Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 25, 1 (1995), 1-7 Review of Research Faculty of Science Mathematics Series

ON COINCIDENCE POINT THEOREM FOR MULTIVALUED MAPPINGS IN PROBABILISTIC METRIC SPACES

Olga Hadžić

Institute of Mathematics, University of Novi Sad Trg Dositeja Obradovića 4, 21000 Novi Sad, Yugoslavia

Abstract

A coincidence point theorem for multivalued mappings in probabilistic metric spaces is proved, which is a generalization of the fixed point theorem proved by V.Radu [3].

AMS Mathematics Subject Classification (1991): 47H10 Key words and phrases: multivalued mappings, coincidence point, probabilistic metric space.

1. Introduction

T. L. Hicks proved in [2] a fixed point theorem for the so-called C- contraction in probabilistic metric spaces (S, \mathcal{F}, \min) . A mapping $f: S \to S$ is a C- contraction if there is a $k \in (0,1)$ such that for every $p, q \in S$ and x > 0

$$F_{p,q}(x) > 1 - x \Rightarrow F_{fp,fq}(kx) > 1 - kx$$
.

V. Radu proved [3] that $f: S \to S$ is a C - contraction on S, where (S, \mathcal{F}, T) is a complete Menger space with $T \geq T_m$, $T_m(a, b) = \max\{a + a\}$

b-1,0 $(a,b \in [0,1])$, if and only if f is a metric contraction on the metric space (S,β) ,

$$\beta(p,q) = \inf\{h; F_{p,q}(h^+) > 1 - h\}.$$

If $\sup_{x<1} T(x,x) = 1$. V. Radu proved that a C- contraction $f: S \to S$ has a fixed point. In this paper, a generalization of this result for multivalued mappings will be proved.

2. Preliminaries

Let (S, \mathcal{F}, t) be a Menger space, $\emptyset \neq M \subset S$, $f: M \to M$ and $A: M \to 2^M$ (the family of nonempty subsets of M). The mapping A is f- strongly demicompact if for every sequence $\{x_n\}_{n\in\mathbb{N}}$ from M, such that $\lim_{n\to\infty} F_{fx_n,y_n}(\epsilon) = 1$, for some sequence $\{y_n\}_{n\in\mathbb{N}}$, $y_n \in Ax_n$, $n \in \mathbb{N}$ and every $\epsilon > 0$, there exists a convergent subsequence $\{fx_{n_k}\}_{k\in\mathbb{N}}$.

A mapping $A:M\to 2^M$ is weakly commuting with $f:M\to M$ if for every $x\in M$

$$f(Ax) \subset A(fx)$$
.

A t-norm T is of the h-type if the family $\{T_p(x)\}_{p\in\mathbb{N}}$ is equicontinuous at the point $x=1,\ T_1(x)=T(x,x),\ T_p(x)=T(T_{p-1}(x),x),\ p\geq 2,\ x\in[0,1].$

A nontrivial example of such a T-norm can be found in [1].

Let

$$\mathcal{M} = \{\psi; \psi: \mathbf{R}_+ \to \mathbf{R}_+, \psi \text{ is nondecreasing and } \sum_{n=1}^{\infty} \psi^n(u) < \infty,$$

for every
$$u \in \mathbf{R}_+$$
 \}.

By $2_c^{f(M)}$ we shall denote the family of all nonempty, closed subsets of f(M).

3. A fixed point theorem

Theorem 1. Let (S, \mathcal{F}, T) be a complete Menger space, $\sup_{x < 1} T(x, x) =$

1, M a nonempty and closed subset of S, $f: M \to M$ a continuous mapping, $A, B: M \to 2_c^{f(M)}$ and $\psi \in \mathcal{M}$, so that the following implication holds for every $u, v \in M$ and every $\epsilon > 0$:

$$\begin{split} F_{fu,fv}(\epsilon) > 1 - \epsilon \quad \Rightarrow \quad & \textit{for every } \ p \in \textit{Au there exists } \ q \in \textit{Bv} \\ & \textit{such that } \ F_{p,q}(\psi(\epsilon)) > 1 - \psi(\epsilon) \ \textit{and} \\ & \textit{for every } \ p' \in \textit{Bv there exists } \ q' \in \textit{Au} \\ & \textit{such that } \ F_{p',q'}(\psi(\epsilon)) > 1 - \psi(\epsilon). \end{split}$$

If A and B are weakly commuting with f and (a) or (b) are satisfied, then there exists $x \in M$ such that $fx \in Ax \cap Bx$, where

- a) A or B are f-strongly demicompact.
- b) t-norm T is of the h-type.

Proof. Let $x_0 \in M$ and $x_1 \in M$ be such that $fx_1 \in Ax_0$. If s > 1, then $F_{fx_0,fx_1}(s) > 1-s$ and so there exists $x_2 \in M$ such that $F_{fx_1,fx_2}(\psi(s)) > 1-\psi(s)$ and $fx_2 \in Bx_1$. Continuing in this way we obtain a sequence $\{x_n\}_{n\in\mathbb{N}}$ in M such that for every $n\in\mathbb{N}$

- (i) $fx_{2n+1} \in Ax_{2n}, fx_{2n+2} \in Bx_{2n+1}$
- (ii) $F_{fx_n, fx_{n+1}}(\psi^n(s)) > 1 \psi^n(s).$

Since $\lim_{n\to\infty} \psi^n(s) = 0$, from (ii) it is easy to prove that for every $\epsilon > 0$ and $\lambda \in (0,1)$ there exists $n_1(\epsilon,\lambda) \in \mathbb{N}$ such that for every $n \geq n_1(\epsilon,\lambda)$ $F_{fx_n,fx_{n+1}}(\epsilon) > 1-\lambda$. This means that for every $\epsilon > 0$

(1)
$$\lim_{n \to \infty} F_{fx_n, fx_{n+1}}(\epsilon) = 1.$$

If we suppose that A is f- strongly demicompact, using

$$\lim_{n \to \infty} F_{f_{x_{2n}, f_{x_{2n+1}}}}(\epsilon) = 1 \text{ and } f_{x_{2n+1}} \in Ax_{2n} \ (n \in \mathbb{N}),$$

we conclude that there exists a convergent subsequence $\{fx_{2n_k}\}_{k\in\mathbb{N}}$ of the sequence $\{fx_{2n}\}_{n\in\mathbb{N}}$.

We shall prove that if T is of the h-type, the sequence $\{fx_n\}_{n\in\mathbb{N}}$ is convergent.

Let $\epsilon > 0$ and $\lambda \in (0,1)$. Since the series $\sum_{n=1}^{\infty} \psi^n(s)$ is convergent, there exists $n'(\epsilon,s) \in \mathbb{N}$ such that $\sum_{n \geq n'(\epsilon,s)} \psi^n(s) < \epsilon$. Then, for every $n \geq n'(\epsilon,s)$

$$F_{fx_{n+p+1},fx_n}(\epsilon) \ge \underbrace{T(T(...T(F_{fx_{n+p+1},fx_{n+p}}(\psi^{n+p}(s)), \psi^{n+p}(s)),}_{p-times}$$

$$F_{fx_{n+p},fx_{n+p-1}}(\psi^{n+p-1}(s)),...,F_{fx_{n+1},fx_n}(\psi^n(s))).$$

If $n \ge n''(\epsilon, s) = \max\{n(s), n'(\epsilon, s)\}$, where $\psi^n(s) < 1$, for $n \ge n(s)$, then

$$F_{fx_{n+p},fx_n}(\epsilon) \ge \underbrace{T(T(...T(1-\psi^{n+p}(s), 1-\psi^{n+p-1}(s)), ..., 1-\psi^n(s))}_{p-times}.$$

Hence

(2)
$$F_{fx_{n+p+1},fx_n}(\epsilon) \ge T_p(1-\psi^n(s))$$

for every $n \geq n''(\epsilon, s)$ and every $p \in \mathbf{N}$. Since the family $\{T_p(x)\}_{p \in \mathbf{N}}$ is equicontinuous at the point x = 1, for every $\lambda \in (0, 1)$ there exists $\delta(\lambda) \in (0, 1)$ such that $T_p(1 - \delta(\lambda)) > 1 - \lambda$, for every $p \in \mathbf{N}$. If $n'''(s, \lambda) \in \mathbf{N}$ is such that $\psi^n(s) < \delta(\lambda)$, for every $n \geq n'''(s, \lambda)$ it follows from (2) that

$$F_{fx_{n+n+1},fx_n}(\epsilon) > 1 - \lambda$$

for every $n \ge \max\{n''(\epsilon, s), n'''(s, \lambda)\}.$

Since S is complete and M is closed we conclude that in both cases (a) and (b) there exists $x=\lim_{k\to\infty}fx_{2n_k}\in M$. From (1) it follows that $x=\lim_{k\to\infty}fx_{2n_k+1}$.

We shall prove that $fx \in Ax \cap Bx$. Since Ax and Bx are closed it remains to be proved that $fx \in \overline{Ax} \cap \overline{Bx}$ i.e. that for every $\epsilon > 0$ and $\lambda \in (0,1)$ there exists $q(\epsilon,\lambda) \in Ax$ and $r(\epsilon,\lambda) \in Bx$ such that

(3)
$$q(\epsilon, \lambda) \in \mathcal{N}_{fx}(\epsilon, \lambda), \ r(\epsilon, \lambda) \in \mathcal{N}_{fx}(\epsilon, \lambda).$$

Since $\sup_{x<1} T(x,x) = 1$ it is easy to see that there exists $\delta(\lambda) \in (0,1)$ such that

$$T(1 - \delta(\lambda), T(1 - \delta(\lambda), 1 - \delta(\lambda))) > 1 - \lambda.$$

From the continuity of f and $x=\lim_{k\to\infty}fx_{2n_k}$ it follows that there exists $k_1\in {\bf N}$ such that

(4)
$$F_{fx,ffx_{2n_k}}\left(\frac{\epsilon}{3}\right) > 1 - \delta(\lambda), \text{ for every } k \ge k_1.$$

From (1) it follows that there exists $k_2 \in \mathbb{N}$ such that

(5)
$$F_{ffx_{2n_k},ffx_{2n_k+1}}\left(\frac{\epsilon}{3}\right) > 1 - \delta(\lambda), \text{ for every } k \ge k_2.$$

Let $t_0 \in \mathbf{R}_+$ be such that $\psi(t_0) < \min\{\frac{\epsilon}{3}, \delta(\lambda)\}$ and $k_3 \in \mathbf{N}$ such that

(6)
$$f_{fx,ffx_{2n_k}}(t_0) > 1 - t_0$$
, for every $k \ge k_3$.

Since $fx_{2n_k+1} \in Ax_{2n_k}$ $(k \in \mathbb{N})$ and A weakly commutes with f it follows that

(7)
$$ffx_{2n_k+1} \in f(Ax_{2n_k}) \subset Afx_{2n_k} \ (k \in \mathbb{N}).$$

Using (6) and (7) we obtain that there exists $r(\epsilon, \lambda) \in Bx$ such that for $k \geq k_3$

$$F_{ffx_{2n_{k}+1,r(\epsilon,\lambda)}}(\psi(t_{0})) > 1 - \psi(t_{0})$$

which implies that

$$F_{ffx_{2n_k+1,r(\epsilon,\lambda)}}\left(\frac{\epsilon}{3}\right) \ge F_{ffx_{2n_k+1,r(\epsilon,\lambda)}}(\psi(t_0)) >$$

(8)
$$> 1 - \psi(t_0) > 1 - \delta(\lambda), \text{ for every } k \ge k_3.$$

Hence, for $k \ge \max\{k_1, k_2, k_3\}$, using (4), (5) and (8) we obtain that

$$F_{fx,r(\epsilon,\lambda)}(\epsilon) \ge T(F_{fx,ffx_{2n_k}}\left(\frac{\epsilon}{3}\right), \ T(F_{ffx_{2n_k},ffx_{2n_k+1}}\left(\frac{\epsilon}{3}\right),$$
$$F_{ffx_{2n_k+1},r(\epsilon,\lambda)}\left(\frac{\epsilon}{3}\right))) > 1 - \lambda.$$

This means that $r(\epsilon, \lambda) \in \mathcal{N}_{fx}(\epsilon, \lambda)$. From (1) and

$$x = \lim_{k \to \infty} fx_{2n_k} = \lim_{k \to \infty} fx_{2n_k+1} = \lim_{k \to \infty} fx_{2n_k+2}$$

we obtain that there exists $k'_1, k'_2, k'_3 \in \mathbb{N}$ such that

(9)
$$F_{fx,ffx_{2n_k+1}}\left(\frac{\epsilon}{3}\right) > 1 - \delta(\lambda), \text{ for every } k \ge k_1'$$

(10)
$$F_{ffx_{2n_k+1},ffx_{2n_k+2}}\left(\frac{\epsilon}{3}\right) > 1 - \delta(\lambda), \text{ for every } k \ge k_2'$$

(11)
$$F_{fx,ffx_{2n+1}}(t_0) > 1 - t_0$$
, for every $k \ge k_3'$

Since $fx_{2n_k+2} \in Bx_{2n_k+1}$ $(k \in \mathbb{N})$ and B weakly commutes with f it follows that $ffx_{2n_k+2} \in f(Bx_{2n_k+1}) \subset B(fx_{2n_k+1})$. Hence, there exists $q(\epsilon, \lambda) \in Ax$ so that for every $k \geq k_3'$

$$F_{ffx_{2n_1+2},q(\epsilon,\lambda)}(\psi(t_0)) > 1 - \psi(t_0)$$

which implies for $k \ge \max\{k'_1, k'_2, k'_3\}$

$$\begin{split} F_{fx,q(\epsilon,\lambda)}(\epsilon) &\geq T(F_{fx,ffx_{2n_k+1}}\left(\frac{\epsilon}{3}\right), \\ &T(F_{ffx_{2n_k+1},ffx_{2n_k+2}}\left(\frac{\epsilon}{3}\right), \\ &F_{ffx_{2n_k+2},q(\epsilon,\lambda)}\left(\frac{\epsilon}{3}\right))) > 1 - \lambda. \end{split}$$

Example. Let (M,d) be a separable metric space, (Ω, Σ, P) a probability space and S the space of all classes of measurable mappings from Ω into M. Then (S, \mathcal{F}, T_m) is a Menger space where

$$F_{X,Y}(u) = P(\{\omega; \ \omega \in \Omega, \ d(X(\omega), Y(\omega)) < u\}) \ (u \in \mathbf{R}), X, Y \in S.$$

The Ky Fan metric in S is

$$d(X,Y) = \sup\{u; F_{X,Y}(u) < 1 - u, u > 0\}$$

and the (ϵ, λ) topology and the topology induced by d coincide.

Let f:S o S be a continuous mapping and $A,B:S o 2_c^{f(M)}$ such that

$$D(AX, BY) \le \psi(d(fX, fY)), X, Y \in S,$$

where ψ is a strictly increasing mapping from \mathbf{R}_{+} into \mathbf{R}_{+} .

If $F_{fX,fY}(u) > 1-u$ then d(fX,fY) < u and since ψ is strictly increasing we have that $\psi(d(fX,fY)) < \psi(u)$. Hence

$$\sup_{U\in AX}\inf_{V\in BY}d(U,V)<\psi(u),\ \sup_{V\in BY}\inf_{U\in AX}d(U,V)<\psi(u),$$

which implies that for every $U \in AX$ there exists $V \in BY$ such that $d(U,V) < \psi(u)$ and that for every $V' \in BY$ there exists $U' \in AX$ such that $d(U',V') < \psi(u)$. So

$$F_{U,V}(\psi(u)) > 1 - \psi(u)$$
 and $F_{U',V'}(\psi(u)) > 1 - \psi(u)$.

References

- [1] Hadžić, O., Generalized contractions for multivalued mappings in probabilistic metric spaces, Univ. u Novom Sadu Prirod.-Mat. Fak. Ser. Mat. 22,2 (1992), 39-45.
- [2] Hicks, T. L., Fixed point theory in probabilistic metric spaces, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 13 (1983), 63-72.
- [3] Radu, V., Some fixed point theorems in probabilistic metric spaces, Lect. Not. Math., 1233, Springer Verlag (1987), 125-133.
- [4] Schweizer, B., Sklar, A., Probabilistic Metric Spaces, North-Holland, 1983.

Received by the editors October 14, 1994.