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Abstract

In the n+mK dimensional differentiable manifold £~ (K-Hamilton
space) special coordinate transformations are allowed. In 7T%(£*) ®
T*(E*) the metric tensor is given, and using the nonlinear connection
N,T(E*) may be decomposed in K + 1 orthogonal subspaces (with
respect to G): Ty (E*) and  (yTv (E*),a = 1, K. In T(E") a strongly
distinquished connection is introduced in such a way that ¥ and VxY
belong to the same subspace of T(E*), VX,Y € T(L*). The law of
transformation of connection coeflicients 1s given. For the metrical
and recurrent case the connection coefficients and the torsion tensor
are determined.
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1. Coordinate bases in T(E*) and T*(E*)

Let E* be an n + mK dimensional differentiable manifold. If % is one point
of E*, then in some local chart u has coordinates

w=((z*),(p), (02), - -, () = ((=*), (#2)) = (=, p),

where (z') = (2!,22,...,2") = (z), (P%) = ((p}),-.-, (%)) = (p*) and
a,b,c,d,e,f:l,m, i,j,h,k,l,m:l,n, a’ﬁ’ 77621,1(-
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We shall consider the following transformation of a coordinate system.
If ((2¥),(p%)) = (2/,p') are the coordinates of the same point u in the
new coordinate system, then

(a) «¥ =" (z',...z") rank [0z'' /92" = n

(1.1) (@)
(b) p% =M2,

* =M2% (a',...,2™)p% rank [0p%/dp%] = m.
The Einstein summation convention will be used for all three kinds of
indices, except when the index is in brackets. If (1.1) is valid, then an inverse

transformation exists

(«)
(b) po =M% (zV,...

(1.2) (a) z* = 2'(z",...2") Lz )pl.
The natural basis B = {(8;),(df),...,(0%)} of T(E*) is formed by
n vectors of type 8; = 0/02* and m - K vectors of type 8% = 0/9p%. Any

vector field X € T(E*) may be written in the form

(1.3) X = X'0; + X202,
With respect to the coordinate transformations (1.1) and (1.2) the basic
vectors of B have the following law of transformation

B -

| (1) IR P
0 5 (0 Jtlsf,)p}, (0; M2)ph %
o pl oF
(1.4) =] M ’
N ()
99, 0 0 DR VA N ¢
[ 0y ] [ az? @, g K —
v 2 (O M )P e (B0 MR | [ O
aij,’ (1)’ a-f
(1.5) 0 My 0
o (%) a5,
| % | 0 0 Mg | C K
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Substituting (1.5) into (1.4), we obtain

g : (o) (),
(a) %%r;’ju =6 (b) MEMP'= 8¢
@ (@) (@
(c) (8¢ M{)pg ;;. +(8; M2)pe M¢'= 0.

(1.6c) is the consequence of (1.4) and (1.6b).

(1.6)

2. Adapted bases in T(E*) and T*(E*)

From (1.4) and (1.5) it is obvious that 8; and 9; are not transformed as
tensors, so we introduce a new, the so-called adapted basis B = {(4;), (9{),
., (0%)} of T(E*), where by definition

(2.1) b = 8; — N3i(=,p)o;,

and NZ(xz,p) are the coefficients of the nonlinear connection. Under coor-
dinate transformation (1.1) and (1.2), they transform in the following way:
o ! (o ¢)1 61: IE;)/ 8x
(a’) Na’ ’(m 7p) a’ 8’ (Clt p) pa aza a5’

(2.2)
@ (=), oh2,
(b) N!?j(z,l’) =My For Ny; (', p') + g Mb Eroa

Any vector field X € T(E*) in the adapted basis B is given by
(2.3) X = X'+ X20°.
The coordinates of the vector X given by (2.3) and the elements of basis
B are transformed as tensor in the following way:
iy (o) ’
(a) b = 216, (b) 0% =M? (a)0

(«)

(c) Xi= 22 X" (d) Xg =M (+))X3.

(2.4)

From (1.3) and (2.3) we obtain the relation between the coordinates of
the field X in the bases B and B. They are connected by the formula

X=X, X*=X*4NoX
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The subspace of T(E*) spanned by {6;} shall be denoted by Tx(E™*)
(horizontal part) and the subspace spanned by {03} by (yTv(E*) (the
vertical a part). So we have

T(E") = TH(E") ® Tv(E7),

where
K

Ty(E™) = Z () Tv(E™),

a=1
dim Tg(E™) = n, dim)Tv(E") =m
X'%§; is the horizontal and X292 the vertical part of the field X.

Now (2.3) may be written in the form
X =Xpg+ Xv, Xg=X'6, Xy=X20%

Let us consider the dual tangent space of E*, the space T*(E*). The natural
basis in T*(E*) is

-5

B = {dz!,...,dz",dp},... dp},,...,dp%, ... dpE}
= {dxiadpzlu dpa}

From (1.1) we obtain

il oz" i

(2.5) (a) dz* = P dz
(e} a a (x) a (a) (e}
(b) dpa' - 8 d(I} + ( )dpa‘

From (2.5b) it is obvious that dp are not transformed as tensors, so we
introduce a new basis B* = {(dz!), (6pl),..., (6pX)}, where

(26) bpg = dpg + Ngi(z,p)de’.

By the coordinate transformation (1.1) the bases B~ and B* are related
by (2.5a) and
(o] (a)al ! o (e] (a)a (e
(27) (a’) 6pa =M, ((I} )6pa' (b) 6pa’ :Ma' ((I})(Spa
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The proof of (2.7) is obtained using (2.6) and (2.2). Any field w € T*(E*)
can be written in the bases and B* and B in the following way

(2.8) w = Wide' + widp® = widz' + wép®,
where
(2.9) w; = W; — NJiwg, g = wg.

The subspace of T*(E*) spanned by {(dz')} shall be denoted by T} (E*)
and the subspace spanned by {(6p%)} by Ty (E*).

So we have
T*(E*) = TH(E*) & Ty (EY),

where
K

TH(E*) =) «TH(E").

a=1
Now (2.8) may be written in the form

o

w=wy + wy, wg = w;dz', wy = wydp;.

If {(dz*), (8pL), ..., (6p%)} and {(dz""), (6pL)), ..., (6p%)} are two bases in T*(E*)
related by (2.5a) and (2.7) then any w € T*(E*) satisfies the relation

(2.10) w = wids’ + wép® = wpdz® + w? 6p%).
Substitutingg dz*' from (2.5a) and §p% from (2.7b) into (2.10) and comm-
paring the coefficients besides basis vectors, we obtain

oz (@

(2.11) Wi = Wi a=

w =My ws .
By a straightforward calculation we can prove

Proposition 2.1. The adapted bases {(6:),(0F),--,(0%)} and
{(dz*), (6pL), .., (6PF)} are dual to each other, i.e.

< 8y dai >= 6 < 8,6p2 >=0
<8%,dzd >=0 < d2,6p) >=6p68.
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3. Tensor Fields on E*

a) A horizontal tensor fiels ¢y has the local representation:

ty = (2,p)6, © .. © 6, © do © ... @ dall.

jl...]q
It is defined on

TH(E")® ... ® Tu(E*) @ TH(E™) ® ... ® Tj(E").

s

' A~

p times g times

By changing the coordinates given by (1.1) and (1.2), the coordinates of
the field ¢tz have the following transformation law

y L, :
f _ 0z Qx'rOx)t Ox)e 4 4,

Jiedg T Bzt Griedrit T Bzih’ J1edq”

b) The a verical tensor field (4)tv has the local representation
(@)1 =(a) tor oo 00! ® 08" © 69G, ® - ® 6p5,

(not summing over a).

(a)tv is defined on

(a)Tv(E'*) X ... @(a) Tv(E*) & (a)T{;(E*) X ... @(a) T{;(E*) .

- o ~
e o

s times r times

By changing the coordinates of type (1.1) and (1.2) the coordinates of the
field (4)tv given above have the following transformation law

@ @ @ @
=(a) tarabrbe Mot oo MgT My My

c) A vertical tensor field ty on Ty (E£*) @ Ty, (£*) has the form

ty =202 ® 6p)
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(summing over a and 3 ).

The coordinate transformation of tensor ty is given by
. (@) (ﬂ)
a by b a
t ﬁ =t 5 M, 1M
d) A tensor field t on

Tu(E)® ... @ Tu(E” )®TH(E*)® @ Th(E™)®

p times q tzfmes

Ty(E*) 8 .0 Tv(E) 0 Ty (E%) © ... Ty (E*)

s times r times

is given by
SR B1..Bsay...ar .
t= tzl 1pj14..7'q bll. b (le]..aar(x’p)éil ® te ® 6iP®

de’' ® ...® dze @3”1 ® .0 0% ©6pit ® ... ® 6p3
The summation goes over all the indices.

The coordinate transformation of the above tensor is given by

. ) .
;= tzi...z}, Bi..Bsaj..ap 1 B1...8sa1...ar

J{J{] bl bonar J1-edg b1obsoraor

The order of spaces Tg(E*), TH(E), «Tv(E") and Ty (E*) can be
taken arbitrary. It has an influence on the order of indices of tensor ¢ which
is defined on their tensor product.

4. Metric tensor in the K-Hamilton space

In the space T*(E*)® T*(E*) the metric tensor G with respect to the basis
{(dz?),(6pL, ...,(6pE)} has the form
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(4.1) G = [(dz*)(6p})...(6p%)].
l95] (94 - o A] dz’
[gilj] [g%ﬂ s [glk 6]7%
: : Do ® :
l9%;] (98] --. (o] spf

The matrices [g;;], [giﬁb], [95;] and [ggbﬂ] have the format n x n, n x m,
m x n and m X m respectively. As G is a tensor, its coordinates in the new
coordinate system (z',p’) are transformed in the following way:

dzt Oz’ . (G), dz?

a a

(I) Gijt = i ozt a 7' b) g;j’ = 9q; a 5;77

(4.2)
Y b 81"; (ﬁ)l 1y b (Q)I (ﬁgl
¢) Yug = 9i 57 My d) 955 = Gap Mg M,

We shall suppose that GG is a symmetric, positive definite tensor field of
rank n + mK. From the symmetry it follows that

b b ba
95 =05 Gig =95 9= 9jh
The ”covariant” coordinates of the field X = X'6; + X20% are given by
(4.3) Xi= gy X7 +g2X2, X&=g% X'+ gix].

The inverse matrix of G (appearing in (4.1)) is given by

[g%] o] . (]
[gék lg 1}] [gg}f‘]
[ng""] [gbc] {gb’ﬁ“’]

The matrices [¢7%], [¢77], [¢2¥] and [gf)] have the format nxn, nxm, mxm
and m X m respectively. Now we have

" a) gig7* 9,097 = 65 b) al. g+ g%hal) = 626)
4.

@ k
) 99t + 9.9y =0 d) g%g% + g2hg)* = 0.
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The contravariant coordinates of w = w;dz* + w2ép® are given by
(4.5) w' = g%w; + g** w wé = ¢7%w; + g:fw%.

Using (2.4), (2.11) and (4.2) it can be shown that following transformation
laws are valid:

9, , (a)'
Xy = ;5 xo' = xe me

oz’

ozt )
Wi = Wiz Wy = W, a’ -

ozt

If the k—Hamilton function H (X, p)is given in the space E*, then the metric
tensor G can be defined in the following way:
9ii(z,p) = gi()  gF =0 g% =0
gaﬁ =27 laaaﬁH2(x,p) Ya,8=1,K,

where g;;(z) is some metric tensor defined on M and M is the 7* projection
of B* .
T(E) = M, 7((2"), (pa), - (7)) = (2).

We can not define
giﬁb(m7p) = 2_15i8f3H2($7P)7 g'ij(map) = 2_15:'51'1{2(33713),
because the above quantities are not transformed as tensor.

Using the metric G determined by (4.1) we define the scalar product
(X,Y) of fields X,Y € T(E*) by

(46)  (X,Y) =g X'V + g, XY/ + g3, X3V + 925 X2V
Then lenght of X, |X]| is defined by | X|? = (X, X) and cosf, where 8 is
the angle between X and Y by

(X,Y)

4.7 cos B = .
(47 X1 ]¥]

When cos 6 = 0, we say that the fields X and Y are orthegonal to each
other. For the horizontal field Xy we have

Xu = X'6;, |Xul* = g; X°X?
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and for vertical vector Xy we have
Xy = X202 |Xv|? = g2 XexP.
For the field (4)Xv €(4) Tv(E*) we have

() Xv = X5, |(a)XV|2 = g% X2 X&(not summing over a).

Theorem 4.1. The necessary and sufficient conditions that the subspaces
Tu(E*), 0)Tv(E™); k) Tv(E*) of T(E*) should be orthogonal to each
other with respect to the metric tensor G, are

[9.41=0, [9%,]=0, Va,8=T,K o # §.

Definition 4.1. The differentiable manifold E* in which the coordinate
transformations of type (1.1) and (1.2) are allowed, supplied with the non-
linear connection N (see (2.2)) and the metric tensor G (given by (4.1)) is
called the K~ Hamilton space.

5. Strongly distinguished connection in T(E*)

The distinguished connection V or d— connection in the K — Hamilton
space in [15], [9], [16] and others is defined as a function V : (X,Y) —
VxY; X,Y, VxY € T(E*) for which, besides the usual conditions for the
linear connection, the following restrictions hold

(5.1) (a) VxYy € Tg(E*) (b)VxYy € Tv(E*)
VXe¢ T(E*), VYy € TH(E*) and VYy ¢ TV(E*).

The strongly distinguished or s.d. - connection is the linear connection

for which (5.1 a) and (5.2)
(5.2) Vx (a)YV € () Tv(E*)

hold.
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Definition 5.1. The strongly distingushed connection V in T(E*) is the
linear connection defined by

(o)

(5.3) (a) V565 =FF, b)V50:=F; 8

(8)
(¢) Vaab; =C; "6 d) Vaadhy =C2," 05.

In (5.3b) and (5.3d) there is no summation over a and § respectively.

Proposition 5.1. If X,Y € T(E*), where X is given by (2.3) and Y =
Yi8; + Y%, then

(5.4) VxY = (VX 4+ YILX 08 + (VX + Y 1 x)ob,

where

(@) Yi=6Y 4+ FY*

() Y% =92y +Clov*

)]
(5.5) (c) Yi=&Y +FyY/

(8
(@) Yl =oavfr oty

Proposition 5.2. If ((z%),(p2)) and ((z*),(p%)) are two coordinate sys-
tems connected by (1.1) and (1.2) then

(5.6) Vx'Y' =VxY
iff Y], Yi|e Yb| and Yﬁ|a are transformed as tensors, i.e.

. . . I . ] (a)l
YE = Vi (00a)(027) Y| = Vi[9 My

tl

(ﬁ) (o)

(8 )
Yﬁh = blz My, (Bya’) Ylf'a Yﬁ|a My M
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or equivalently iff the s.d.-connection coefficients have the following law of
transformation:

(a) Ff = Ff(9;07 ) (0pe*)(0ia”) + (8:0;2* )(Ope*)

2

®  ®» @e ®) )
(b)  F=FY o My ME (0ia™) + (95 My) M

(5.7)
(e

! ’ o )
() Cjle=Cha(8;a")( Oz’ M,

’il

ba (g @ (B) B) (a
s (s , (2)
(d) S o =MbY ME M,

cx

Proof. The proof is obtained by direct calculation using (5.4) - (5.6) , (2.1)
and (2.4).

It follows from (5.7) that the F’s which appear in (5.7a) and (5.7 b) are
transformed as connection coefficients, and the two C's in (5.7c) and (5.7b)
as tensors.

The torsion tensor T(X,Y) for the s.d.-connection, is as usual, given by

(5.8) T(X,Y)=VxY —VyX —[X,Y]. O

Theorem 5.1. In the k— Hamilton space the torsion tensor for the s.d. -
connection has the form

T(X,Y) = (Fj,— Fl)X'Y* +CJ 2 XYke; — CL XY /s +

B ()
(5.9) C oa XSY[ 04— C* b XY/ 05+ o
(O:NZ — O;N& + NLOSNE — NJOENE) X Y992+

®) |
[ I (8;N5))@“]Xia}}+

<) (g) Blyviab
(@2 X~ F,, Xd]YJE)ﬁ.

Proof. The proof is obtained by direct calculation using (5.3), (5.4), (5.5)

and (5.8). a

If we suppose that the nonlinear connection N is such that Nbe is the
function only of (z) and (p®) = (p?,...,pgz) for V8 = 1, K, then the three
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last lines in (5.9) have the form

(NS — 0;N& + NiVob Ng - N, Dot Na) Xy o+

2

8) _
(5.10) +H(F? =0 NV XY ] 3+

(8) (5) By igh
(O(ﬁ)N - )X Y705
The Einstein summation convection is not meant on (@) and (3). O

Theorem 5.2. In the K— Hamilton space the torsion tensor for the s.d. -
connection is identically equal to zero iff

(a) OC‘;NSZ-:O forVa # 3
(b) Fliz Fk_O
(c) CkJZ=0

(5.11)

(o) (e)
(@) Ctg - o=

()
(e) C*5=0 forVa # 7y

iva _aova @ e o n(@a e
(f) N~ NG — N0 N+ Nyop N = 0

(8)

d d a8
(4) F4,= o N
Proof. The proof follows from (5.9) and (5.10). O

Theorem 5.3. In the K— Hamilton space the torsion free s.d. - connection
has the following properties

(a) V(s'.&j = ngé,', VXHYH € TH(E*)
(b) V(a)XV (ﬁ)YV =0 Vo ?é B
(5.12)
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(¢) Voadh=Vpdl  Vigx, ¥ € (@Tv(E")

(d) Vi x,Yu =0.

If instead of (5.11 a) the stronger condition
(5.13) Ny =0 Va#pB=T1m
is satisfied, then besides (5.12) the torsion free s.d. - connection has the
property Vx,(a)Yy = 0.

From Theorems 5.2 and 5.3 follows the following

Theorem 5.4. In the torsion free K— Hamilton space for which condition
(5.13) holds the strongly distinguished connection reduces to the following
Sform:

Vsb; = Flibr, Fly=Fk, V50%=0, Vsab; =0,

] Jeo

() (@) (o)
(514) Vagag =0 fOT‘ x §£ ﬂv Vagag :Cbca 8;’ Cb ca:Cac b7

6. Strongly distinguished connection in 77(£™)

The connection V defined on T(E*) by (5.3) induces a connection V* on
T*(E*) which will also be denoted by V. For the field X defined by (2.9)
and w defined by (2.14) we have

(6.1) Vyw= VX;&_,_Xgag(wjdmj + w%ﬁpf).

Definition 6.1. The connection V on T*(E*) is defined by

. ()
(a) Vsdai = Fde* (b) Vs,6p) =F°,; 6pF

(6.2)
. ®
(c) Voada? = C7%da* (d)Vagﬁpf =Cc, " 6pl.

Proposition 6.1. If X € T(E*) and w € T*(E*), then

(6.3)  Vxw = (w;; X' + w;|2X)da’ + (wh, X" + wh|%w)6py,



Strongly distinguished connections...

where
(a) wjji = 6;w; + FJ W
(b) wj|% = 82w; + C ke,
(6.4)

(8)
b ganby fb e
(c) wg; = biwg+ 7 wh

(8)
(d) whle = 02wh+ C® 2 w§.

169

Proof. Substituting (6.2) into (6.1) and using the linarity of connection V

we obtain (6.3) and (6.4). O

Using the properties of the linear connection V and relations (4.1) and

(6.2), the following relations are fulfilled:

VxG = (gipX¥+gi; |5 X2)de* @ dzit

(g5 X" + 0 15 X2)dz' @ by +

(6.5)

(g?,ﬂka + ggj I% Xg)&pg ® dz?+

(925, X" + g2 |5 X2)6p2 @ 8},

where

(@) gijik = Brgis + gniF B+ gf;hf’j h

(b) giile = 8gi; + g Ci ¢ + ginCy e

5 (B)
(¢) 9pp = Okgi + 9 ¥l + 95 Fou

(6.6)

e

(d) g:pls = 0595 + 95Cl + 96 C oy
b b db ja) d £(;)
() 9opk = k905 + 905 Flax 955 ok

() (8

(1) 92515 = 0595 + 965 C°4 +955 €45 -
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Definition 6.2. The K —Hamilton space will be called recurrent if there
ezists a field A(z,p) = Ai(z, p)dz* + A (z, p)épd, such that

Gijlk = AkGii  Gisle = ALgi;
b b b
iplk = /\kgz'ﬂ giﬂl’y = ’\ngﬁ
(67) gag[k ’\kga] ga]lc = ’\'yga]

b ab b
9ablk MeYap gehl% = Aog2h.

The K — Hamilton space will be called a metric space if

b
Gk =0 gijl5=0  gpu=0  gpl5=

(6.8) Goik =0 gail5 =0 gi%uc =0 guls=0.

Theorem 6.1. In the recurrent and in the metric K — Hamilton spaces the
strongly distinguished connection V defined on T(E*) by (5.3) and on T*(E*)
by (6.2) is compatible with the raising and lowering of the indices by the met-
ric tensor GG iff following conditions are satisfied

o ) (8)
(6.9) FJi=—-FJ, Fy=-F%,
_— ) )
Ck]a = _Ck]cn “pa= — Cha -

Proof. The proof is obtained from (4.3), (6.6), (6.7), (6.4) and (5.5). It is
similar to the proof of Theorem 6.1 in [8]. O

Theorem 6.2. In the recurrent K — Hamilton space the coordinates of the
tnverse metric tensor satisfy the following relations

i i3 P z 6 )
(6.10) 9 = —Xeg”s g ﬁb|k = Mg, gdﬁk = —_/\kgdf

¥ 4
gI5 = =MgY, gRlS = —xsg™, gif1s = —Mgl
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Proof. The proof follows from (4.4) and is the same as the proof of Theorem
6.2in [8] O

To avoid confusion in the application of the Einstein summation con-
vention in the case when more than two indices are equal, we introduce the
following notation:

(o)
Feb =3 Fly for a=14¢
0 for a#4é

()
e — { °g for a=4§
0 for a#é

Using the above notation the rasing and lowering of the middle index of
the connection coefficients are given by the following formulae:

(6.11)

-l A1 (8] (8114 %) ()
Fi 9%, 9% 0 0 9 95 Fix

17 ;  h
)5 ] ] <[5 28] ]
= c N a
Fasr | | 95n 95y F. Frax 9 gu Frax
i d h hj h
[szw 1 = [ 9 gjg] [Cz'li] @_[ Ciwc] - [95; 9;“] [szw }
Cias | | 951 95% 0 0 97 952 Cias
_ ; h
][5 1 1) L5 -[5 ] ()
- =19
Cosv 1| 96n 9p¢ Cay Cady 95 gpq Caby

The above equations are well defined because they are compatible with (4.4)
Using (6.11), (6.6) may be written in the following form:
(a) Gijik = 6x9i; — Fijk — Frix
(b) gisl5 = 9595 ~ Cify, = €
(6.12)
(c) .‘J,-%uc = 5k.‘]ilfs - Bék - ngk

b — Ac, b be bc
(d) gigl5 = 059:5 — Cig, — Ci,y
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(&) 94%, = 0k92h — Fibe — Faon
(f) g2hle = 85955 - Cg%@ Che.

7. Strongly distingushed connection coeflicients in
the recurrent K'— Hamilton space

Theorem 7.1. In the recurrent K — Hamilton space supplied with the metric
tensor G, arbitrary torsion tensor T, the strongly distinguished connection
coefficients are determined by (7.1) - (7.8):

(7.1) 2F; ik = (0kgij + 6:9ik — 0508:) — (Akgi; + Nigjk — Ajgki) + A

where
A = (Fijk — Fiji) + (Frij — Fyix) + (Figj — Fijri) =
= gMFh — FL) + gin(FE — FA) + gen(FE - FL).
(7.2) a 28 = (k90 + bigak — Oagix)—
—(Akga; + Aigar — Aegik) + B,
B = ( 1ak kaz) ( zka)) ( otk — kza)+
= g (Fh — FL) = (95, Fol — 9 Ci8)—
(gw ack gikckhg)'
(7.3) 2F g = (0kgai + 6aGik — 8ige)—
~(Akg5; + Aogik — Aigry) — B.
(7.4) 245 afk = (6kgaﬂ + aggﬁk ‘939151)—
—()\kgg% + Aigék - /\%gkaa + C,
where

(aﬂk kﬂa) (ng?xk Ckaﬁ)+(cakﬁ Cﬂka)
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b ha ac b a hb cb bea
(gﬁ«, ack gﬁkck o) — (goz'yFﬁck = 9arCk ﬁ) + gkee(cgeﬁ - Cﬁea)

(7.5) 2C, % = (0a9i; + 6:9% — 6;90:)—
—(Aagi + Aigih — Ajgs:) + D,
where
b = (F:g] gm) + (P‘aaz] - C]za) - ( aji Cij?y)_
- ggh(Fi@ - FJh;) + (grcyFSZJ - gzhC )—
- (gJ'y acz thC'héxa)‘
(7.6) 20,205 = (0595 + kg2l — 0%g5,) —
_(’\%gkaa + /\kggbﬁ - 83920 - E
where
= (Fy kﬁa) + (£} Gk — Ckozﬁ) + (chkﬁ C,Bka) =
ac b e ae ca
(gﬁ’yFack gﬁhck a) + ( FﬁZk gahck ﬁ) + ng(Coze% - ,gscx)
(1.7) 20805 = (529319 + 3291&3 - 5k9%‘2—
—(A5g8 + Mg — Mkgl) + E
(73) 2055, = (3593 + 3als, — o)
—( X925 + Maghy, — Magse) + F,
where

= (Caly, — o) + (C2sly — Clin) + (Caty - OB,

Proof. The proof follows from (6.7), (6.11) and (6.12). O

In (7.1) - (7.9) the expressions A, B,C,D, E, F and G are functions of
torsion tensor 7' and the nonlinear connection N. The connection coeffi-
cients in the K recurent Hamilton space can be determined using an arbi-

trary temsor. In the usual terminology, that the space is torsion free when
T(X,Y)=0VX,Y € T(E*) is used, then we have
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Theorem 7.2. In the torsin free recurrent K — Hamilton space, supplied
unth the metric tensor G, the strongly distinguished connection coefficients
are determined by (7.1) - (7.8) where A, B,C, D, E and F have the following

value:
(7.9) A=0,
B = ~ (g5 03NS + 6,6, 03N,

c a g7 ie ac I
¢= ggk(a)aaNc(k) B ga(ﬁ)ach(k)’

___gcaaNC(;l) caaN()

(o) o J(a) ater

_ ,bc a n (@) _ CLc b ar(0)
E= gﬁ(a)aach 9a(8) ERAIN

and 6; N3 — 6; N5 = 0 (which follows from (5.11 f)).

D

Proof. The proof follows from Theorem 7.1 and Theorem 7.2. O

If in (7.1) - (7.8) the filed A = Ardz* + A%6p% is equal to zero, then the
recurrent K — Hamilton space becomes a K — Hamilton space supplied with
a strongly distinguished metric connection.

Theorem 7.3. In the torsion free K — Hamilton space supplied with the met-
ric tensor (G, the strongly distinguished metric connection coefficients are
given by

(a) 2F;x = (0kgi; + 6:95k — 0;9k:)

(b) 2F,5, = (0kgs + 6:9%, — 059ik) — (9 a)(‘)“N(a) + g, (a))a“N(“))
(¢) 2F%; = (6k9d: + 05gik — bigi) + (9, a)daN(a) + gi(ca)ach(j )
(d) 2F%5, = (8rg%% + 0595, — %%Q+QwMQN(L—()%NWU
(7.10)

() 20,7, = (939:5 + 80t — 89%) + (9,5) 03NS — g;¢,,0aN )
(1) 208 = (59,8, + 6kgll — 020%) — (950, 08NS + 926, 02N )
(9) 203k, = (9592 + 0398, — 8kgl) + (95703 N ) + 926, 06N )
(h) 2085, = (05955 + 949, — Op95e)



Strongly distinguished connections... 175
&N —6; Nz = 0.
Proof. The proof follows from Theorem 7.1 and Theorem 7.2. O

Theorem 7.4. In the torsion free metric K — Hamilton space in which Tr( E*)
is orthogonal to Ty(E™), i.e. where the metric tensor G has the property
[9.2] =0 V& =1,K the strongly distinguished connection coefficients have
the form

(a) 2F;k = (6k9i; + 6;9;x — 6;9k:)
(b) 2F%, = —0ig
(c) 2F%, = 059k
(d) 2F“bk = (5kg
(7.11)

(e) 2C.% = B2g;;

i70
(f) 2C¢&, = 692l (gﬁ(a 8aNc:) + 94 )8ch(k))

2+ 95N )

a @) ac b ar(B)
,B(a)a ch - a(ﬁ)a N

(9) QCakB = 5’“9;6?1 + gﬁ(a)a Nc(k

(h) 202k = 0592y + 0%9%, — Bpgse.

Proof. The proof follows from (7.10) and the condition [g,%]= 0 for
Va=1,K 0O.
It is obvious that in (7.11)

a a

ath — “Lian Cka,@ = —Cakﬁ

In the recurrent K-Hamilton space in which Ty(FE*) is orthogonal to
Tv(E*) i.e. where the metric tensor has the property [g;2] = 0 for
Val, K, from (6.11) we get

(a) Fi = gMFy

(b) O_gaanaak
(C) 0:gh1F31k

(@) o
(d) F = 9( )ﬁFSf}k
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f) 0=gics

[1e%%

g) 0= ghica c

ary

(
(
(
(

(a) ac )08 ~rabe
(h) dv = g(d) bca%'y'

The strongly distinguished connection coefficients which appear on the
right-hand side of (7.12) for the torsion free, metric K-Hamilton space are
determined by (7.11).

For the torsion free strongly distinguished connection for which (93 N Ii =
0 VYa,8 = 1, K the relation (5.14) holds. These relations may be obtained
for the above case also from (7.11) and (7.12).
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