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Abstract

In any BCH-algebra we can define a natural relation which is re-
flexive and anti-symmetric. This relation induces fundamental proper-
ties of a BCH-algebra, but not induces the BCH-operation in general.
Moreover, some types of BCH-algebras may be obtained from other
reflexive and anti-symmetric relations. We describe connections be-
tween such relations. We give also some methods of constructions of
BCH-algebras from given relations.

AMS Mathematics Subject Classificalion (1991): 06F35, 03G25
Key words and phrases: BCH-algebra, BCl-algebra

75



76 W. A. Dudek, R. Rousseau

1. Introduction

In 1966 Y .Imai and K.Iséki [6], defined a class of algebras of (2,0) type, called
BCK-algebras , which, on the one hand, generalizes the notion of the algebra
of sets with the set subtraction as the fundamental non-nullary operation,
and on the other hand the notion of the implication algebra [7]. BCK-
algebras have many interesting generalizations such as BCl-algebras, BCC-
algebras and BCH-algebras. Any such algebra has a certain natural order
induced by its fundamental operation. Such order induces some properties
of this operation, but this operation is not induced by this order in general.
Moreover, such BCH-algebra may also be obtained from some other order.
In this note we describe the connection between relations which create a
BCH-algebra G and the natural order of G.

2. Orders and BCH-algebras

By an algebra (G,-,0) we mean a nonempty set G together with a binary
multiplication (denoted by juxtaposition) and a certain distinguished ele-
ment 0. Such algebra is called a BCH-algebra (or Cl-algebra [1]) if the
following conditions hold:

(1) zz =0,
(2) (zy)z = (22)y,
(3) zy = yz =0 implies z = y.

One can prove (cf. [3], [4], [5]) that every BCH-algebra satisfies
(4) z0 = z,
(5) 0(zy) = (02)(0y).

A BCH-algebra satisfying

(6) ((zy)(z2))(zy) = 0

is called a BCl-algebra. A BCH-algebra is called proper (cf. [5]) if it is not
a BCl-algebra, i.e. if it does not satisfy (6).
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On any BCH-algebra (G, -,0) one can define the so-called natural order
by putting
(7) z <yiff zy = 0.

This "order” is a reflexive and anti-symmetric relation, but, in general, it is
not transitive.

Example 1. It is easily seen that G = {0, a,b,c} with the multiplication
defined by the table

] 0 a b ¢
0]0 0 0 O
ajfa 0 0 a
b{b b 0 0
cle ¢ b 0

is a BCH-algebra. It is a proper because ((ac)(ab))(bc) # 0. Its natural order
is not transitive because ¢ < b and b < ¢ but not(a < c).

If the natural order of a BCH-algebra ((G,-,0) has 0 as the smallest
element, then ((,-,0) is called ¢ BCHg-algebra. In other words, a BCHp-
algebra is a BCH-algebra (G, -,0) in which

(8) 0r =0

holds for all € G. A BCl-algebra satisfying (8) is called a BCK-algebra.

The natural order of a BCK-algebra (G, -,0) is a partial order on G with
0 as a smallest element (cf. [7]). Moreover, any BCK-algebra (G, -,0) may be
considered (cf. [7]) as a groupoid (G, -,0) with the natural order satisfying
conditions: 0 < z, (zy)(zz) < zy, 20 =2z, ¢ <y <z imply z = y. Also
any BCl-algebra is partially ordered by such natural order, but in this case
0 is not the smallest clement in general.

On every set G equipped with a distinguished element 0 and a relation
p we can define a binary multiplication in the following way

0 ifzpy
() Y= { z otherwise
We say that such algebra has a trivial structure. It is clear that any reflexive
and anti-symmetric relation p yields a BCHg-algebra. Any partial order on &
with 0 as the smallest element defines on (& the structure of a BCK-algebra.

Proposition 1. If a BCH-algebra (G has a trivial structure obtained from
the reflexive and anti-symmmetric relation p, then its natural order coincides
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with p only in the case when p satisfies the minimum condition, i.e. if Opz
for every z € G. ‘

Proof. If © < y then zy = 0. This implies zpy, or z = 0. Since 0py for
all y € G, then z < y implies xpy, i.e. <C p. Conversely, if zpy then by
definition zy = 0, which gives z < y. Thus, p C< and in the consequence
p=<.0

Example 2. We will give an example where p #<. Let G = {0,a} and let
the reflexive and anti-symmetric relation p be given by 0p0, apa, not(0pa)
and not(ap0). Then (G,-,0) is a BCHg-algebra with the trivial structure.
Its multiplication is given by the following table:

L OlS
o O

0
a
The natural order of (G, -,0) satisfies 0 < a. Hence p #<.

We say that a relation p defined on a set ¢ with a distinguished element
0 is locally reflexive if 000, and locally transitive if Opy and ypz imply Opz.

Lemma 1. Any relation satisfying the minimum condition is locally reflez-
we and locally transitive.

Proposition 2. If a relation satisfying the minimum condition induces on
G the trivial structure of @ BCH-algebra, then it is reflexive and anti-sym-
metric, and coincides with the natural order on this BCH-algebra.

Proof. Assume that a relation p satisfies the minimum condition and defines
on G a BCH-algebra (G, -,0). If p is not reflexive, then there exists z € ¢
such that not(zpx). But in this case we have z -z =z by (9),and z -z = 0,
as (G,+,0) is a BCH-algebra. Thus # = 0, which is in contradiction with
local reflexivity.

If p is not anti-symmetric, then there exist =,y € G, ¢ # y such that
zpy and ypr. Hence -y = 0 and y -z = 0 by (9). But this by (3)
implies ¢ = y, which gives a contradiction. Thus, any relation satisfying
the minimum condition and defining a BCH-algebra must be reflexive and
anti-symmetric. By Proposition 1 such relation coincides with the natural
order of this BCH-algebra. The proof is complete. O
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Corollary 1. If a relation p satisfies the minimum condition and induces
on G the trivial structure of a BCK-algebra, then it is a partial order on G
and coincides with the natural order on this BCK-algebra.

The following example shows that a BCH-algebra may not be reproduced
from its natural order.

Example 3. Consider three algebras defined on the set G = {0,a,b,c} by
the following tables:

OIOabc -|0abc *lOab'c
00 0 0 O 0j]0 0 0 O 00 0 0 O
ajla 0 ¢ c ala 0 a a ala 0 a a
blb 0 0 b bl/b 0 0 b bib 0 0 ¢
clc 0 0 O cfc 0 0 O cle 0 0 O

The first algebra is a proper BCH-algebra (cf. [5]). Its natural order is
linear: 0 < ¢ < b < a. The BCH-algebra with the trivial structure defined
on (G by this order is given by the second table. The third algebra is a BCK-
algebra obtained from this linear order by the construction given in [7]. It is
not difficult to verify that these three algebras have the same natural order
but are not isomorphic.

3. Constructions of BCH-algebras

Now we give some methods of constructions of BCH-algebras with the trivial
structure from the given BCH-algebras (with the trivial structure). We start
with a generalization of the construction obtained for BCK-algebras by H.
Yutani [8].

Let {G,}ier be a nonempty family of BCH-algebras such that G;NG; =
{0} for any distinct 4,7 € I. In {G;}ier we define a new multiplication
identyfing it with a multiplication in any G;, and putting zy = z if belongs
to distinct ;. Direct computations show that the union |J;c; G is a BCH-
algebra. It is called the disjoint union of {G;};er (cf. [3]).

In a general case where {(},¢s is an arbitrary nonempty family of BCH-
algebras, we consider {G; X {i}}ier and identify all (0;,7), where 0; is a
constant of ;. By identifing each z; € G with (z;,1), the assumption
of the definition mentioned above is satisfied. Consequently, we can define
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the disjoint union of an arbitrary BCH-algebra. Obviously, if all &; have
the trivial structure, then the disjoint union of {G;},;c; has also the trivial
structure. Moreover, as a consequence of Theorem 5 from [3] we obtain

Proposition 3. Let {S;};c; be an indezed family of subsets of a BCH-
algebra G with the trivial structure induced by the relation p. If

@) G=US5:,
(it) S;NS; ={0} forany i+#j,
(t31) z € 8; implies {ye G:yz =0} CS; forany 1 €1,

then all §; are subalgebras with the trivial structure induced by p; = p|s, and
G is a disjoint union of S;.

Also the following two constructions are a generalization of the known con-
structions for BCK-algebras. These constructions may be simply translated
(by (9)) for BCH-algebras without the trivial structure.

Proposition 4. Let (G,-,0) be a BCH-algebra with the trivial structure in-
duced by p and let a € G. If we extend p to GU{a} putting apa,0pa,not(ap0)
and apz,not(zpa) for all z € G\{0}, then p induces on G U {a} a BCH-
algebra with the trivial structure. This new BCH-algebra is proper iff (G, -, 0)
s proper.

Proposition 5. Let (G, -,'O) be a BCH-algebra with the trivial structure in-
duced by p and let a € G. If we extend p to G U {a} putting apa, zpa and
not(apz) for all x € G, then p induces on G U {a} a BCH-algebra with the
trivial structure. This BCH-algebra is proper iff (G,-,0) is proper.

4. Ideals and congruences

A nonempty subset A of a BCl-algebra (G,-,0) is called an ideal iff (i)0 €
A, (i)yz,z € A imply y € A. Obviously, any such ideal is a subalgebra
of G and induces on G a congruence 8 defined by z6y iff zy,yz € A. The
set G/ ={C, : z € G}, where C; = {y € G : z6y} with the operation
Cg x Cy = Cypy is a BCl-algebra. Unfortunately, this fact is not true for
BCH-algebras. "

Example 4. Let G be a proper BCH-algebra from Example 2 in [2]. Routine
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calculations prove that 4 = {0,b,d, f} is an ideal of G, but the relation
defined by this ideal is not a congruence because cfe and e¢fa npt imply
ccfea. This gives a negative answer to the problem posed in [2]. On the
other hand, one can prove that there exist congruences which are not defined
by any ideal.

A special role in BCH-algebras play the congruences induced by some en-
domorphisms. It is not difficult to verify that the kernel of an endomorphism
¢ of a BCH-algebra (G, +,0), i.e. the set ker¢p = {2z € G : ¢(z) =0} is an
ideal and the relation @ defined by z8y iff zy, yz € kerg, ie. iff ¢(z) = ¢(y)
is a congruence. If ¢ has the form ¢(z) = 0z (cf. (5)), then G/kerd
and ¢(G) are isomorphic BCl-algebras (cf. [3]). These algebras are medial
quasigroups. All such algebras with the finite set of generators are the direct
product of the so-called cyclic BCI-algebras [3]. On the other hand, ¢(G) is
the largest (in the sense of inclusion) p-semisimple BCI-algebra contained
in G. Similarly, {z € G : ¢(x) = z} is the largest Boolean group contained
in G.
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