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Abstract

In [9] the notion of weak partial congruence algebra is introduced
and, among other things, three problems are posed. In the present
paper we give the complete solution for the first problem and some
partial answers for the second one. Also, we prove that there are
modular algebraic lattices which are not representable as the lattice
of weak congruences of any congruence permutable algebra. This fact
solves Conjecture from [10] in the negative.
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1. Introduction

Let A be an algebra of the type F. With F, we denote the set of all
n-ary functional symbols. A weak congruence relation p on A (see [11])
is a symmetric, transitive binary relation on A, which satisfies the usual
substitution property and the weak reflexivity: for any ¢ € Fp, ctpet. We
denote by C,,(.A) the set of all weak congruences on the algebra A. It is
not hard to see that C,(A) is the set of all congruences of all subalgebras
of A or, equivalently, the set of all symmetric and transitive subalgebras of
A% So, Cyy(A) = (Cy(A), C) is an algebraic lattice. Denote by V and A the
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corresponding lattice operations. This lattice contains the congruence lattice
C(A) as its sublattice (namely, this is the filter generated by the diagonal
relation Ay = {(z,z)|z € A}). Also, the lattice S(A) of all subalgebras of
A can be embedded into C,,(A) in a natural way: to any subalgebra B we
assign the diagonal relation Ap.

It is not hard to see that if .4 has at least one nontrivial subalgebra,
there are relations p,o € C,(A) which are not permutable. As the relation
composition of two weak congruences is again a weak congruence if and only
if they commute, we conclude that the relation composition o on C,(A) is
only a partial operation. In [9] the weak partial congruence algebra is defined
as the partial algebra

ICM(A) = (Cw('A)a V’ Ay Oa_l aAA707 A2)7

where ~! is the inversion of the relations and o is the diagonal relation
of the least subalgebra of A. Here, we slightly modify this notion and
obtain the notion of partial algebra of weak congruences simply by omitting
the operation ~! from the set of basic operations (because ~! is always an
identity function on the set of weak congruences).

2. What does £, "know”?

It was shown in [9] that for any natural number n = pg, where p and ¢ are
distinct primes, there exist algebras A; and A such that they have isomor-
phic lattices of weak congruences, but the corresponding partial algebras of
weak congruences are not isomorphic. So, the least algebra which can be
constructed in this way have six elements. Problem A in [9] asks whether
there exist two algebras Ay and A, of the same type and same cardinality
less than siz such that

Cu( A1) = Cy(A2),

but
Kuw(A1) # Ku(Az).

In the sequel we will prove that the least algebra of that kind (which show
that X, "knows more about algebras than C,,”) has three elements. It
is easy to see that if two algebras of the same type, with two elements,
have isomorphic lattice of weak congruences, then the corresponding partial
algebras of weak congruences are also isomorphic.
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Theorem 1. The least algebras of the same type and same universe such
that they have isomorphic lattices of weak congruences, but not isomorphic
partial algebras of weak congruences, have three elements.

Proof. Let the universe of the algebras A; and A; be A ={0,1,2}, and let
both of them have the type F = {f, g,a}, where f and g are unary and a is
a nullary functional symbol. Let the interpretation of a in both algebras be

0, and let
A4 (0 1 2 A _ [0 2
f ”(021)“‘19 ‘(0 A

4 (0 12 4 [0 12
/ ’(121)“‘19 ‘(221 '

It can be proved that the weak congruences of the algebra A; are A%, /A4
and {(0,0)}. So, the lattice of weak congruences of A; is the three-element
chain. On the other hand, the weak conguences of the algebra A, are A%, Ay
and the equivalence relation with the classes {1,2},{0}. So, the lattice of
weak congruences of Aj is also the three-element chain. The corresponding
partial algebras of weak congruences are not isomorphic because the only
possible isomorphism between these chains does not map the diagonal rela-
tion to the diagonal relation. Note, that if the diagonal relation is not taken
to be a nullary operation in the definition of the partial algebra of weak
congruences, even in this case we could prove that K, (A;) and Kyy(A;z) gge
not isomorphic. Namely, the only possible isomorphism ¢ between these
two chains does not commute with the operation o, because

©({(0,0)} 0 &) # ¢({(0,0)}) 0 p(A4).

DN =

and

[y

Problem B from [9] asks for a description of such classes of algebras in
which any two algebras are uniquely determined by its partial algebras of
weak congruences. We can prove the following:

Proposition 1. Let the type F of algebras contain at least one constant
symbol, and at least one non-nullary functional symbol. Then there are
algebras of the type F, with the same universe, which are not isomorphic,
but their partial algebas of weak congruences are isomorphic.
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Proof. Let ¢ € Fy and A; be the corresponding constant algebra, and A,
an algebra with the same universe, in which every non-nullary operation is
the first projection. If the universe contains more than one element, then
the algebras A; and A, are not isomorphic. But they have the same weak
congruences. OJ

Proposition 2. Let the type F of algebras contain at least one operation
symbol of arity at least two. Then, there are algebras of the type F, with the
same universe which are not isomorphic, but their partial algebas of weak
congruences are isomorphic.

Proof. Tt is enough to consider two algebras with the same (non-trivial)
universe such that in the firt of them the non-nullary operations are the
first projections, and in the second one, all the operations are the second
projections (of suitable arities). These algebras are not isomorphic, but have
the same weak congruences. O

3. Permutability of congruences and modularity

It is proved in [10] that the partial algebra of weak congruences of an alge-
bra is a (full) algebra if and only if the algebra is congruence permutable
and has no non-trivial subalgebras. Tt is well known that every congruence
permutable algebra is congruence modular. In [10] the following Conjecture
was stated:

For arbitrary modular algebraic lattice L, there exists an algebra A with
permutable congruences such that

Cul(A) = L.

Here we will prove that this Conjecture is false. First of all we need some
definitions and theorems. The counterexample will be constructed as the
lattice of subspaces of some projective geometry. As the geometry we will use
has dimension two, we will recall here only the definition of two dimensional
projective geometries.

Definition 1. A projective plane is a pair ©# = (P,A) such that P is a
nonvoid set (the set of points), A is a collection of subsets of P (the elements
of A are called lines), and the following azioms are satisfied:
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1. Any two distinct points belong to one and only one line.
2. Any two distinct lines contain precisely one point in common.
3. Every line has at least three points.

4. There exists three distinct points such that no line contains all of them.

If = is a projective plane, it can be proved that there is a cardinal x > 2
(called the order of m) such that every line of 7 contains precisely x + 1
points and every point of 7 lies on precisely s + 1 lines.

To any projective plane 7 we will associate a lattice £7, the lattice of
subspaces of 7. Namely, if 7 = (P, A) is a projective plane, let

L™ ={0yu{{p}:pe PYUAU{P}.

It is easy to see that L™ is a closed set system. We define the lattice of
subspaces L™ = (L™, A, V) as the corresponding lattice of closed sets. If p, g
are points, then instead of {p} vV {¢} we write simply pV ¢. It is well known,
that the following representation theorem can be proved (for proof see for
example [7]):

Theorem 2. Let L be a lattice. L is isomorphic to L™ for some (necessar-
ily unique up to isomorphism) projective plane 7 iff L is a complemented
modular lattice of height three and every coatom of L contains at least three
.atoms.

For the set X C P of points we say that they are collinear ifft X C I for
some line [ € A. A triplet (ag,a;,a) of non-collinear points is a triangle.
Two triangles (ag, a1,a2) and (bg, by, b2) are perspective with respect to a
point p iff a; # b;, lines a; V a; and b; V b;, 0 < 4,7 < 3, are distinct, and
the points p,a;, b; are collinear for + = 0,1,2. They are perspective with
respect to a line | iff co1,c12,c00 C I, where ¢;; is the intersection of lines
a; V a; and b; V b;. We say that Desargues’ theorem holds in the projective
plane 7 if any two triangles which are prspective with respect to a point,
are also perspective with respect to a line. M.P. Schiitzenberger (1945)
first showed that this property (formulated in the same way for projective
geometries of higher dimension) can be expressed as a lattice identity holding
in the associated lattice of subspaces. (Recall that any lattice inclusion is
equivalent to a lattice identity, since z < yiff zVy = y.)
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Definition 2. Let L be a lattice. Consider siz elements a;,b; € L, (¢ =
0,1,2), form the elements

Co = ((ll \Y (Lz) A (bl \Y bz)

and cyclically, and let
d=coA (C] \% Cg).

The inclusion
((Lo \Y bo) A (al \Y bl) A ((l2 \Y bz) < ((l] A (dV (lz)) V by

is called the Arguesian identity, and the lattice in which this identity holds
is satd to be Arguesian.

For the proof of the following theorem (which holds also for projective ge-
ometries of higher dimension too) see for example [2].

Theorem 3. Let 7 be a projective plane. Then Desargues’ theorem holds
in m iff the associated lattice L™ of subspaces satisfies the Arguesian law.

It is well known (see for example [8], [1]) that there are projective planes
in which Desargues’ theorem does not hold. For example, there is such a
projective plane of order 9.

Now, we can turn back to congruence lattices. The proof of the following
theorem can be found in [3].

Theorem 4. (B. Jénsson, 1953)
If A is an algebra whose congruences permute, then C(A) is Arguesian.

Theorem 5. There is a finite modular lattice which is not isomorphic to
the lattice of weak congruences of any congruence permutable algebra.

Proof. Let 7 be a finite projective plane in which Desargues’ theorem does
not hold, and let My be the associated lattice of subspaces. Because of
T2. and T3., Mg is a modular lattice in which the Arguesian identity does
not hold. Let us construct a new lattice M by adding three new elements
a,b, c to the lattice My in such a way that in M we have a < b < ¢ < 0,
where 0 is the least element of the lattice My. Then M is a modular
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lattice with My as a sublattice. Suppose that there is an algebra A with
permutable congruences such that C,(A) £ M, and let ¢ : M — Cyu(A)
be the corresponding isomorphism. Denote by d the element ¢~1(A 4) and
prove that d &€ My \ {0}.

Suppose that d € My \ {0} and show that we get a contradiction. Let
a=p(a), B =),y =), =p(0). Asd € My\{0}, then e, 5,7 C Ay4.
Further, because of oo C 3 C v, there are distinct elements = and y such
that (z,z) € f\ aand (y,y) € v\ B. Let

p={(u,v): (u,u) €y and (v,v) € v},

and prove that p is a weak congruence of the algebra A. Trivially, p is
symmetric and transitive. As v C p, we conclude that p satisfies the weak
reflexivity. It is easy to see that p satisfies the substitution property. Namely,
if fA is a n-ary operation of the algebra A, and (u;,v;) € p,i=1,2,...,7,
then (u;, u;) € v and (v;, v;) € 7y, so that

(fA(ula .- '7un),fA(u17' aun)) € Y

(fA(o1y- s om), fA (0, v0)) €7,
so by the definition of p we get

(FAuty - ey tn), FAOL, -y 00)) € po

Now, we have A 4N p = v. On the other hand, p € A4, because for distinct
elements z and y, (z,y) € p. So, p € p(Mp) \ {6}, and A4 € ¢(Myp) \ {6}.
As ¢(My) is sublattice of M, we get

AA Npe 99(M0)7

ie. v € (M), and finally ¢ € My, which is a contradiction.

We conclude that d ¢ My \ {0}, and so d € {0,a,b,c}. In this way,
the filter generated by the element d in M has My as its sublattice, which
means that ¢(Mo) is a sublattice of Con(.A). But in this way the congruence
lattice of the algebra A would not satisfy the Arguesian identity, which is a
contradiction with T4.

a

Remark 1. The first example of a non-representable relation algebra (in
the sense of Tarski) was constructed by Lyndon. Jénsson later used non-
Desarguesian projective planes to construct a non-representable integral re-
lation algebra. Also, projective planes were used in the proof of Monk’s
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theorem that the class of representable relation algebras is not finitely ax-
iomatizable (see [5]).

Remark 2. It can be proved that every Arguesian lattice is modular. So,
the Arguesian identity is stronger than modularity. It is interesting to note
that if we consider these two identities as identities of congruence varieties,
they have the same ”strenght”. Namely, Freese and J6nsson proved that
if the congruence variety of some variety V (i.e. the variety generated by
{Con(A) : A € V})is a variety of modular lattices, then it satisfies the
Arguesian identity too (for the proof see for example [3]).
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