paper [2] to
the modified spectral solution for nonselfadjoint problem.

2. Domain decomposition

We are going to look for the solution of the problem (1.1), (1.2) in the form
(2.1) y¥(z) = yr(2) + ve(2),

where y.(z) satisfies

(22) Lye = &%y (z) Gy = (A% B%), A = A - 4,(0), B° = B — y,(1).

The first step is to approximate function y.(z) by

v(z) =z € [0,ce]
(2.3) w(z)=< 0 z € [ce,1—c1€], ¢,c1 € RY

w(z) z €[l -ce,1]
The constant ¢ (and similarly ¢;), which performs the domain decomposition
will be determined in such a way that it depends on the degree n of the

truncated orthogonal series which will approximate the layer solutions. In
that purpose we use the resemblance function defined by the author in [1]

(2.4) p(z) = A°(1 - :—E)"
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The constant c is going to be evaluated from the request that p(z) satisfies
the differential equation in (2.2) at the layer point = 0. This gives

Lemma 1. The constant c is
A0 _ _
(2.5) o n{n — 1) o n(n 1)'
A%g(0) — 2y7'(0) 9(0)
2.0

Proof. If we introduce (2.4) into differential equation Ly. = £2y/(z), for
z = 0 we come to the equation

—n(n — 1)A% + c2g(0)A° = cZ%y”(0)

and its positive solution is given by (2.5). When ¢ is sufficiently small, the
constant ¢ may be determined as

n(n — 1)
2.6 C= 4| ——.
(2:6) 9(0)
In the similar way we have that

n(n —1)
27 C1 =
27) ' 9(1)

3. Legendre-type approximation

In purpose to construct the spectral approximation to (2.3) we first have to
remark that the function v(z) satisfies the boundary value problem

(3.1) Lv = £%y!'(2), = € [0, ce], v(0) = A, v(cg) = 0.

This problem is still singularly perturbed. If we introduce the stretching
variable

(3.2) z = %ce(t +1)

we shall obtain a non-perturbed problem

(3.3) Liw = —4w"(t) + G (Hw(t) = 2®Y, (1), t € [-1,1]
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(3.4) w(-1)= A°, w(1) =0,

where
w(t) = o(zee(t + 1)), G(1) = g(zee(t+ 1)), Yo(t) = /(zee(t + 1)),

We are going to construct the spectral approximation , due to Legendre-type
polynomials, for the problem (3.3), (3.4) in the form

n

(3.5) wa(t) = Y apPe(t).

k=0

This will give us the following

Theorem 1. The coefficients ax, k = 0,...,n of the truncated series (3.5)
represent the solution of the system

(3.6) Zpk’iak :bi, i:O,...,n
k=0

with

(3.7) ro=Liprn= (1) k=0,...,n

(3.8) Pki = —4P£’(ti) + ch(ti)Pk(ti), b; = 6262}/;(151'), t; = cos %,

k=0,...,n, i=1,...,n~1.

Proof. We substitute (3.5) into (3.3) and ask that the obtained equality is
satisfied at Gauss-Lobatto nodes

i
t;=cos—,1=1,...,n—1.
T

This gives equations in (3.6) with the coefficients (3.8). The first and the
last equation, determined by (3.7) is obtained directly by substituting (3.5)
into (3.4) and using the property (1.8).

Remark 1: The values for Pi(t;) and P//(t;) can be evaluated successively
by the use of (1.7).

Remark 2: The procedure for the construction of the spectral approxima-
tion of the layer solution at the point z = 1 is analogue.
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4. The error estimate

It is obvious from (2.3) that out of the boundary layers the exact solution
is approximated by the reduced solution y,(z). Using the proposed domain
decomposition we can prove the following

Theorem 2. For z € [ce,1 — ¢1€], where ¢ and ¢, are given by (2.6) and
(2.7) it holds that

_K n—1
(4.1) ly(z) — y (@) < C(e* 4 = 0),
where K is given by (1.3) and

(4.2) g = max(+/g(0),/9(1)).

Proof. From (2.6) (and similarly (2.7)) we can see that for z > ce we have
that

because of
n-—1 N n—1

ve0) — g

This, together with (1.5) gives us (4.1).

c >

For the error estimate inside the layer we can apply the result of

Lemma 2. Let K} = ming(z), K = maxg(z) for = € [0,ce]. For e
sufficiently small it holds that

AO Sth'(C — —?) .

(4.3) va(z) < v(z) < v1(z), vi(z) = ShEc i=1,2.

This lemma was proved in [1].
Now we can prove
Theorem 3. For z € [0, cc], where ¢ is given by (2.6) we have that
_K(n-1)
(4.4)[y(z) = yu(2)| < max{|vi(z) — un(2)|} + C(* + €77 ) = d(z)

where ‘
(4.5) ul2) = 1:(2) + 1(2), () = wn(or ~ 1).
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Proof. According to (2.1), (2.3) and (4.5) we can see that
[y(z) = yn(2)] = [9e(2) — un(z)| < |ys(?) — o(2)| + Jw(t) — wa(t)].
By the use of the principle of the inverse monotonicity to the problem
Ly. = e*y/(2), 9=(0) = A%, ye(ce) = y(ce) — yr(ce)
and the problem (3.1) we easily come to the conclusion that
|ye(z) — v(2)] < |ye(ce) — v(ce)l,

and by the use of (4.1) this gives
K(n-1
(4.6) lve(z) = v(2)] < C(e* + €™ v ), 2 €[0,ce].

As for the second term, using the substitution (3.2), after subtracting
w,(t) in (4.3) and taking the maximum of the obtained differences, we come
to

(4.7) lw(t) = wa(t)] < max{lvi(z) — un(2)]}-

5. Numerical results

We shall use the following test example from [3]

1-¢ _(1=e)(z-1)
(2 . :l:)2y(x) - (2 _ :l))2 H
y(0)=0, y(1)=0.

—52y” +

The exact solution is

1-(2- x)_ti_l
19 &

y(z) = (-3 +e-1.

We have only one boundary layer at £ = 0. The following tables give the
exact error and the error estimate in several points from the boundary layer:
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€=10"° n=4 n=12

z vy ly@) —w(z)]  dz)  y(z)-yul(z)]  d(z)
0,000001 —0,05 6.1-10¢ 6.0-1074 9.9.107° 5.0-1075
0,000006 —0,26 2.5-1074 2.1-1073 8.5-1077 3.2-10°5
0,00002 —0,63 7.1-1073 7.2-1073 7.4.1076 4.2.107°
0,00004 —0,86 5.6-103 4.3-1073 2.2-107% 2.3-1075

Table 1.
e=10"7 n=4 n=12
z Y ly(z) = yn(z)]  d(z) ly(z) — yu(z)]  d(z)

0,00000001 —0,05 2.6-1074 6.1-1074 8.7-1074 8.8.10~¢
0,00000006 —0,26 2.9.1074 46103 2.4.1073 2.6-1073
0,0000002 —0,63 7.2-1073 7.2-1073 4.5-1074 6.2-10~%
0,0000004 -0,86 2.8.1073 4.3-1072 1.6-107° 1.0-107°

Table 2.
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