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Abstract

Lattice power of an algebra is a kind of its extension by a suitable
complemented lattice. If the lattice is Boolean, this extension coincides
with the Boolean power.

In this paper, lattice powers of unary algebras are investigated. It
turns out that any variety of unary algebras is preserved under the
construction of lattice powers. It is proved that the lattice power of
an algebra in such variety is isomorphic with the union of particular
Boolean powers of the same algebra.
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1. Introduction

A lattice power of algebras has been introduced in {1] (under the name of a
7fuzzy power”), as a generalization of a Boolean power.

Not every lattice is suitable for the construction of lattice powers. A
detailed description of such lattices "allowing the power” was given in [1].
Some general properties of fuzzy powers were also formulated in [1], in par-
ticular the identities preserved under that construction.

In the present paper some general properties of lattices allowing the
power are proved. It is also shown that lattice powers are closely related
to some collections of Boolean powers. Finally, lattice powers of unars are
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investigated. It is shown that varieties of unary algebras are closed under
the construction of lattice power. It is proved that lattice powers of unary
algebras are particular unions of Boolean powers. Moreover, lattice powers
of finite algebras in varieties of unars are, up to the isomorphism, subdirect
products of these algebras.

2. Lattices allowing the power

As mentioned above, not every lattice is suitable for the power extension of
algebras. To avoid too long definitions, we use a special class of lattices, but
the main results about the powers are valid for all lattices described in [1].

Let L be a complete lattice in which 0 is the bottom, and 1 the top
element. Recall that an equivalence relation on L is said to be a 0,1-
equivalence if the classes containing 0 and 1 are one-element sets. We
assume that there is a complete 0,1-congruence relation 6 on L, such that
(L/6,A,V) is a complete Boolean algebra (a congruence on a complete lat-
tice L is complete if it admits arbitrary meets and joins). The lattice L,
satisfying the above conditions, is said to allow the lattice power of al-
gebras (or, simply, to allow the power). We recall that the characterization
of all lattices suitable for the construction of powers was given in [1}.

In the sequel we prove some properties of lattices allowing the power,
which have not (or not explicitely) been mentioned in [1].

Lemma 2.1. If the lattice L allowing the power has no infinite antichains,
then the Boolean algebra L/ is finite.

Proof. L/6 has no infinite antichains, since by assumption L has this prop-
erty as well. Thus, L/# is obviously a finite Boolean algebra. O

Lemma 2.2. If the lattice L allows the power, then it is complemented.

Proof. Let z be an element from L, and [y]¢ a complement of [z]s in the
Boolean algebra L/8, y € L. Then, obviously [z]gA[yle = {0} ie. [z Ayl =
{0} and thus z Ay = 0, i.e. z # y. Thereby, since [z]pV[yls = [z V y], = {1},
it follows that z V y = 1, and y is a complement of z. O

A partition in a complete lattice is a collection of its pairwise disjoint
elements, supremum of which is 1.
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Lemma 2.3. If the lattice L allows the power, then {p; | i € I} is a partition
in L if and only iof {[pi]e | i € I} is a partition in L/9.

Proof. Let {p; | i € I} be a partition in L. Now, since for 1,5 € I p; Ap; = 0,
it follows that [p;]s A [p;le = [pi A pjle = {0}, and

Vi = Vo] -

el el

On the other hand, if {[p;]s | ¢ € I} is a partition in L/, then {0} = [0]s =
[pile A[p;le = [pi Ap;le implies p; Ap; = 0, and from {1} = [1]g = Vieilpile =
[Vierpilo it follows that \/,c;p; = 1. O

From the above, if L is distributive, then it is obviously a Boolean lattice.
Some nondistributive lattices allowing the power are represented by the
Hasse diagrams in Figure 1. For all of them, L/8 is a four-element Boolean
algebra.

<P

Fig. 1

Lemma 2.4. If P = {p; | i € I} is a partition in the lattice L allowing the
power, then the sublattice Lp of L, generated by P is Boolean, and it has at
most one element in each class of L/9.

Proof. Every element of Lp is of the form VjeJCI pj. By Lemma 3 these
elements determine the classes in the Boolean algebra L/f. Since 8 is a
complete congruence on L, the above joins obey the axioms for Boolean
algebras, and thus form the sublattice of L, generated by P. In addition,
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every class in L/@ contains at most one element from Lp, since by Lemma
3 again, the mapping p; — [p;] is an injection from P to L/0. O

Thus, for every partition {Px | k € K} in L, there is a Boolean sublattice
By of L, generated by that partition. Hence, every lattice allowing the power
has a collection Bx = {By | k € K} of Boolean sublattices. Every of these
sublattices has at most one element in each class of L/#.

3. Lattice powers

In this section we shall describe a construction of lattice powers and give
some properties of these new algebras. Let A = (A, F) be an algebra, and
L alattice allowing the power. Let A(L) be the collection of all mappings
X : A — L, such that

(1) X(a)A X(b)=0,for all a,b € L, a # b;
(2) V X(a)=1.
acA

Operations on A(L) are defined in the following way: if f € F,, C F, and
X1,...,Xn € A(L), then

f(X1,..,X,) =Y, whereforaec A

(3) Y(a) = \/(Xl(al) Ao A Xn(an); f(ar, ...,as) = a).

The proof that the operations on A(L) are well defined was given in [1]. The
algebra A(L) = (A(L), F) belongs to the same similarity class as A, and is
said to be a lattice power of A.

Remark 3.1. A(L) is a special collection of lattice valued (fuzzy) sets on
A, since its elements are particular mappings from the algebra A to a lattice.
Therefore, the lattice power was defined in [1] to be a fuzzy power.

To describe varieties closed under lattice powers, we need the following
theorem.

Theorem 3.1. [1] Let A = (A, F) be an algebra, A(L) its lattice power,
and he Fy, f,g € F,, F1, F, C F. Now, if the equalities

(4) f(z1, szy) = g(21, ..y 24), and
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(5) g(x1, .y @) = R(f(21, ...y Tn))
are true in A for any w1, ..., Ty, then they also hold in A(L). O

Corollary 3.1. The equality

(6) fis oo fim9(21, o %0) = fy o fih(21, 0y 20),

where all the f operations are unary and g,h € Fy, holds in A(L), provided
that it is true in A.

Proof. Straightforward, successively applying (5). O

Lemma 3.1. Let A(L) be a lattice power of the algebra A, and X € A(L).
Then, {p € L | p = X(a) for some a € A} C By for some Boolean algebra
By, from the collection By .

Proof. If X € L(A), then all the elements X (a) for a € A belong to different
classes in L/6#. Indeed, by (1), X(a) A X(b) = 0 for a # b, and [0]s = {0}.
Moreover, these elements form a partition in L, by (1) and (2). By the
construction of algebras in By, there is a Boolean algebra from that family
to which all these elements belong. O

Thus, an element from a lattice power as a function from an algebra
A to a lattice, always maps the set A into a Boolean algebra By from the
collection Bg. The following proposition shows that the set of all such
mappings (as a Boolean power) form a subalgebra of the lattice power.

Proposition 3.1. If B is a Boolean lattice from the collection B of sub-
lattices of the lattice L allowing the power and A=(A, F) is an algebra, then
the Boolean power A(By) is a subalgebra of the lattice power A(L).

Proof. Let f be an n-ary operational symbol from F, and Xi,...,X, €
A(Bg). These elements are also in A(L) and by (3), since By, is a sublattice
of L, f(X1,...,X5) as the function from A to L has the same values as the
corresponding function from A to By. This proves that A(Bj) is, as a subset
of A(L), closed under operations from F. O

There is another way to connect lattice powers with the Boolean ones,
as shown by the follwing theorem.
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Theorem 3.2. If L is a lattice allowing the power and A=(A, F) an alge-
bra, then the Boolean power A(L/0) is a homomorphic image of the lattice
power A(L).

Proof. Let h: A(L) — A(L/6) be defined with
(7) h(X) =Y, where for a € A,Y(a) = [X(a)]s.

To prove that h admits the operations, take an f € F, C F, and let
X1,...,X, € A(B;). Then, fora € A,

h(f (X150 Xn))(@) = [f( X1, -, Xn)(@)]o = F([X1]p, .., [Xnlo)(a),

by (3) and by the fact that 8 is a congruence relation on L. O

4. Unars

Theorem 4.1. Any variety of unary algebras is closed under the formation
of lattice powers.

Proof. Immediately by Corollary 1. O

In order to characterize lattice powers of algebras in the above varieties,
we shall introduce a particular union of Boolean powers.

Let L be the lattice allowing the power and A=(4, F) a unary algebra.
Let also {A(Bx) | ¥ € K} be the collection of Boolean powers constructed
by means of the Boolean lattices from the family By, introduced at the end
of section 2.

Lemma 4.1. The union Jicx A(Byk) is a unary algebra from the same sim-
tlarity class as the algebra A.

Proof. Indeed, every Boolean power from the collection is a unary algebra,
and the union of unary algebras from the same similarity class is again
an algebra from the same class. The operation in the union is the one
that, restricted to any of these Boolean powers, gives the corresponding
fundamantal unary operation. The elements (functions) belonging at the
same time to different Boolean powers, have equal values under these unars
- exactly those that are determined in A(L). O
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Let

A(Bx) = (| A(Bw), F).
keK

Theorem 4.2. If A=(A, F) is a unary algebra and L the lattice allowing
the power, then the lattice power A(L) is isomorphic with the algebra A(Bk).

Proof. Let h be the mapping from the lattice power to the union of Boolean
powers, defined by: A(X) =Y, where for a € A Y(a) = X(a), and Y (a) be-
longs to the Boolean algebra determined by the partition being the codomain
of X. The proof now follows by the fact that the functions from A(L) are
at the same time the functions from the union A(Bg). O

Thus we have proved that the lattice power of a unar is a union of
Boolean powers of the same algebra. However, for algebras in varieties of
unars, it would be more convenient to characterize lattice powers in terms
of H, 5 and P. And it turns out that the lattice power of an algebra in such
variety is embeddable into a Boolean power.

Theorem 4.3. For any lattice power A(L) of a unary algebra A, there is
a Boolean power A(B) of the same algebra, having a subalgebra isomorphic

with A(L).

Proof. Let B be a complete Boolean algebra, with the following property:
it contains a collection Cx = {Cy | k € K} of different, complete Boolean
subalgebras, such that for every k € K Ci & By, where By, belongs to the
collection By of Boolean sublattices of L. Obviously, for every k& € K the
Boolean powers A(By) and A(C}) are isomorphic. Hence, by Theorem 4,
A(L) is embeddable into A(B). O

It is known that Boolean powers of finite algebras are special subdirect
powers of these algebras.

Corollary 4.1. A lattice power of a finite algebra A in a vaeriety of unars
i8 isomorphic with a subdirect power of A.

Proof. Every Boolean power of A is a subdirect power of the same algebra,
which is obviously the case with their union as well. The proof now follows
directly by Theorem 5. O
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Example 4.1. Let A=({a,b,c}, f) be a three-element algebra with one unary
operation given by the following table.

a b ¢
fz(bcc)

The lattice L allowing the power is represented in Figure 2.

1
2

U1

0 pig. 2

The lattice power A(L) is the union of two Boolean powers of A, constructed
by means of two Boolean sublattices of L presented in Figure 3. These two
Boolean algebras are the only members of the collection By .

The number of mappings - elements of A(L) is 33. (The sets of functions
belonging to these two Boolean powers are not disjoint.) Namely, if the map-
pings are represented by their functional values (pgr instead of ( ; Z : )
and so on), then all the elements of A(L) are all permutations of each of the
following values:



Lattice powers of unars 129

100 pgr pu 0 puy0 qt0 rs0

By (3), since the operation f is unary, for every X from A(L) and for
z € {a,b,c} we have:

X(z)= \/ X (y).
f(y)==
Hence,
f(pqr) = Opuy, f(010) = 001, F(up0) = Ougp,
and so on.
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