THE LEBESGUE DECOMPOSITION OF THE NULL-ADDITIVE FUZZY MEASURES

Endre Pap¹

Institute of Mathematics, University of Novi Sad Trg Dositeja Obradovića 4, 21000 Novi Sad, Yugoslavia

Abstract

In this paper the connection between two type of absolute continuity of a fuzzy measure m with respect to a given null-additive fuzzy measure g is investigated. Two theorems of Lebesgue decomposition type for null-additive fuzzy measures are proved.

AMS Mathematics Subject Classification (1991): 28A10, 28E10 Key words and phrases: null-additive fuzzy measure, continuous from above, continuous from below, autocontinuous from below.

1. Introduction

Wang [25] has introduced the notion of the null-additive set function m, i.e. such that m(B) = 0 implies $m(A \cup B) = m(A)$ for $A \cap B = \emptyset$. This property of set functions was noticed earlier by L.Drewnowski [6] as a part of the investigations of special class of set functions, which was introduced by I.Dobrakov [4]. Recently there were published many papers on null-additive set functions: H.Suzuki [23],[24], E.Pap [18],[19],[20] and Z.Wang [26]. It

¹This research was supported by Science Fund of Serbia, grant number 0401A,through Matematički institut

tourns out that many important generaly non-additive set functions are included in this class of set functions as t-conorm decomposable measures (E.Pap [14], [15], [16], S. Weber [27]), pseudo-additive measures (H. Ichihashi, M. Tanaka, K. Asai [9], T. Murofushi, M. Sugeno [11]), k-triangular set functions (E. Pap [12], [13], E. Guariglia [7]), etc..

In this paper we shall prove the connection between two type of absolute continuity of a fuzzy measure m with respect to a given null-additive fuzzy measure g. We have proved in papers [15] and [17] Lebesgue decomposition theorems for decomposable measures. Now we shall prove two theorems of Lebesgue decomposition type.

2. Null-additive fuzzy measures

Throughout this paper Σ always denotes a σ -ring of subsets of the given set X.

Definition 1. A set function $m, m : \Sigma \to [0, \infty]$, is called null-additive, if we have

$$m(A \cup B) = m(A)$$

whenever $A, B \in \Sigma$, $A \cap B = \emptyset$, and m(B) = 0.

Definition 2. A fuzzy measure $m, m : \Sigma \to [0, \infty]$, is a nonnegative extended real - valued set function m defined on σ - ring Σ and with the properties:

$$(FM_1) m(\emptyset) = 0,$$

$$(FM_2)$$
 $E \subset F$ \Rightarrow $m(E) \leq m(F)$.

For fuzzy measures we do not need the condition " $A \cap B = \emptyset$ " in Definition 1. In some papers ([23], [25], [26]) fuzzy measures have two continuity properties more:

Definition 3. A fuzzy measure $m, m : \Sigma \to [0, \infty]$, is continuous from below if it satisfies the condition

$$(FM_3) E_1 \subset E_2 \subset \dots , E_n \in \Sigma \Rightarrow m(\bigcup_{n=1}^{\infty} E_n) = \lim_{n \to \infty} m(E_n).$$

Definition 4. A fuzzy measure $m, m : \Sigma \to [0, \infty]$, is continuous from above if it satisfies the condition

$$(FM_4) E_1 \supset E_2 \supset \dots , E_n \in \Sigma$$
and there exists n_0 such that $m(E_{n_0}) < \infty \Rightarrow \mu(\bigcap_{n=1}^{\infty} E_n) = \lim_{n \to \infty} m(E_n)$.

We have by [18]

Definition 5. A set function m is called autocontinuous from above (resp. from below) if for every $\epsilon > 0$ and every $A \in \Sigma$, there exists $\delta = \delta(A, \epsilon) > 0$ such that

$$m(A) - \epsilon \leq m(A \cup B) \leq m(A) + \epsilon \ (resp. \ m(A) - \epsilon \leq m(A \setminus B) \leq m(A) + \epsilon)$$

whenever $B \in \Sigma$, $A \cap B = \emptyset$ (resp. $B \subset A$) and $m(B) < \delta$ holds.

By Proposition 3. from [25] any set function which is autocontinuous from above (below) is null-additive.

3. Absolute continuity with respect to a fuzzy measure

Definition 6. Let m and g be two finite fuzzy measures. If $E \in \Sigma$, g(E) = 0 implies m(E) = 0, then we say that m is absolutely continuous with respect to g.

Definition 7. Let m and g be two finite fuzzy measures. If for every $\epsilon > 0$ there is a $\delta > 0$ such that $E \in \Sigma$, $g(E) < \delta$ implies $m(E) < \epsilon$, then we say that m is absolutely ϵ -continuous with respect to g.

Theorem 1. Let m and g be two finite fuzzy measures such that they are continuous from above and continuous from below. If g is autocontinuous from above, then m is absolutely continuous with respect to g iff m is absolutely ϵ —continuous with respect to g.

Proof. It is obvious that if m is absolutely ϵ — continuous with respect to g, then m is absolutely continuous with respect to g.

Suppose now that $E \in \Sigma$, g(E) = 0 implies m(E) = 0. If the theorem would not be true, then there would exist $\epsilon > 0$ and a sequence $\{E_n\}$ from Σ such that

(1)
$$g(E_n) < \frac{1}{n} \text{ and } m(E_n) > \epsilon \quad (n \in N).$$

Since g is autocontinuous from above there exists a subsequence $\{E_{n_k}\}$ of the sequence $\{E_n\}$ such that

(2)
$$g(\bigcup_{i=1}^{k} E_{n_i}) < \frac{1}{s} \text{ for } s = 1, 2, ..., k.$$

By the continuity from above of g we have

(3)
$$\lim_{s\to\infty}g(\bigcup_{i=s}^{\infty}E_{n_i})=g(\bigcap_{s=1}^{\infty}\bigcup_{i=s}^{\infty}E_{n_i}).$$

Since g is continuous from below we obtain by (2)

$$g(\bigcup_{i=s}^{\infty} E_{n_i}) = \lim_{k\to\infty} g(\bigcup_{i=s}^{k} E_{n_i}) \leq \frac{1}{s}.$$

Hence by (3)

$$g(\bigcap_{i=1}^{\infty}\bigcup_{i=1}^{\infty}E_{n_i})=0,$$

which implies

$$m(\bigcap_{i=1}^{\infty}\bigcup_{i=1}^{\infty}E_{n_i})=0.$$

On the other hand, we obtain by the continuity from above and continuity from below of the fuzzy measure m and (1)

$$m(\bigcap_{s=1}^{\infty}\bigcup_{i=s}^{\infty}E_{n_i})=\lim_{s\to\infty}m(\bigcup_{i=s}^{\infty}E_{n_i})=\lim_{s\to\infty}\lim_{k\to\infty}m(\bigcup_{i=s}^{k}E_{n_i})\geq m(E_{n_p})>\epsilon.$$

Contradiction.

Theorem 2. Let m be a finite null-additive fuzzy measure which is continuous from above and continuous from below. Then there exists a set A from Σ such that

(4)
$$m(A) = \sup\{m(E), E \in \Sigma\},\$$

$$m(E \setminus A) = 0$$
 and $m(E) = m(E \cap A)$ $(E \in \Sigma)$.

Proof. We shall choose a sequence $\{A_n\}$ from Σ , which will generate the desired set A. Let $A_0 = \emptyset$. We take A_1 from Σ such that

$$m(A_1) = \sup\{m(E) : E \in \Sigma\}.$$

This is possible by the continuity from below of m. We choose A_2 from Σ such that

$$m(A_2) = \sup\{m(E) : E \subset X \setminus A_1\}.$$

Repeating this procedure, we choose a sequence $\{A_n\}$ such that

(5)
$$m(A_n) = \sup\{m(E) : E \subset X \setminus \bigcup_{i=0}^{n-1} A_i, E \in \Sigma\}$$

holds. We take $A = \bigcup_{i=0}^{\infty} A_i$. Then by the construction (4) holds. The continuity from above of m implies

(6)
$$\lim_{n\to\infty} m(E\setminus \bigcup_{i=0}^n A_i) = m(E\setminus A).$$

By (5) we obtain

$$\limsup_{n\to\infty} m(A_n) \ge \lim_{n\to\infty} m(E\setminus \bigcup_{i=0}^n A_i).$$

Hence by the exhaustivity of m (Proposition 1, [18]) and (6) $m(E \setminus A) = 0$. Hence by the null-additivity of m

$$m(E) = m((E \cap A) \cup (E \setminus A)) = m(E \cap A).$$

4. Lebesgue decomposition

Definition 8. Let m and g be two finite fuzzy measures defined on Σ . The fuzzy measure m is called singular with respect to $g, m \perp g$, if there exists a set A from Σ such that

$$m(E \setminus A) = g(E) = 0 \ (E \in \Sigma).$$

Remark. By Theorem 2. if for null-additive fuzzy measures m and g, which are continuous from above and continuous from below, $m \perp g$ holds, then we have $g \perp m$ too.

Now we have the following two theorems of Lebesgue decomposition type.

Theorem 3. Let m and g be two finite null-additive fuzzy measures on Σ . Then there exist two null-additive fuzzy measures m_c and m_s such that $m_c(E) = m(E \setminus A)$ and $m_s(E) = m(E \cap A)$ for a set $A \in \Sigma$ and m_c is absolutely continuous with respect to g and m_s is singular with respect to g.

Proof. The family

$$\Sigma_1 = \{E \in \Sigma : g(E) = 0\}$$

is a σ - subring of the σ - ring Σ . By Theorem 2. the restriction of m on Σ_1 has a set $A \in \Sigma_1$ such that $m(E \setminus A) = 0$ and $m(E) = m(E \cap A)$ for $E \in \Sigma_1$. We take

$$m_c(E) = m(E \setminus A)$$

and

$$m_s(E)=m(E\cap A)$$

for each $E \in \Sigma$. It is easy to check that m_c and m_s are null-additive fuzzy measures and that m_c is absolutely continuous with respect to g and m_s is singular with respect to g.

Theorem 4. Let m and g be two finite autocontinuous from above fuzzy measures on Σ , which are continuous from above and from below. Then

there exist two autocontinuous from above fuzzy measures m_c and m_s such that $m_c(E) = m(E \setminus A)$ and $m_s(E) = m(E \cap A)$ for a set $A \in \Sigma$ and m_c is absolutely ϵ — continuous with respect to g and m_s is singular with respect to g.

Proof. We take same m_c and m_s as in the proof of Theorem 3. Then by Theorem 1. m_c is absolutely ϵ — continuous.

References

- [1] Aumann, R.J., Shapley, L.S., Values of Non Atomic Games, Princeton Univ. Press, 1974.
- [2] Chateauneuf, A., Uncertainty aversion and risk aversion in models with nonadditive probabilities, in: Risk, Decision and Rationality, B.R.Munier (ed.), D.Reidel Publ. Comp., 1987,615-627.
- [3] Choquet, G., Theory of capacities, Ann. Inst. Fourier (Grenoble), 5 (1953-1954), 131-292.
- [4] Dobrakov, I., On submeasures I, Dissertationes Math., 112, Warszawa, 1974.
- [5] Drewnowski, L., Topological rings of sets, continuous set functions, integration ,I,II,III, Bull.Acad.Polon.Sci.Ser.Math.Astronom.Phys., 20 (1972),269-276, 277-286, 439-445.
- [6] Drewnowski, L., On the continuity of certain non-additive set functions, Colloquium Math. 38 (1978), 243-253.
- [7] Guariglia, E., On Dieudonne's Boundedness Theorem, J.Math.Anal.Appl. 145 (1990), 447-454.
- [8] Dubois, D., Prade, M., A class of fuzzy measures based on triangular norms, Internat. J.Gen. System 8 (1982), 43-61.
- [9] Ichihashi, H., Tanaka, M., Asai, K., Fuzzy Integrals Based on Pseudo-Additions and Multiplications, J. Math. Anal. Appl. 130 (1988), 354-364.

[10] Ling, C.M., Representation of associative functions, Publ. Math. Debrecen 12 (1965), 189-212.

- [11] Murofushi, T., Sugeno, M., Pseudo additive measures and integrals, J.Math.Anal.Appl. 122 (1987),197-222.
- [12] Pap, E., A generalization of a theorem Dieudonne for k-triangular set functions, Acta Sci. Math. 50 (1986),159-167.
- [13] Pap, E., The Vitali-Hahn-Saks theorems for k-triangular set functions, Atti Sem.Mat.Fis.Univ.Modena 26 (1987), 21-32.
- [14] Pap, E., On non-additive set functions, Atti. Sem. Mat. Fis. Univ. Modena 39 (1991), 345-360.
- [15] Pap, E., Lebesgue and Saks decompositions of ⊥ decomposable measures, Fuzzy Sets and Systems 38 (1990), 345-353.
- [16] Pap, E., Extension of the continuous t-conorm decomposable measure, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat.Fak. Ser. Mat. 20,2 (1990),121-130.
- [17] Pap, E., The Lebesgue decomposition theorem for generalized measures, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat.Fak. Ser. Mat. (to appear).
- [18] Pap, E., The range of null-additive fuzzy and non-fuzzy measures, Fuzzy Sets and Systems 65 (1994),105-115.
- [19] Pap, E., The continuity of the null-additive monotone fuzzy measures, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. (to appear).
- [20] Pap, E., Regular null-additive monotone set functions, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. (to appear).
- [21] Schweizer, B., Sklar, A., Associative functions and abstract semigroups, Publ. Math. Debrecen 10 (1963), 69-81.
- [22] Sugeno, M., Theory of fuzzy integrals and its applications, Ph.D.Thesis, Tokyo Institute of Technology, 1974.
- [23] Suzuki, H., On fuzzy measures defined by fuzzy integrals, J.Math.Anal.Appl. 132 (1988), 87-101.

- [24] Suzuki, H., Atoms of fuzzy measures and fuzzy integrals, Fuzzy Sets and Systems 41 (1991),329-342.
- [25] Wang, Z., The Autocontinuity of Set Function and the Fuzzy Integral, J.Math.Anal.Appl. 99 (1984).
- [26] Wang, Z., On the null-additivity and the autocontinuity of a fuzzy measure, Fuzzy Sets and Systems 45 (1992), 223-226.
- [27] Weber, S., \perp decomposable measures and integrals for Archimedean t-conorm, J. Math. Anal. Appl. 101 (1984), 114-138.

REZIME

TEOREMA O LEBESGUEOVOJ DEKOMPOZICIJI ZA NULA-ADITIVNE FAZI MERE

Ispituje se veza izmedju dve vrste apsolutne neprekidnosti nula-aditivne fazi mere m u odnosu na drugu fazi meru g. Dokazuju se dve teoreme tipa Lebesguove dekompozicije za nula-aditivne fazi mere.

Received by the editors May 4, 1992