Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 25, 1 (1995), 75-82 Review of Research Faculty of Science Mathematics Series

SET-THEORETIC RELATIONS AND BCH-ALGEBRAS WITH TRIVIAL STRUCTURE

Wieslaw A. Dudek

Institute of Mathematics, Technical University, Wybrzeze Wyspiańskiego 27, 50-370 Wroclav, Poland e-mail: dudek@math.im.pwr.wroc.pl fax: (48)-(71)-22-77-51

Ronald Rousseau

Universitaire Instelling, Antwerpen,
Specials Licentie Documentatieen Bibliotheekwetenschap
Universiteitsplein 1, B-2610 Wilrijk, Belgium
and

Kih West-Vlaanderen, Department of Mathematics, Zeedijk 101, B-8400 Oostende, Belgium

Abstract

In any BCH-algebra we can define a natural relation which is reflexive and anti-symmetric. This relation induces fundamental properties of a BCH-algebra, but not induces the BCH-operation in general. Moreover, some types of BCH-algebras may be obtained from other reflexive and anti-symmetric relations. We describe connections between such relations. We give also some methods of constructions of BCH-algebras from given relations.

AMS Mathematics Subject Classification (1991): 06F35, 03G25 Key words and phrases: BCH-algebra, BCI-algebra

1. Introduction

In 1966 Y.Imai and K.Iséki [6], defined a class of algebras of (2,0) type, called BCK-algebras, which, on the one hand, generalizes the notion of the algebra of sets with the set subtraction as the fundamental non-nullary operation, and on the other hand the notion of the implication algebra [7]. BCK-algebras have many interesting generalizations such as BCI-algebras, BCC-algebras and BCH-algebras. Any such algebra has a certain natural order induced by its fundamental operation. Such order induces some properties of this operation, but this operation is not induced by this order in general. Moreover, such BCH-algebra may also be obtained from some other order. In this note we describe the connection between relations which create a BCH-algebra G and the natural order of G.

2. Orders and BCH-algebras

By an algebra $(G, \cdot, 0)$ we mean a nonempty set G together with a binary multiplication (denoted by juxtaposition) and a certain distinguished element 0. Such algebra is called a BCH-algebra (or CI-algebra [1]) if the following conditions hold:

$$(1) xx = 0,$$

$$(2) (xy)z = (xz)y,$$

(3)
$$xy = yz = 0 \text{ implies } x = y.$$

One can prove (cf. [3], [4], [5]) that every BCH-algebra satisfies

$$(4) x0 = x,$$

(5)
$$0(xy) = (0x)(0y).$$

A BCH-algebra satisfying

$$((xy)(xz))(zy) = 0$$

is called a BCI-algebra. A BCH-algebra is called proper (cf. [5]) if it is not a BCI-algebra, i.e. if it does not satisfy (6).

On any BCH-algebra $(G,\cdot,0)$ one can define the so-called *natural order* by putting

$$(7) x \le y \text{ iff } xy = 0.$$

This "order" is a reflexive and anti-symmetric relation, but, in general, it is not transitive.

Example 1. It is easily seen that $G = \{0, a, b, c\}$ with the multiplication defined by the table

is a BCH-algebra. It is a proper because $((ac)(ab))(bc) \neq 0$. Its natural order is not transitive because $a \leq b$ and $b \leq c$ but $not(a \leq c)$.

If the natural order of a BCH-algebra $(G, \cdot, 0)$ has 0 as the smallest element, then $(G, \cdot, 0)$ is called a BCH_0 -algebra. In other words, a BCH₀-algebra is a BCH-algebra $(G, \cdot, 0)$ in which

$$(8) 0x = 0$$

holds for all $x \in G$. A BCI-algebra satisfying (8) is called a BCK-algebra.

The natural order of a BCK-algebra $(G, \cdot, 0)$ is a partial order on G with 0 as a smallest element (cf. [7]). Moreover, any BCK-algebra $(G, \cdot, 0)$ may be considered (cf. [7]) as a groupoid $(G, \cdot, 0)$ with the natural order satisfying conditions: $0 \le x$, $(xy)(xz) \le zy$, x0 = x, $x \le y \le x$ imply x = y. Also any BCI-algebra is partially ordered by such natural order, but in this case 0 is not the smallest element in general.

On every set G equipped with a distinguished element 0 and a relation ρ we can define a binary multiplication in the following way

(9)
$$x \cdot y = \begin{cases} 0 & \text{if } x \rho y \\ x & \text{otherwise} \end{cases}$$

We say that such algebra has a trivial structure. It is clear that any reflexive and anti-symmetric relation ρ yields a BCH₀-algebra. Any partial order on G with 0 as the smallest element defines on G the structure of a BCK-algebra.

Proposition 1. If a BCH-algebra G has a trivial structure obtained from the reflexive and anti-symmetric relation ρ , then its natural order coincides

with ρ only in the case when ρ satisfies the minimum condition, i.e. if $0\rho x$ for every $x \in G$.

Proof. If $x \leq y$ then xy = 0. This implies $x\rho y$, or x = 0. Since $0\rho y$ for all $y \in G$, then $x \leq y$ implies $x\rho y$, i.e. $\leq \subset \rho$. Conversely, if $x\rho y$ then by definition xy = 0, which gives $x \leq y$. Thus, $\rho \subset \leq$ and in the consequence $\rho = \leq .\Box$

Example 2. We will give an example where $\rho \neq \leq$. Let $G = \{0, a\}$ and let the reflexive and anti-symmetric relation ρ be given by $0\rho 0$, $a\rho a$, $not(0\rho a)$ and $not(a\rho 0)$. Then $(G, \cdot, 0)$ is a BCH₀-algebra with the trivial structure. Its multiplication is given by the following table:

$$\begin{array}{c|cccc} \cdot & 0 & a \\ \hline 0 & 0 & 0 \\ a & a & 0 \\ \end{array}$$

The natural order of $(G, \cdot, 0)$ satisfies $0 \le a$. Hence $\rho \ne <$.

We say that a relation ρ defined on a set G with a distinguished element 0 is locally reflexive if $0\rho 0$, and locally transitive if $0\rho y$ and $y\rho z$ imply $0\rho z$.

Lemma 1. Any relation satisfying the minimum condition is locally reflexive and locally transitive.

Proposition 2. If a relation satisfying the minimum condition induces on G the trivial structure of a BCH-algebra, then it is reflexive and anti-symmetric, and coincides with the natural order on this BCH-algebra.

Proof. Assume that a relation ρ satisfies the minimum condition and defines on G a BCH-algebra $(G,\cdot,0)$. If ρ is not reflexive, then there exists $x \in G$ such that $not(x\rho x)$. But in this case we have $x \cdot x = x$ by (9), and $x \cdot x = 0$, as $(G,\cdot,0)$ is a BCH-algebra. Thus x = 0, which is in contradiction with local reflexivity.

If ρ is not anti-symmetric, then there exist $x,y\in G,\ x\neq y$ such that $x\rho y$ and $y\rho x$. Hence $x\cdot y=0$ and $y\cdot x=0$ by (9). But this by (3) implies x=y, which gives a contradiction. Thus, any relation satisfying the minimum condition and defining a BCH-algebra must be reflexive and anti-symmetric. By Proposition 1 such relation coincides with the natural order of this BCH-algebra. The proof is complete. \Box

Corollary 1. If a relation ρ satisfies the minimum condition and induces on G the trivial structure of a BCK-algebra, then it is a partial order on G and coincides with the natural order on this BCK-algebra.

The following example shows that a BCH-algebra may not be reproduced from its natural order.

Example 3. Consider three algebras defined on the set $G = \{0, a, b, c\}$ by the following tables:

0	0	\mathbf{a}	b	c		٠	0	\mathbf{a}	b	c	*	0	\mathbf{a}	b	c
0	0	0	0	0	_	0	0	0	0	0	0	0	0	0	0
a b	a	0	\mathbf{c}	\mathbf{c}		\mathbf{a}	a	0	\mathbf{a}	\mathbf{a}	\mathbf{a}	a	0	\mathbf{a}	a
b	b	0	0	b		b	b	0	0	b	b	b	0	0	\mathbf{c}
				0		\mathbf{c}	С	0	0	0	c	c	0	0	0

The first algebra is a proper BCH-algebra (cf. [5]). Its natural order is linear: $0 \le c \le b \le a$. The BCH-algebra with the trivial structure defined on G by this order is given by the second table. The third algebra is a BCK-algebra obtained from this linear order by the construction given in [7]. It is not difficult to verify that these three algebras have the same natural order but are not isomorphic.

3. Constructions of BCH-algebras

Now we give some methods of constructions of BCH-algebras with the trivial structure from the given BCH-algebras (with the trivial structure). We start with a generalization of the construction obtained for BCK-algebras by H. Yutani [8].

Let $\{G_i\}_{i\in I}$ be a nonempty family of BCH-algebras such that $G_i \cap G_j = \{0\}$ for any distinct $i, j \in I$. In $\{G_i\}_{i\in I}$ we define a new multiplication identyfing it with a multiplication in any G_i , and putting xy = x if belongs to distinct G_i . Direct computations show that the union $\bigcup_{i\in I} G_i$ is a BCH-algebra. It is called the disjoint union of $\{G_i\}_{i\in I}$ (cf. [3]).

In a general case where $\{G_i\}_{i\in I}$ is an arbitrary nonempty family of BCH-algebras, we consider $\{G_i \times \{i\}\}_{i\in I}$ and identify all $(0_i, i)$, where 0_i is a constant of G_i . By identifing each $x_i \in G_i$ with (x_i, i) , the assumption of the definition mentioned above is satisfied. Consequently, we can define

the disjoint union of an arbitrary BCH-algebra. Obviously, if all G_i have the trivial structure, then the disjoint union of $\{G_i\}_{i\in I}$ has also the trivial structure. Moreover, as a consequence of Theorem 5 from [3] we obtain

Proposition 3. Let $\{S_i\}_{i\in I}$ be an indexed family of subsets of a BCH-algebra G with the trivial structure induced by the relation ρ . If

- (i) $G = \bigcup S_i$,
- (ii) $S_i \cap S_j = \{0\}$ for any $i \neq j$,
- (iii) $x \in S_i$ implies $\{y \in G : yx = 0\} \subset S_i$ for any $i \in I$,

then all S_i are subalgebras with the trivial structure induced by $\rho_i = \rho_{|S_i}$ and G is a disjoint union of S_i .

Also the following two constructions are a generalization of the known constructions for BCK-algebras. These constructions may be simply translated (by (9)) for BCH-algebras without the trivial structure.

Proposition 4. Let $(G, \cdot, 0)$ be a BCH-algebra with the trivial structure induced by ρ and let $a \notin G$. If we extend ρ to $G \cup \{a\}$ putting $a\rho a, 0\rho a, not(a\rho 0)$ and $a\rho x, not(x\rho a)$ for all $x \in G \setminus \{0\}$, then ρ induces on $G \cup \{a\}$ a BCH-algebra with the trivial structure. This new BCH-algebra is proper iff $(G, \cdot, 0)$ is proper.

Proposition 5. Let $(G, \cdot, 0)$ be a BCH-algebra with the trivial structure induced by ρ and let $a \notin G$. If we extend ρ to $G \cup \{a\}$ putting $a\rho a$, $x\rho a$ and $not(a\rho x)$ for all $x \in G$, then ρ induces on $G \cup \{a\}$ a BCH-algebra with the trivial structure. This BCH-algebra is proper iff $(G, \cdot, 0)$ is proper.

4. Ideals and congruences

A nonempty subset A of a BCI-algebra $(G,\cdot,0)$ is called an *ideal* iff $(i)0 \in A$, $(ii)yx, x \in A$ imply $y \in A$. Obviously, any such ideal is a subalgebra of G and induces on G a congruence θ defined by $x\theta y$ iff $xy, yx \in A$. The set $G/\theta = \{C_x : x \in G\}$, where $C_x = \{y \in G : x\theta y\}$ with the operation $C_x * C_y = C_{xy}$ is a BCI-algebra. Unfortunately, this fact is not true for BCH-algebras.

Example 4. Let G be a proper BCH-algebra from Example 2 in [2]. Routine

calculations prove that $A = \{0, b, d, f\}$ is an ideal of G, but the relation θ defined by this ideal is not a congruence because $c\theta e$ and $c\theta a$ not imply $cc\theta ea$. This gives a negative answer to the problem posed in [2]. On the other hand, one can prove that there exist congruences which are not defined by any ideal.

A special role in BCH-algebras play the congruences induced by some endomorphisms. It is not difficult to verify that the kernel of an endomorphism ϕ of a BCH-algebra $(G,\cdot,0)$, i.e. the set $\ker \phi = \{x \in G : \phi(x) = 0\}$ is an ideal and the relation θ defined by $x\theta y$ iff $xy, yx \in \ker \phi$, i.e. iff $\phi(x) = \phi(y)$ is a congruence. If ϕ has the form $\phi(x) = 0x$ (cf. (5)), then $G/\ker \phi$ and $\phi(G)$ are isomorphic BCI-algebras (cf. [3]). These algebras are medial quasigroups. All such algebras with the finite set of generators are the direct product of the so-called cyclic BCI-algebras [3]. On the other hand, $\phi(G)$ is the largest (in the sense of inclusion) p-semisimple BCI-algebra contained in G. Similarly, $\{x \in G : \phi(x) = x\}$ is the largest Boolean group contained in G.

References

- [1] Bunder, M. W., Simpler axioms for BCK-algebras and the connections between the axioms and the combinators B, C and K, Math. Japon. 26 (1981), 415-418.
- [2] Chaudhry, M. A., On BCH-algebras, Math. Japonica 36 (1991), 665-676.
- [3] Dudek, W. A., Thomys, J., On decompositions of BCH-algebras, Math. Japonica 35 (1990), 1135-1138.
- [4] Hu, Q. P., Li, X., On BCH-algebras, Math. Seminar Notes 11 (1983), 313-320.
- [5] Hu, Q. P., Li, X., On proper BCH-algebras, Math. Japonica 30 (1985), 659-661.
- [6] Imai, Y., Iséki, K., On axiom system of propositional calculi XIV, Proc. Japan Acad. 42 (1966), 19-22.
- [7] Iséki, K., Tanaka, S., An introduction to the theory of BCK-algebras, Math. Japonica 23 (1978), 1-26.

[8] Yutani, H., Disjoint unions of BCK-algebras, Math. Seminar Notes 8 (1980), 421-432.

Received by the editors July 10, 1994.