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Abstract

A coincidence point theorem for multivalued mappings in proba-
bilistic metric spaces is proved, which is a generalization of the fixed
point theorem proved by V.Radu [3].
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1. Introduction

T. L. Hicks proved in [2] a fixed point theorem for the so-called C'— contrac-
tion in probabilistic metric spaces (.5, F,min). A mapping f : 5 — S is a
C— contraction if there is a k € (0,1) such that for every p,g€ Sand z > 0

Fog(z)>1—2 = Frppe(kz) > 1 - ka.

V. Radu proved [3] that f : § — S is a C' - contraction on 5, where
(S,F,T) is a complete Menger space with 7' > T, T,,(a,b) = max{a +
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b—1,0} (a,b €[0,1]), if and only if f is a metric contractioﬁ on the metric
space (5, 0),
B(p,q) = inf{h; F,,(h*)>1-h}.

If supT(z,z) = 1. V. Radu proved that a C'— contraction f : § — 5 has
z<1
a fixed point. In this paper, a generalization of this result for multivalued

mappings will be proved.

2. Preliminaries

Let (S, F,t) be a Menger space, 0 Z M C S, f: M - M and A: M — 2M
(the family of nonempty subsets of M ). The mapping A is f— strongly demi-
compact if for every sequence {z,},eN from M, such that hm Fy . .. (€) =

1, for some sequence {Yn}necN, Yn € Azn, n € N and every € > 0, there
exists a convergent subsequence {fz,, }reN-

A mapping A : M — 2M is weakly commuting with f : M — M if for
everyz € M
f(Az) C A(f=).

A t—norm T is of the h—type if the family {T,(z)},eN is equicontinuous
at the point z = 1, Ti(z) = T(z,z), Tp(z) = T(Tp-1(z),2), p 2 2, ¢ €
[0, 1].

A nontrivial example of such a T—norm can be found in [1].

Let

M= {¢;¢¥: R,y — Ry, 1 is nondecreasing and Z P (u) < oo,
n=1

for every u € Ry }.
By 2f (M) we shall denote the family of all nonempty, closed subsets of f(M).

3. A fixed point theorem

Theorem 1. Let (S,F,T) be a complete Menger space, sup, . T(z,z) =
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1, M a nonempty and closed subset of S, f : M — M a continuous
mapping, A,B : M — 2£ M) ond 1 € M, so that the following implication
holds for every u,» € M and every e > 0:

Fiufo(€) >1—€ = for every p € Au there exists q € Bv
such that Fpq(¥(€)) > 1 —1(€) and
for every p' € Bv there exists ¢’ € Au
such that Fp g((€)) > 1 — ¥(e).

If A and B are weakly commuting with f and (a) or (b) are satisfied,
then there exists z € M such that fz € Az N Bz, where
a) A or B are f—strongly demicompact.

b) t—norm T is of the h—type.

Proof. Let zo € M and z, € M be such that fz; € Azg. If s > 1, then
Fir.55,(8) > 1 — s and so there exists z; € M such that Fy,, s5,(¢(s)) >
1 — ¢(s) and fzy € Bz;. Continuing in this way we obtain a sequence
{zn}nen in M such that for every n € N

(i)  fxont1 € AZon, fTong2 € Bronn
(ii) Ffzn»fl'n-i-l (,wn(s)) >1- ,wn(s).

Since lim %™(s) = 0, from (ii) it is easy to prove that for every ¢ > 0 and X €
n—rod

(0,1) there exists 1 (¢, A) € N such that for every n > n1(€, A) Fiz,, 12,,,(€) >
1 — A. This means that for every ¢ > 0

(1) n]-l_)nclo fonvfxn+1(€) =1

If we suppose that A is f— strongly demicompact, using
n]_l_)ngo Ff-'l’znyfz2n+1(€) =1and frou41 € Az2, (n € N),

we conclude that there exists a convergent subsequence {fzay, }ren Of the
sequence {fTon}neN-

We shall prove that if T" is of the h—type, the sequence {fz,} N is
convergent.
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oo
Let € > 0 and A € (0,1). Since the series Y 9™(s) is convergent, there

n=1

exists n(¢,s) € N such that Y 4™(s) < ¢. Then, for every n > n/(e, s)
n>n'(e,s)
Ff$n+p+1,fzn(€) 2> T(T("'T((Ff$n+p+1,f$n+P(¢n+p(5))7
p— times

Ff$n+p,f$n+p—1 (¢n+p—1(s))’ ey Ff$n+17f$n(¢n(s)))'

If n > n"(¢,s) = max{n(s), n'(¢,s)}, where ¥"(s) < 1, for n > n(s),
then

— " HP(s —PMPI(6)) L1 — (s)).
Ftonip.son(€) 2 T(T{---T(l PrTP(s), 1= " N(s)), . 1= Y(s))
p— twmes

Hence

(2) Fionipirsza(€) 2 Tp(1 = 97(s))

for every n > n”(¢,s) and every p € N. Since the family {T}(z)},cn is
equicontinuous at the point x = 1, for every A € (0,1) there exists §(A) €
(0,1) such that TH(1 — 6(A)) > 1 — A, for every p € N. If n"’(s,A) € N is
such that ¥™(s) < §(A), for every n > n”'(s, A) it follows from (2) that

Ff$n+p+1,f1:n(€) >1-—-A
for every n > max{n”(¢,;s), n'(s,A)}.

Since § is complete and M is closed we conclude that in both cases
(a) and (b) there exists z = klim fron, € M. From (1) it follows that

= lim fry,, 41.
k— o0

We shall prove that f z € AzNBz. Since Az and Bz are closed it remains
to be proved that fz € Az N Bz ie. that for every ¢ > 0 and A € (0,1)
there exists g(¢, A) € Az and r(¢, A) € Bz such that

(3) q(€,A) € Nia(e, A), T(€,A) € Nyz(e,A).

Since sup T'(z,z) = 1 it is easy to see that there exists §(A) € (0,1) such
z<1
that

T(1 = 6(N), T(1 - 6(A),1 = 6(A))) > 1 — A,
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From the continuity of f and « = klim fxan, it follows that there exists
—00
k1 € N such that

(4) Ffo,ffomm, (%) >1—46(A), forevery k> k.

From (1) it follows that there exists k2 € N such that

€
(5) Ff faony f foang 41 (5) > 1—6()), forevery k> k.

Let tp € Ry be such that ¥(tp) < min{%, 6(A)} and k3 € N such that

(6) fre,ffzam, (t0) > 1 = to, for every k> k.

Since fZgy,, 41 € Azg,, (k € N) and A weakly commutes with f it
follows that

(7) ffoon 41 € f(ATan,) C Afzan, (k € N).

Using (6) and (7) we obtain that there exists 7(¢,A) € Bz such that for
k> ks
Ffsznk-fl,r(c,A)(w(to)) >1- ’t/)(to)
which implies that

€
Fffrznk+1,r(e,,\) (5) 2 Fffzznk+1,r(c,,\)(¢(t0)) >

(8) >1—(to) > 1—8(N), forevery k> ks.

Hence, for k > max{ki, k2, k3}, using (4), (5) and (8) we obtain that

Fir(e)(€) 2 T(Fo,f fozn, (%), T(Fffoony.f fo2mg41 (%)

Fffrznk+1,r(e,)\)(§))) >1- A

This means that (¢, A) € Ays(¢, A). From (1) and

z= lim fzy, = lim fzo,,41 = lim fzo, 42
k—oo k—oo k—oco
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we obtain that there exists ki, k%, k5 € N such that

(9) Fiz,ftoom, 41 (%) >1-§(A), forevery k> kj

€ /
(10) Fffm’znk+lvff$2nk+2 (g) >1-§(A), forevery k2> kj
(11) Fiz ffoan 41(to) > 1—1o, forevery k> ks

Since fzon, 42 € By, 41 (k € N) and B weakly commutes with f
it follows that ffzg,, +2 € f(Bxan,+1) C B(fz2n,+1). Hence, there exists
g(€, A) € Az so that for every k > ki

Fy oo, 42,0 ) (¥(t0)) > 1 = (o)

which implies for £ > max{kj, k%, k5}
€
Fag(en)(€) 2 T(Fa,f faan i (g)

€
T(Ffffﬂznk+1 of Fo2n, +2 (5) s

Fi fommnaten) (5))) > 1= M

Example. Let (M, d) be a separable metric space, (2,%, P) a probability
space and S the space of all classes of measurable mappings from  into M.
Then (5, F,Ty) is a Menger space where

Fxy(u) = P{w; w € @, d(X(w),Y(w)) <u}) (€ R),X, Y €5.
The Ky Fan metric in S is
d(X,Y) =sup{u; Fxy(u) <1l—u, u>0}
and the (¢, \) topology and the topology induced by d coincide.
Let f: S — 5 be a continuous mapping and A,B: § — 2£(M) such that
D(AX,BY) <9(d(fX, fY)), X,Y €85,

where 1 is a strictly increasing mapping from R into R,.
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If Fyx sy (u) > 1—u then d(fX, fY') < u and since 1 is strictly increasing
we have that ¥(d(fX, fY)) < ¥(u). Hence

Usgl,fx Vlengy d(U,V) < 9(u), nglg)y Uglffx d(U, V) < ¥(u),

which implies that for every U € AX there exists V € BY such that
d(U,V) < (u) and that for every V' € BY there exists U’ € AX such
that d(U', V') < ¢(u). So

Fuv(y(u)) > 1—(u) and Fyry((u)) > 1 —p(u).
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