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1. Introductory word

On occassions like this it is almost impossible to realize in detail the grand,
exceptionally full, diverse and rich creative work of academian Djuro Kurepa,
even in some of its segments. Djuro Kurepa, a man of wide general culture,
one of those rare mathematical zealous workers popularly called encyclope-
dists”, left a deep trail in almost any branch of mathematics. He impressed
by his deep understanding of problems, finding out the "proper” ones, and
by his great intuition. He knew how to guess and set hypothesis on which
the pleiads of mathematicians worked and have been working, and whose
solving often demanded quite new methods. Because of all that, these few
observations of mine should be understood as a wish to pay tribute to pro-
fessor Kurepa rather than to provide a bit more complete review of his
creativity in the set and number theories. Really, for such a thing another
”encyclopedist” would be needed.

2. Suslin’s and Cantor’s problem of the continuum

In his doctoral dissertation Ensembles ordonnés at ramifiés, defended at the
Sorbonne in the year 1935, professor Kurepa introduced for the first time
the notion of partially well-ordered sets (in French tableauxr ramifiés). In
order the ”"story” could be followed more easily, we are giving here only
some necessary definitions from his book ([12]), though sometimes with a
little bit obsolete lexicon and notations. ’

Definition 2.1. Partially ordered set is a triple (5,=,<), where S is a
set, = an equivalence relation and < a binary relation on §, such that the
following conditions are fulfilled:

(reflezivity): ¢ =~ z, ¢ < z;

(transitivity): if e m y=~ 2z then2tlx 2z, if t <y < z then z < z;

(partial symmetry): if e =y then y=z and z <y and y < z.
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¢ = y is an abbrevation for z < y < z.

z < y is to replace: z <y and z # .

If ~ is just the identity relation =, it is written only (59, <) instead of
(5,=,<), and in the further text such partially ordered sets will be mainly
considered. The intervals for the given partial ordering are defined in a
standard way. So, for instance, for z € §,itis (—o0,z)s ={y € 9| y < z},
[2,00)s = {y € § | = < y}.

Definition 2.2. [z]s = (=00, z,00)g = (—00,2]g U [z,00)s is called the
origin (descent) of the element z with respect to the partial ordering S.

The left knot of the element z € S, in notation (—oo,z|s, is the set
{y€ S| (—o0,z)s = (—00,y)s. Analogously is defined the right knot of .

The initial (final) section of the set S is a subset of S, X, for which it
holds: if x € X then (—o0,z] C X ([z,00)C X).

A filter of the set X is a proper initial section of the (partially ordered)
set (P(X),2).

A partially ordered set (5,=,<) is ordered from below or from the left
(from above or from the right) iff it satisfies the condition of ramification:

Ve € § (—oo0,z] ([z,00)) ts totally ordered (any two elements are
comparable).

A mutually ordered set is a set ordered both from the left and from the
right.

A half-ordered set is a set which is ordered either from the left or from
the right, or both from the left and the right.

A partially ordered set (S, <) is partially well-ordered iff it satisfies the
condition:

(D) any totally ordered part of S is well-ordered.

For the sake of convenience, any partially well-ordered set which is also
ordered from the left will be also called partially well-ordered.

A significant part of the results of professor Kurepa is related just to
establishing a connection between the properties of partially well-ordered
sets and Cantor’s problem, that is between the properties of partially well-
ordered sets and Suslin’s problem of the continuum. More concretely about
that after introducing some new definitions.

Definition 2.3. For a partially ordered set (S5, <) it is:
k.5 sup{|z| | = is a well-ordered subset of the set S}
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the index ¢ is coming from the Latin verb cresco (-evi, étum) (= increase);
let us say at this point that professor Kurepa denoted the cardinality of a set
A by kA;

kS sup{|z| | = is well-ordered with respect to the relation > subset
of S} , :
we have: kq(S,<) = k(S5, >); d is coming from decresco (= decrease);

koS el sup{|z| | = is a totally unordered subset (no two of its different
elements are comparable) of S}
s 1s from Suslin;

bs & sup{|z| | = is a mutually ordered subset of S}.

It holds that the cardinal bS5 is equal to the cardinal: b;.$ & sup{|z|| z
is either a totally ordered or totally unordered subset of S}.

Definition 2.4. Ifitis, forz € 5, (—o0,z) = 0 (= v), then z is the initial
element of the set S;

RS = RyS def {z | « is the initial element of S} is the initial row (sort,
group, category) of the set S;
In general:
def
RaS = Ro(S\ | Re)
{<a

and
1S5 =v(9) 2 the least ordinal o for which it is R,S = { is the so-called

" rank of the ordered set S.

v(z) = v(x; ) 4 the least ordinal o for which it isx € R,S is the rank

of the element x.

The following problem, inspired maybe by one not quite reality-based
problem from biology (considering the descendants of microbes which self-
propagate), initiated a lot of others, even today very actual problems in set
theory:

if T is partially well-ordered set (which here means that for all a € T the
interval (—o0,a) is well-ordered) for which it holds:

(1) for alla € T it is y(—o0,a,00) = y[a] = wy;
and

(2) foralla € T itis |Ro(a,0)| > 2 (Ro(a, o) is the set of all immediate
successors (descedants) of the element a),
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whether it is possible to choose from any row of the second sort R, T, o <
‘wy) one element ay,o (€ RyaT), so that the set of the chosen elements is
a totally unordered subset of T, i.e. that for « < 3 < wy it is neither
Ay < Gug NOT Gy > aug’T

Of course, the difficult case is the one when each row and each ordered
part of the set 7" is at most countable. N. Aronszajn was actually the first to
prove that such case can appear — about it a bit later. Of the special interest
is the fact that the question of the existence of the function a,, € R, . is
equivalent to Suslin’s problem:

does a dense totally ordered set, in which there are no uncountable many
disjoint intervals, necessarily have a realization inside the linear continuum?

Namely, we have

Teorema 2.5. Dj. Kurepa (Basic Theorem). The answer to Suslin’s prob-
lem is positive iff, for any partially well-ordered set T, from bT < Ng it
follows |T'| < Ne.

Whence

Teorema 2.6. The answer to Suslin’s problem s positive iff each partially
well-ordered uncountable infinite set contains an uncountable part which is
either totally ordered or totally unordered.

N. Aronszajn, who collaborated with professor Kurepa, came in the year
1934 to the example:

there exists a half-ordered infinite set A with the properties:

YA = wy;

|R,Al < Rg za svako o < wy)
and

kcA S NO’
which was firstly published in Kurepa’s thesis. But, let us have a look at the
basic theorem. It sais in fact, in the contemporary language of set theory:

There exists a Suslin line iff there ezxists a Suslin tree,
that is, let us be more precise:
There ezists no a Suslin line iff there exists no a Suslin tree.

Let us recall:
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A Suslin line is a dense linearly ordered set which satisfies countable
chain condition or, shortly, c.c.c, and which is not separable, i.e. it does not
have dense countable subset. Suslin’s hypothesis (SH) is the statement:

there ezists no Suslin line.

A tree is just a partially well-ordered set, ordered from the left, and this
term has completely removed Kurepa’s expression. Partially because of it, I
assume, the new generations of mathematicians are not always quite aware
of the great significance of the pioneering work of professor Kurepa in this
field. I also allow the possibility that this change of the terms was caused by
the predominance of the new ”graphic representation”. Namely, professor
Kurepa ”laid down” the partially well-ordered sets horizontally — see, for
instance, Figure 17.2.1 in [12], while, let us say, G. Birkoff put the initial
level horizontally, and the rest of the set beneath it. If one rotates his figure
for ninety degrees (in the positive direction — otherwise one would obtain
Birkoff’s figure), it "appears a tree” or, in general case (|RpS| > 1), "many
trees” (the condition that a tree has only one root is a part of the definition
of, for example, normal trees).

Of course, since it is a word about trees, the other terms are ”adapted”
as well. So, for instance, if 7 is a tree and z € 7', then we are talking
about the height of the element z (in notation usually h(z,T")) rather than
about its rank; the height of a tree is again the rank; a branch of a tree
is a maximal linearly ordered subset of the tree; an antichain is is totally
unordered subset of the tree.

The Suslin tree is a tree of the height wy, whose each branch is at most
countable and whose each antichain is at most countable.

The Aronszajn tree is exactly the above given ezample.

Let us still note that the Suslin problem in the original form (Funda-
menta Mathematica,1/1920) states:

is every dense, unbounded and complete (any subset bounded from above
has the supremum) linearly ordering isomorphic to the real line?

In the book of W. Sierpiniski, ”Nombres transfinis” (Paris, 1926) this
problem was characterized as a very difficult one.

Today it is known that this problem is independent of ZF(C; in other
words, both ZFC + SH and ZFC 4+ ~SH are consistent theories.

For a better understanding of the Suslin and related problems it is of
use the following Kurepa’s result ([11])
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Teorema 2.7. Each uncountable partially well-ordered set for which there
ezists a strongly increasing (decreasing) real function contains an uncount-
able totally unordered subset.

In his papers professor Kurepa has considered one more general Suslin’s
problem. The word is about the following.

For a totally ordered set § let it be:

k1S = k1(9) def inf{|E|]| £ is (allwhere) dense subset of the set S};

k2§ = kao(5) def sup{|F|| F is nonempty family of disjoint intervals of
the set S}.

The function k35 and its "more general version” (- k5.5), today known as
cellularity (of partially ordered sets, Boolean algebras, topological spaces),
were defined for the first time in Kurepa’s thesis. I presume that he was the
"godfather” at least to some of the mentioned ones and certainly to some
about which there will be no word this time.

Generally, for infinite totally ordered sets it holds:

k1S = koS or kS = (k25)t.

The general Suslin problem is searching for the answer to the question:
does for any infinite totally ordered set S it hold k1S = kpS?

On the other hand, this is equivalent, in the sense that the answer to
the both questions is the same, being either affirmative or negative, to:

does for any half-ordered infinite set T it hold: bT = |T|?

Again, it is known as well that there are no other cardinals between b7
and |T|. In his thesis professor Kurepa gave twelve equivalent statements
from which it follows the positive answer to the Suslin problem, but there
are no necessarily the implications in the opposite direction. We adduce
now only one of them — the ramification hypothesis — KH, with the note
that degenerated means mutually ordered:

for every tree (T,<) there is a degenerated subtree of the cardinality
b(T,<), i.e. the number b(T,<) is reached in (T, <).
or, in the original version:

if T is a partially (half-) well-ordered set, then the supremum bT is
reached in T, that is there exists mutually ordered part of T whose cardinal
number is ezactly bT.

As for cellularity, the following Kurepa’s results are of the special inter-
est.
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Teorema 2.8. If L is a Suslin line then ko(L x L) > R;.

Teorema 2.9. If X;, 1 € I, are topological spaces of the cellularity < k
then the cellularity of [];c; Xi is < 2%, s

The first of these theorems together with the assertion
if M A(wy) holds then the product (of arbitrary cardinality) of the spaces
satisfying c.c. condition also satisfies this condition

implies:
Teorema 2.10. ZFC + MA(w,)F SH,

where, in general, for a given cardinal x, M A(k) (the so-called Martin’s
axiom — for k) is the condition:

if (P, <) is a partially ordered set with the c.c. condition (i.e. of the
cellularity w) and D a family of < k dense subsets of P, then there exists
a filter G in P which has a nonempty intersection with any member of the
family D;
D C Pisdenseiff Vpe Pidd € D d < p; G C P is a filter iff it holds:
Vp,q e GIre G r<pAr<gqgand (2) VpeGVqe P p<q =q€d.
Of course, if it holds M A(wy), then 2¥ > w; (for it does not hold M A(2¥)).

Besides, by defining the wy-Suslin tree, professor Kurepa "planted” his
own tree, presented in any ”set forest”.

Definition 2.11. A path of a k-tree T (T is a tree of the height k) is a
branch which interects each level Levy(T) = {z € T | h(z,T) = a}, o < k.

For any regular cardinal k, x-Kurepa tree is a k-tree with k1 paths.

k-KH is the assertion "there ezists k-Kurepa tree”. Kurepa’s Hypothests,
shortly KH, is w-KH.

F C P(k) is k-Kurepa family iff it holds: |F| > kT and Ya < k |[{ANa |
A€ F} < k.

Let us note that in his book, [1], F. Drake sais that it seems that Kurepa
himself took in fact for the hypothesis ~K H.

Professor Kurepa proved concretly in [9], again said in the words of the
new terminology:
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Teorema 2.12. K H if and only if there exists wi-Kurepa family.

This proposition holds generally for any regular cardinal. Today, it is
known, let us mention only:

V = LX|+ KH (~SH), where X C wy, in particular, V = L - KH,
consequently, Z F'C'+ K H is consistent (on condition that ZFC is consistent;

Ot KH, where O7 is the statement: there exists a family F C P(w,),
such that it holds: Va < wy; {X Na| X € F} <w and VA Cwy |A| =
w = IX € F(|X|=w1 A X CA).

ZFC + -KH is consistent iff ZFC+ there exists strongly inaccessible
cardinal is consistent (k is strongly inaccessible iff it is a regular cardinal
greater than Ry and for, each A < K, 2* < k).

To a great extent professor Kurepa devoted his research work to Cantor’s
Hypothesis, better known as Continuum Hypothesis (CH): 2% = ¥, con-
nected it with partially well-ordered sets. From the following two lemmas:

Lemma 2.13. For any partially well-ordered set W it holds:
W] < (2k,W )5,
Lemma 2.14. For any infinite partially well-oredred set W it holds: |W| <
QbW,
it follows the so-called Basic Double Theorem

Teorema 2.15. If a partially well-ordered set W satisfies the conditions:
bW < Ro and the cardinal number of each of its row (level) is less than R
(less than or equal to Ng), then YW < w1 (YW < wy(0)41), where R =
R, (0)) Besides, w1 (w,(0)+1) i the least ordinal which always satisfies the
last relation;

and its corollary

Corollary 2.16. Cantor’s Hypothesis holds if and only if from bW < Ny
follows:

|sup{YW | |RaW| < Ro, a@ < YW }| = sup{|yW|| |[RW| < Ro, a < YW},

It is also of interest the following result which includes ”in the play”
the partially ordered set (C'), whose elements are the sequences of natural
numbers, finite or countable infinite, ordered by the ”initial coincidence”.
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Teorema 2.17. Cantor’s Hypothesis is equivalent to: the set ((C'),C) con-

tains a part M such that it is satisfied:
|M N Ro(C) <1,a <v(C) and J,eplaloy = (C).

By the way, let us notice that without Cantor’s Hypothesis we would
not be able to prove: Rtf" = N;.

In the year 1953 professor Kurepa announced in the French Academy
at that time a revolutionary hypothesis — freely speaking, 2% can ”jump
over” any cardinal. (On the basis of a conversation with professor Kurepa, I
concluded that the hypothesis itself was much older, which the whole thing
makes even "more spectacular”.) Almost twenty years later W. B. Easton
confirmed this hypothesis ([2]); only the most basic conditions set by the very
definition of cardinal exponentiation and Konig’s lemma must be fulfilled in
choosing an ordinal a for which it will hold in a suitable model 2% = R,
(more precisely, this assertion holds for any power 2*, X — regular cardinal).

Speaking of the cardinal exponentiation, let us mention one interesting
generalization of the relation 28« = |yRa for all v, 1 < v < R,,.

For an arbitrary set C' and an ordinal a, let C (@) be the lexicographic
linear ordering whose elements are the a-sequences with the members from
C. Then it holds ([17])

Teorema 2.18. For any v, 1 < v < w,, the chains 2(wy) and v(wy) are
of the same order type (that is they are isomorphic)

From the same article we quote the foﬂowing often applicable result.

Teorema 2.19. For a given set M and a chain C, the following conditions
are equivalent:

(1) the chain C is isomorphic to a subset of the power set P(M) ordered
by inclusion;

(2) kiC < M| i |[{z € C | = is unilateral limit point of the chain
C} < |M|.

3. The Axiom of Choice

The Axiom of Choice, in its most standard version:
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if F = {X; | i € I} is an infinite family of nonempty mutually disjoint
sets, then there erists a set, X, such that X C (J;c; X; and, for eachi€ I,
| XNnX;| =1, '
is un-natural in comparison with the axioms of Z F-theory in the sense that
the set (X), whose existence it ”guarantees”, remains "unknown” (unde-
termined). On the other hand, it looks so "natural” that it was difficult
to notice it. It seems that . Peano was the first who ”stumbled upon”
this axiom in a proof of an existential theorem of the ordinary differential
equations. In the year 1904 E. Zermelo proved that the above statement is
equivalent to the assertion that any set can be well-ordered — in fact, judg-
ing by the title of his article ”Beweis, das jede Menge wohlgeordnet werden
kann” (Math. Ann. 59, 514-516), at that time he himself did not have
doubts about it. The behavior of the people fits into the "story” — once
a man hears about it, he sees it everywhere. Today hundreds of either its
equivalences or stronger or weaker versions (which is very often the question
of the set or class theory in which one works) are known. Professor Kurepa
significantly contributed to this subject, partly by solving some problems,
partly by raising some "unpleasant” questions. Inter alia, he formulated the
Antichain Principle (equivalent to the Axiom of Choice in ZF-theory):

(A) FEach partially ordered set has a mazimal antichain, that is a maz-
imal subset of mutually in-comparable elements.

One of his important results is the following

Teorema 3.1. The following propositions are equivalent (in ZF°):

(1) The Aziom of Choice;

(2) Each set has a C-mazimal subset (mazimal with respect to the in-
clusion) with the property that the intersection of any two of its elements is
nonempty,

(3) Each set has a C-mazimal subset with the property that for any two
its elements z,y it holds: t CyAyZz Azny#0;

(4) Fach set has a C-mazimal subset with the property that for any two
its elements z,y it holds: z CyVvyCz Vzny=490.

An analogous assertion holds also in the Neumann-Bernays-Godel system
without the Axiom of Regularity, shortly N BG® (which is the conservative
extension of the system ZF° = ZF— the Aziom of Regularity).

As far as this theorem is concerned, it should be mentioned that professor
Kurepa was first to define the above properties, as well as many others,
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about which there will be here no word, but which are included in a lot of
interesting results dealing with the Axiom of Choice.
Let us give also this theorem of professor Kurepa.

Teorema 3.2. (ZF) The Aziom of Choice is equivalent to the statement:
any set can be linearly ordered and any set has a C-mazimal subset with the
property that for any two of its different elements x,y it holds: * € y Ay €
z.

4. Kurepa’s hypothesis in the number theory

As for the number theory, we shall focus our attention only on two Kurepa’s
hypothesis, with his own remark that "the science about spaces, that is
topology is not the real (proper) place for the numbers” — [12] (but this is
already a subject for another talk).

In the paper [20] Kurepa defined for the positive natural numbers the
left factorial: ‘n =3~ 1 it and asked the question: does it hold, for every
natural n > 2:

(In,n!) =27

His personal hypothesis was that the answer is posifive. We shall denote it
here by K H1. In the same paper professor Kurepa (among other things)
proved

Teorema 4.1. KH1 iff Vn >2 In# 0 (modn) iff Vpe P(p>2 =
('p,p) = 1) (where P is the set of primes).

This Kurepa’s hypothesis is the only problem from the number theory of
the Yugoslav mathematicians included in R. Guy’s book Unsolved Problems
in Number theory. Professor Zarko Mijajlovi¢ proved by using computer
that K H1 holds for all natural numbers n, < 311009 (after all, solving of
this problem occupies the attention of many mathematicians). Otherwise,
in the year 1991, Kurepa informed professor Mijajlovi¢ that he solved the
problem and even announced a paper about it for the ”"Publications de
I'Institute Mathématique”, but for what reason he had not dome it, it will
unfortunately remain unknown.

The other Kurepa’s hypothesis (again from [20]) is worded like this:

(K H?2) the relation m?|!n does not hold for all natural numbers greater
than 1 with the exception of the case 2?|13.
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Professor Kurepa proved this assertion for 2 < m < 8. Meanwhile the

new ”strengthenings” have appeared (see [22]), but, as in the case of the
first hypothesis, the final solution is still not coming in sight.
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