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Abstract

In this paper the connection between two type of absolute conti-
nuity of a fuzzy measure m with respect to a given null-additive fuzzy
measure ¢ is investigated. Two theorems of Lebesgue decomposition
type for null-additive fuzzy measures are proved.
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1. Introduction

Wang [25] has introduced the notion of the null-additive set function m, i.e.
such that m(B) = 0 implies m(A U B) = m(A) for AN B = §. This prop-
erty of set functions was noticed earlier by L.Drewnowski [6] as a part of
the investigations of special class of set functions, which was introduced by
I.Dobrakov [4].Recently there were published many papers on null-additive
set functions: H.Suzuki [23],[24], E.Pap [18],[19},(20] and Z.Wang [26].It
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tourns out that many important generaly non-additive set functions are in-
cluded in this class of set functions as t-conorm decomposable measures
(E.Pap [14], [15], [16], S. Weber [27]), pseudo-additive measures (H. Ichi-
hashi, M. Tanaka, K. Asai [9], T. Murofushi, M. Sugeno [11]), k-triangular
set functions (E. Pap [12], [13], E. Guariglia [7]), etc.. :
In this paper we shall prove the connection between two type of absolute '
continuity of a fuzzy measure m with respect to a given null-additive fuzzy
measure g. We have proved in papers [15] and [17] Lebesgue decomposition
theorems for decomposable measures. Now we shall prove two theorems of
Lebesgue decomposition type .

2. Null-additive fuzzy measures

Throughout this paper ¥ always denotes a o-ring of subsets of the given set
X.

Definition 1. A set function m, m : & — [0, 0], is called null-additive, if
we have '
m(A U B) = m(A)

whenever A,B€ X, AN B =10, and m(B) = 0.
Definition 2. A fuzzy measure m,m : ¥ — [0,00], is a nonnegative ez-

tended real - valued set function m defined on o - ring ¥ and with the
properties:

(FM,) ECF = m(E) < m(F).

For fuzzy measures we do not need the condition ”A N B = #” in Definition
1. In some papers ([23], [25], [26]) fuzzy measures have two continuity
properties more:

Definition 3. A fuzzy measure m,m : ¥ — [0, 00], is continuous from below
if it satisfies the condition

(FM5) EiCE,C.. yE, €L = m(Uol, En) = lim,_o m(Ey).
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Definition 4. A fuzzy measure m,m : ¥ — [0, oo}, is continuous from above
if it satisfies the condition

(FM4) EiD>E;, ... ,E, €X
and there ezists ng such that m(E,;) < 00 = u((Noey En) = limp—o m(E,).

We have by [18]

Definition 5. A set function m is called autocontinuous from above (resp.
from below) if for every ¢ > 0 and every A € ¥, there ezists § = §(A,€) >0
such that

m(A) —e < m(AUB) < m(A)+e¢ (resp. m(A)—e < m(A\ B) < m(A)+¢)

whenever B € X, AN B =@ (resp. B C A) and m(B) < § holds.

By Proposition 3. from [25] any set function which is autocontinuous
from above (below) is null-additive.

3. Absolute continuity with respect to a fuzzy mea-
sure

Definition 6. Let m and g be two finite fuzzy measures. If E € ¥,g(E) =10
implies m(E) = 0, then we say that m is absolutely continuous with respect
to g.

Definition 7. Let m and g be two finite fuzzy measures. If for every ¢ > 0
there is a § > 0 such that E € X, g(F) < é implies m(E) < ¢, then we say
that m 1is absolutely e— continuous with respect to g.

Theorem 1. Let m and g be two finile fuzzy measures such that they are
continuous from above and continuous from below. If g is autocontinuous
from above, then m is absolutely continuous with respect to g iff m is abso-
lutely e—continuous with respect to g.

Proof. 1t is obvious that if m is absolutely e— continuou$ with respect to g,
then m is absolutely continuous with respect to g.
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Suppose now that E € £, g(E) = 0 implies m(E) = 0. If the theorem would
not be true, then there would exist € > 0 and a sequence {E,} from X such
that

(1) g(E,,)<% and m(E,) > ¢ (nc N).

Since g is autocontinuous from above there exists a subsequence {E,,} of
the sequnce {E,} such that

(2) g(UEn,)<l for s=1,2,...k.

By the continuity from above of ¢ we have
(3) lim g(U E,)= g(ﬂ U E.).
s=11=s

Since g is continuous from below we obtain by (2)

hlv—d

g(U En) = Jim g(U E,) <

Hence by (3)
g(n U En.‘) =0,
s=11=s
which implies

m(n UE’“) =0

s=11t=s

On the other hand, we obtain by the continuity from above and conti-
nuity from below of the fuzzy measure m and (1)

m(ﬁgEm):sli’I&m(gEm)_ ]irgoklim m(gE D> m(E,,) > e

Contradiction.
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Theorem 2. Let m be a finite null-additive fuzzy measure which is contin-
uwous from above and continuous from below. Then there exists a set A from
Y such that

(4) m(A) = sup{m(FE), E € X},

m(E\ A)=0and m(E)=m(EN A) (F € X).

Proof. We shall choose a sequence {A,} from X, which will generate the
desired set A. Let Ag = 0. We take A; from ¥ such that

m(Ay) = sup{m(F): F € I}

This is possible by the continuity from below of m. We choose Ay from X
such that

m(Az) = sup{m(E): £ C X \ A41}.
Repeating this procedure, we choose a sequence {A4,} such that
n—1
(5) m(A,) = sup{m(F): E C X\ U A, Ee X}

=0

holds. We take A = [J;2, A;. Then by the construction (4) holds. The
continuity from above of m implies

(6) lim m(E\UA)_m(E\A)

n—oo
=0

By (5) we obtain
hmsup m(A,) > hm m(E\ U A;)
1=0

Hence by the exhaustivity of m (Proposition 1, [18]) and (6) m(E \A)=0.
Hence by the null-additivity of m

m(E)=m((ENA)U(E\ A)) =m(EnN A).
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4. Lebesgue decomposition

Definition 8. Let m and g be two finite fuzzy measures defined on . The
fuzzy measure m is called singular with respect to g, mLg, if there erists a
set A from % such that

m(E\ A) = g(E)=0 (E € 5).

Remark. By Theorem 2. if for null-additive fuzzy measures m and g, which
are continuous from above and continuous from below, m_Lg holds, then we
have gL m too.

Now we have the following two theorems of Lebesgue decomposition
type.

Theorem 3. Let m and g be two finite null-additive fuzzy measures on
3. Then there exist two null-additive fuzzy measures m, and m, such that
me(E) = m(E \ A) and my(E) = m(E N A) for a set A € ¥ und m, is
absolutely continuous with respect to g and m, is singular with respect to g.

Proof. The family

T, ={E€X:g¢(E)=0}

is a 0— subring of the o— ring ¥. By Theorem 2. the restriction of m
on ¥, has a set A € ¥y such that m(E\ A) = 0 and m(E) = m(E N A) for
FE € X,. We take

me(E) = m(E \ A)
and
ms(E)=m(EnN A)

for each F € X. It is easy to check that m. and m, are null-additive fuzzy
measures and that m, is absolutely continuous with respect to g and m; is
singular with respect to g.

Theorem 4. Let m and g be two finite autocontinuous from above fuzzy
measures on ¥, which are continuous from above and from below. Then
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there exist two autocontinuous from above fuzzy measures m. and mg such
that m.(E) = m(E \ A) and my(E) = m(E N A) for a set A€ L and m, is
absolutely e— continuous with respect to g and m, is singular with respect
to g. :

Proof. We take same m. and m; as in the proof of Theorem 3. Then by
Theorem 1. m, is absolutely ¢~ continuous.
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REZIME

TEOREMA O LEBESGUEOVOJ DEKOMPOZICIJI ZA
NULA-ADITIVNE FAZI MERE

Ispituje se veza izmedju dve vrste apsolutne neprekidnosti nula-aditivne fazi
mere m u odnosu na drugu fazi meru g. Dokazuju se dve teoreme tipa
Lebesguove dekompozicije za nula-aditivne fazi mere.

Received by the editors May 4, 1992



