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Abstract

The shock layer problem, described by the second order linear dif-
ferential equation, with the single turning point is considered. The
solution is presented as a sum of the left and right reduced solution
and the layer function, which is approximated by the truncated Ja-
cobi orthogonal series. The layer subinterval is determined through
the numerical layer length, which depends on the perturbation pararm-
eter and the degree of the spectral approximation. The coefficients in
the differential equation are approximated by the appropriate power
series and certain recurrence relations between the coefficients in the
Jacobi orthogonal series are presented. The upper bound for the error
function is constructed and the numerical example is included.
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1. Introduction

In this paper we shall consider the single turning point problem

(1) Ly(z) = —e’y"(z) — 2 f(2)y'(z) + g(2)y(z) = 0,2 € [-1,1]

I This research was supported by Science Fund of Serbia, grant number 0401A, through
Matematicki mnstitut.
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(1.2) y(=1) = 4,y(1) = B,

where ¢ > 0 is a small parameter, A, B € R, A # B, f(2), g(z) € C[-1,1]
and

(2) f(x)20z>0,a€R,£:g@:O.

It is well known (see e.g. {6]) that under the assumptions (2) the problem
(1), (1.2) has the so-called "shock layer” at the point £ = 0. The problems
of this kind are involved in mathematical models of diffusion-convection
phenomenon and it has been recognized that certain difficulties arise when
standard spectral approximations are applied in the cases where ¢ is very
small. The author has already developed the modification of the standard
spectral methods for the singularly perturbed problems without turning
points (see e.g. [1]) and for turning point problems with boundary layers
(see e.g. [2]), where some investigations for the shock layer problems were
also carried out. In that paper the author developed the modification of
standard 7-method in detail for the single turning point problems without
interior layer, and some ideas for the application of the similar method for
the shock layer problems. In this paper the author developes these ideas.
The modification is combined with the use of Jacobi orthogonal basis, so that
certain recurrence relations, obtained by the author in {1], can be applied
to obtain a highly accurat method using only a small number of terms
in the appropriate truncated series. This is confirmed by the numerical
results. The use of Jacobi orthogonal basis represents the generalization
which enables the application of a large number of well known classis of
classical orthogonal polynomials such as Legendre or Chebyshev basis.

In Section 2 the original problem will be transformed and the layer subin-
tervals will be determined, using the same idea as in the case of nonselfad-
joint problems, but a different technique is requested. In Section 3 the
orthogonal projecting, according to Jacobi basis, will be defined and cer-
tain recurrence relations will be developed. In Section 4 the upper bound
function for the error estimate will be constructed, and in Section 5 the
theoretical results will be illustrated by a numerical example.
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2. Transformation of the problem

In [6] it was shown that under the asumptions (2) we have

yr(z) +0(e?) -1<z<0
(3) y(z) = { 0(1) z=0 :
yr(z)+0(e?) 0<z<1

where yr,(z) and yr(z) are left and right reduced solutions, which satisfy

(4) — 2 f(2)yr(z) + 9(2)yr(z) = 0, = € [-1,0), yr(-1) = A
(12)  —2f(@)h(e) + o(@)n(x) = 0, o € (0,1], ya(1) = B,
and

(43)  5(0) — S(u(=1)+ ¥(1) = 3w (0) + yR(0))

We are going to look for the solution of (1), (1.2) in the form

| y(@) tu(z) z€[-1,0)
®) ue) = { ?J;(x) + w.(z) z€(0,1]

where yr,(z) and yg(z) are determined by (4), (4.2) and u.(z) and w.(z)
represent the solutions of the boundary value problems:

(6) Luc(z) = *yl(z),z € [-1,0),u.(~1) = 0,u.(0) = A° = B ; A,
6.2)  Luu(e) = 2yh(e),z € (0,1],we(0) = B° = A= L w1y = 0.

2
The boundary conditions in (6) and (6.2) are determined by the use of (4.3).

The idea is to approximate u.(z) and w.(z) by

_Jo z€[-1,-0] | v(z) z€(0,6]
() ule) *{ Az) zc[-60) w(x)"{ 0 zelsl]

where z(z) and v(z) satisfy

(8) Lz(z) = e*yf(z),@ € [-6,0),2(—6) = 0,2(0) = A°,
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(8.2) Lo(z) = e?yf(z),z € (0,6],v(0) = B, v(6) = 0.

All further investigations will be carried out for the interval [0, 1].

The division point é > 0 is the so-called numerical layer length which is
going to be determined using the following definitions and lemmas

Definition 1. A function p(z) € C*(0,6] is called a resemblance function
for the problem (8.2) if

1. it satisfies the boundary conditions in (8.2).
2. z = 6 is the stationary point for p(z)

3. p(z) is concave for B® > 0 and convez for B® < 0.

Lemma 1. The n-th degree polynomial

O m@=a(5E) e 500 - mO)n>2

is a resemblance function for the problem (8.2).
Proof. We have to verify the conditions from Def. 1.

1. pa(0) = a = (yz(0) — yr(0)) = B® = v(0) (by the use of (4.3) and
the boundary condition in (6.2)) and p,(é) = 0 = v(é).
2. pl(z) =0 only for z = 6.
3. sgnpl(z) = sgnBY.
Definition 2. The sufficiently small number 6 for which the resemblance

function satisfies the differential equation in (8.2) in the neighbourhood of
the layer point, z = 0 is called the numerical layer length.

Lemma 2. The numerical layer length for the problem (8.2) is

~c n{n—1)
(10) 6~ “‘———f(o) .
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Proof. By substituting (9) into (8.2) we obtain

gan(n—1) & an6 b—=z 2

I e f(@) S D g@)a( ) = ehyh(a).

At the neighbourhood point z = % of the layer point z = 0 this will give

1

Ll — oy g(a1 - 1y = (),

6
- 1S

For a sufficiently small § and sufficiently large n f (%) ~ f(0), g (%) ~
g(0) = 0 and (1 - %)n—J R~ % for 7 = 0,1,2, so that the above equation

becomes
—?. Ew;——) + f(0)a = e2ey}(0).

an(n — 1) __[n(n—-1)
b= \/af(()) ey 0) E\[f(O) ’

Now we can proceed to construct the approximate solution fot he prob-
lem (8.2), using Jacobi polynomial basis. In that purpose we must, first,
transform the interval [0, §] into [—1,1] using the substitution z = §(# 4 1).
Thus, (8.2) becomes

This gives

when ¢ is small.

(11)  LgV(t) = —p2V"(t) = FOV'(t) + GOV (t) = H(t), t € [-1,1]

(11.2) V(-1)=B° V(1) =0,

with

(11.3) V() =v (3 + D) ,p=2%, F(t)=(t+ 1) (§t+1),
G(t) =G (5(t+ 1), H(t) =} (52 +1)).

3. Jacobi spectral approximation

The spectral solution of the problem (11), (11.2) will be represented as a
truncated orthogonal series of degree n, according to Jacobi basis of the
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space P, of all real polynomials of degree up to n. Let, first, remind us of
their properties.

Classical Jacobi polynomials P}’ P (t), « > =1, B8 > —1, represent a
particular solution of the differential equation

(1= 2)6"(1) + (B —a— (a+ B+ 2)08(0) + k(k + a+ 5+ 1)e(t) = 0,

te[-1,1),k € No

and they satisfy the recurrence Bonnet’s relation

(12) PA() = (art+ BR)PEP (1) + P (1) = 0,k = 0,1,
Py =1,  P@=o

with

(12.2) ak:(2k+a+ﬂ+1)(2k+a+ﬂ+2)

2+ N(k+a+B8+1)

B = (2k + a+ B+ 1)(a? - 82)
FTok+ D(k+at B8+ D)2k +a+p)

_ (bt a)(k+B)(2k+at+2)
=kt DktatB+)(2k+a+tB)

For the derivatives we have

(13) (1= ) (PEP(0)Y = (upt + v ) PP (8) — wr PR (1)
with

_ _ Kke=-p) _ —2k+o)(k+8)
(13.2) uk——k,vk—2k+a+ﬂ, W = Skt ot .

When speaking of Jacobi spectral approximation of the solution V (¢) of
the problem (11), (11.2), we, in fact, consider a truncated orthogonal series

(14) V() = 3 kP,
k=0

such that

(15) LsVi(t) = H(t), t € [-1,1], V(=1) = B%, V(1) = 0.
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It is well known that if n — oo then V,.(t) — V().

Here, we have to overcome two difficulties: First, to express (P:’ﬁ(t))'
and (PXP(1))” through P?(t), and to represent products F(t)V/(t) and
G(t)V,(t) in the form of truncated Jacobi orthogonal series. To that purpose
we whall approximate F(t) and G(t) by the power series

(16) Fi)y=)Y fitt and G(t)=) gt
7=0 5=0
Further we shall need some results obtained by the author in {1}

a) Starting from (12) and multiplying it by ¢ (j — 1) times, and using the
following notation each time, we can easily see that

k+j
(17) PRy = Y AP,
1=k—j
with
. A‘?'_l AA-?'_I 7ZA] 1 .
(17.2) T = WL S = U S S
QG Qy (278N ]
(17.3) Az+1 = a0 A1 = Azl_1 = -aL, t € Ny,

where for ¢ = £ — 7 + 1 the first term is omitted, for : = k + 7 — 1
the last one, for ¢ = k — j the first two, and for ¢ = k + j the last two
terms are omitted.

b) The first derivative of P_ ’6(1,‘), being a polynomial of £ — 1 degree, can
be represented exactly as a linear combination of the Jacobi basis of
space Pg_q,i.e.

(18) (PP (1) Zb(l PPt

=0

Introducing (18) into (13) and making use of (17) for j = 2, we come
to the following recurrence relations:

21)1_ uedj g b§c1)2:—ukz4 Vk b(1)
Az, 2T T2 T a2
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—ugAp_ Wk (1) (1) 1
(19) b, = + A A .
k=3 A12c—1 Ai—l b2 k-t Alzc——l

1
b, = (), — M) (1 - F) B — b, i=k-2,...,2

Using the similar technique for the second derivative we obtain

k-2
(20) (BEP(M)Y = 6@ P (1)
=0
where
b, = k(k+a+ﬂ+1)—(a+ﬂ+2)bk L6, =

b, 46D (a4 proykr  Booy o (@t F42)

Ai A T e
2 2 2), 1 2 1 A}
(202) 8%, = b2 + 8 (5 = 1) = b, — b, ~bh @+ B+ 2) T8 +
f—alat+B+2)Al ) (@t B+2)A] ‘
b(? e — b g =k

Finally, if we represent the function H(t) as
(21) H(t)=Y heP"(1)
k=0
we can prove the following theorem:

Theorem 1. The coefficients ay in the solution (14) of the problem (11),
(11.2), obtained using T-method, represent the solution of the system

(02) — D 3w YA 30 S e 3w =k
k=:+2 7=0 r=M k=r+1 k=M

1=0,...,n—2

(22.2) kz:%(—nk(k Z a) ax = BY, Z (k * a) ax = 0,

k=

where M = max(0,7 — j), m = min(n,?+ j).



Jacobi polynomials in spectral approximation ... 61

Proof. In order to obtain the equations (22) we subsitutute (14) and (21) into
(15) and make use of (18), (20) and (17). After equating the coeflicients at
Pz.a'ﬁ(t), 1 =0,...,n—2 we come to (22). The equations (22.2) are obtained
directly from the boundary conditions in (15), using that

k
PIP(1) = ( —;—a) and PPP(—t) = (1)FPXP(1), k=0,1,...

After the system (22), (22.2) is solved for ax, k = 0,...,n, we obtain the
approximate solution

(23)  yn(z) = yr(2) + va(z) = yr(z) + Vn(%x ~1), ze€(0,8].

4. The error estimate

Out of the boundary layer, the exact solution of the problem (1), (1.2) is
approximated by the solution of the reduced problem. According to (3) the
following estimate is valid

(24) d(z) = |y(z) — yr(z)| < Ce?, € [4,1].

Throughout the paper ' will denote an arbitrary constant independent of
z and €.

Let us now estimate the error upon the layer subinterval (0, §]. The error
function, according to (5) and (23) is

(25) d(z) = |y(z) — yn(@)| = |we(z) — vn(2)].
In order to estimate it, we have, first, to prove the following lemma:
Lemma 3. Let g(z) > K%, K € R for z € (0,6]. Then

(26) lwe(z) — v(z)| < Ce? forz € (0, 6].

Proof. The function w,(z) satisfies the boundary value problem

(27) Lwe(z) = 52?/?2(2")7 T € (0’6]7 ws(o) = BO, we(é) = y(ﬁ) - yR(é)
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Subtracting (8.2) from (27) we obtain

L(w. ~v)(z) = 0, (we = v)(0) = 0, (w, — v)(6) = y(6) — yr(6).

As g(z) > K? and, according to (2), zf(z) > 0, for z € (0, 6] the operator
L is inverse monotone. So, by the principle of inverse monotonicity we can
conclude that

(28) [we(e) — v(z)| < |y(8) - yr(6)].
Using the estimate (24) for 2 = § we obtain (26).

Theorem 2. Let w;, 1 = 1,2 be the exact solutions of the problems

(29) - &*wi(z) - zFwi(z) =0z € (0,6], wy(0) = B®, w(6) =0

(29.2) —2wh(z) — 6 Fywh(z) + Kiwy(z) = 0,2 € (0,6],w2(0) = B, wy(8) = 0,

where Fy, Fa2, K,, K € R are such constants that F; < f(z) < F, K? <
g(z) < K2 while = € (0,6 and

(30) dn(2) = max{|wi(z) — vn(2)[}.
Then the error d(z), defined by (25) can be estimated as
(31) d(z) < Ce* + d.(z), =z € (0,6].

Proof. We can see that
(32) d(z) < |we(z) — v(2)| + |v(z) — va(2)],
where v(z) is the solution of the problem (8.2).

Let us, first, assume that B® > 0. Then, applying the principle of inverse
monotonicity to the problems (29) and (29.2), we have

(33) w;i(z) > 0 and wi(z) < 0,1=1,2 forz € (0,4d].

Defining the functions f;(z) > 0,4 =1,2,3 and go(z) > 0, such that f(z) =
i+ fi(z), f(2) = F2 = fa(z), F; = F1 + fs(2), 9(z) = K3 — ga(z) for
z € (0, 6], using (29), (29.2) we obtain
Lun(z) = —ewy—a(Fy— fa(2))wy + (K3 — g2(2))wz =
= (6 — 2) Fow) + 2 Fhwh — gowo
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and
Lwy(z) = —2wf — 2(Fy + fi(2))w) + g(2)wy = —z fi(2)w] + g(z)w1,
i.e., according to (2) and (33) we have

(34) Lwi(z) >0 and Lwy(z) <0.

We can also, see that

—52((4)2 — wl)" — 5F2(w2 - wl)' + I(%(wg - wl) =
=z fa(z)w) + (6 — ) Fowl — K2w) < 0, z € (0,4],
(w2 —w1)(0) = (w2 —w1)(8) =0,

which, using the principle of inverse monotonicity, gives that

(35) (wz —w1)(z) <0, ie. wa(z) < wi(z) for z € (0,46].

Applying the result given by Lorenz in [5], the relations (34), (35) and
boundary conditions in (29), (29.2) give the following inequality
wa(z) < v(z) < wiz), =z €(0,6],
where v(z) is the solution of the problem (8.2).

After subtracting v,(z) in the above inequality we conclude that
(36) |0(2) — wa(2)[ < max{|wi(z) — va(2)[} = dn(z)

In the case B® < 0, using the same technique, we, again, come to (36).
Finally, using the estimates (26) and (36) in (32) we obtain (31).

5. Numerical example

We shall use the following test example:
—52y”($)—$y,(:l)) =0 z¢€ [_1,1],y(_1): Ory(l)IQ,

with the solution Fe (V)
er flz 2¢
M= )
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The left reduced solution is yr(z) = 0, and the right reduced solution is
yr(z) = 2. The numerical layer length, applying (10), is

§=ev/n(n—-1).

In the following table we shall give the values of the exact solution and
the error d(z) in several points from the layer for # > 0. The results for
z < 0 are the same. The results are obtained for & = 8 = 0 i.e. Legendre
basis

Table 1.
e=10"" n=38 n =12
z y(z) d(z) d(z)
0,00000001 1.08 1.3-1073 4.9-10¢
0, 00000005 1.38 5.9-1074 3.0-1078
0, 00000008 1.58 7.5-107% 2.2-.1073
0,0000001 1.68 3.0-107¢ 2.3-10¢
0, 0000002 1.95 2.2.1073 1.2-1073

Remark. The above results are of the same order as the results obtained
in [2] where the Chebyshev basis combined with the collocation method was
used.
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