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Abstract

The set of all words of length n over the alphabet {0,1} with a
fixed forbidden subword of length 3 is enumerated and constructed.
The number of words is counted in two different ways, which gives
some new combinatorial identities.
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1. Definitions and notations

Let X = {0,1} be an alphabet. The elements of X are the letters of the
alphabet and X is a 2-letter alphabet.

If xp € X", i.e. if xp = (21,22,...,%,) Is an ordered n-tuple with
components from X, we say that xp is a word of length n over the alphabet
X . For the sake of brevity, we shall write (z1,%2,...,2,) a8 T12Z2...Zp.

If S is a set, then || is the cardinality of S. By [z] and |z| we denote
the smallest integer > z and the largest integer < z. By £o(p) and £;(p)
we denote the number of zeros and ones, respectively, in the string p € X*,
where X ™ is the set of all finite strings over the alphabet X i.e.

X*= U Xk,

k>0
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N, ={1,2,...,n}, N, = 0 iff » < 0, the binomial coeficient (2) = 0 iff
n < k and
(2] = { lz] for |lz] —z| <05
[2] for |[z] —z| < 0.5

i.e. [x] is the nearest integer to x.

2 . Results and discussion

There are 8 cases for the forbidden subword over the alphabet {0,1} of
length 3: 000, 111, 010, 101, 100, 001, 011 and 110. The cases 000 and 111
are obviously equivalent. In [3] we have

Theorem 1.
(47 12]

_ n—1iy+ 1 iy — 11 _ ants
=3 S (MUY (H ) = [y where

i2=0 il =0

1
=3 (1+ Y19+ 3v33+ {/19—3\/33)
Ap = {Xnlxn = 21,22... 2, € X" A (Vi € Np—2)(@iip1Tip2 # 111)}.

The set A, is the set of all words of length n» with forbidden subword
111. Cases 010, 101 are equivalent, too. In these cases we have

Theorem 2.

n i—1 . . .
b, = |Bn| = E|B’|—1+EZ( )("_i’jj]”), where

i=1 j=0 _
B, = {xn|xn = z122...2, € {0,1}" A (Vk € Np2)(zrzr1Z842 7 010)}.

Proof. Now we shall construct words from the set B,, where B,, is the set of
all words of length n over the alphabet X with the forbidden subword 010.
First we make a partition of the set B,, into subsets BY, where B is the set
of all those words of length n over the alphabet X which contain exactly ¢
zeros and do not contain the subword 010. This is a partition because

(1)  Bu=|JB' and i#j= B,(|B, =0 forall i,j €N,
=0
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Let us construct the words from the set Bf. We write i zeros and then
one of the letters a” and ”A” in the ¢—1 (¢ > 1) places between ¢ zeros. The
letter ”X” denotes the empty letter, i.e. if the letter X is written between
two zeros, then, actually nothing is written and the letter « is the subword
11 i.e. &« = 11. Now we are sure that between two zeros there is not exactly
one letter 1. This we can do in

X i-1
® > ()

=0 N 7
different ways, where j is the number of appearances of the letter A in words
which we are constructing. There remains to write n — 1 —2(: — 1 — j) =
n—3i+ 25 + 2 letters 1 on 7 — 1 — j regions which already contain 11,
as well as into the regions in front of and behind the word, that is into
t—1—74+2=1—j+ 1 regions in all. We can make this arrangement by
forming a string consisting of ¢ — j partition lines and n — 3¢+ 25 + 2 letters
1. The number of these arrangements, i.e. permutations, is

n—214+754+2
3) ( i— )
Thus from (1), (2) and (3) Theorem 2 follows. O

Theorem 3.

202 +1 o
202 — 200 43 '

Bal = |

Proof. We can make a recurrence relation for b, = |B,|. The words
Xn € B, are obtained from other words x,_1 € B,_; by appending 0 or
1 in front of them. Let xp_1 € Bn_1, Xn_2 € B, and xu_3 € Bn_3.
Then 1xy_1 € By, 0llxn,_3 € B,_3, 010x,_3 ¢ B, which means that
0lxp_2 € By, if and only if x,_9 begins with the letter 1. This implies the
recurrence relation

(4) b, = 2bp 1 — bz + by_3.

It is easy to see that by = 2, by = 4 and b3 = 7. The characteristic
equation for (4) is
(5) -2 4+ -1=0.

The equation (5) has one real root’

o= é (4 + €/100 + 4v621 + 6/100 - 4\/621> = 1.754877666247
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and two complex roots § + iy whose module /2 + v2 = « — 1 is less than
1. Now we have
by =ra” + (p+1)(B+ ¢y)" + (p - iq)(8 — i7)"

where the constants r,p+ t¢ and p — iq are determined from the initial con-

ditions i.e. r = 2—2% and
202 +1

bn = ~ 9 o . 4

202 — 20+ 3

lim (+¢y)" =0 and lim (f#—4y)" =0. O

a"] because

Theorem 2 and Theorem 3 imply:

Corollary 1.
n 1—1 .
1—1 n—2t+7j+2 204+ 1
B,i=1 —a" .
|Bn] = +22< )( 1—7J ) [2012—201-}-3 ]
1=1 3=0
Cases 100, 001, 110, 011 are equivalent, and it was shown in [4] that
Lzl

(6) Llksmym) = CCky ) = Y1y ("

)m"‘k’ where
?

C(k,m,n) is the set of all words of length n over the alphabet {a1, ay,...,ax,}
with the forbidden fixed good subword. The subword ajas...ax is a good
subword iff a1as ... a5 # @k—s41ak—s42 - - - @k for each natural number s < k.

Theorem 4.

L3 _ ]
|Cal = 1C(3,2,n)| = Z(—l)’("_i?’)w—& _ _1+[5 +52\/5 (1+2\/5) ]

=0

Proof. The set C,, is the set of all words of length n with forbidden subword
100 and ¢, = |Cp|- The words xp € C,, are obtained from other words
Xn_1 € C,,—1 by appending 0 or 1 behind of them. Let x,_3; € C,_; and
Xn_2 € Cn_o. Then xp_11 € Cyp, xp210 € C,, and xp_200 € C,, if and
only if xp_g = 00...0. This implies the recurrence relation

(7) Cn =Cn-1+t Cnz2+ 1.
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A special case of (6) for (k,m) = (3,2) and (7) give the Theorem 4 because

Remark. It is easy to generalize the results of this paper by substituting
the alphabet {0,1} by any alphabet. .
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