Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 23, 2 (1993), 39 - 60 Review of Research Faculty of Science Mathematics Series

SOME GENERALIZATIONS OF PROBABILISTIC METRIC SPACES

Antoni Miczko, Bolesław Palczewski

Politechnika Gdánska, Wydział Fizyki Technicznej i Matematyki Stosowanej, Majakowsiego 11/12 80 - 952 Gdansk, Poland

Abstract

The purpose of this paper is to exhibit some m- metrization theorems of m- uniform spaces. Furthermore generalized probabilistic m- spaces are introduced. Some preface remarks on contractions in m- uniform spaces are given.

AMS Mathematics Subject Classification (1991): 54H25 Key words and phrases: probabilistic metric space.

Introduction

The concept of an m- uniform space has been investigated by S. Gähler [5]. For definitions of an m- metric space and a generalized m- metric space see S. Gähler [5], [6] and [7]. Probabilistic metric spaces were introduced by Menger [13]. For the reference to definitions and basic facts of the theory of probabilistic metric spaces see for example [1], [2], [8], [9], [20], [21] and [22].

At first in our paper are formulated definitions and lemmas on an m-uniform structure (see § 1). The topology induced by the m- uniformity is defined in § 2. In § 3 we establish the answer to the following question:

when the topology $\mathcal{T}_{\mathcal{U}}$ of the m- uniform space is completely regular and when $(X,\mathcal{U},\mathcal{T}_{\mathcal{U}})$ is a Hausdorff's space? (see Theorem 3.1).

In papers [14] and [15] examples of fixed - point theorems for selfmappings in some m- uniform spaces are given. Definitions of such "special" m- uniform spaces as for example $m-\mathcal{H}-$ spaces and $m-\mathcal{M}-$ spaces are given in § 4.

The section 5 generalize the well - known definitions of probabilistic metric spaces. Finally $\S 6$ contains the m- metrization theorems of a Hicks and Sharma type (compare [9] and [14]).

1. The m- uniform structure. The definitions and lemmas

Let m be a positive integer. In the sequal M denotes the set $\{0,...,m\}$ and $M_{k_1,...,k_l} = M \setminus \{k_1,...,k_l\}, \ 0 \le k_1 < k_2 < ...k_l \le m, \ 0 < 1 < m.$ In the sequal \prod_M denotes the set of all permutations of M.

Let X be a nonempty set and if $\alpha = (a_i)_{i \in M} \in X^M$, then $p(\alpha)$ denotes the point $(a_{p(i)})_{i \in M}$, where $p \in \prod_M$. For $\alpha \in X^M$, $\alpha_{a_i \to a} = (a_0, ..., a_{i-1}, a, a_{i+1}, ..., a_m)$, $\alpha_{a_i \to a, a_j \to a'} = (a_0, ..., a_{i-1}, a, a_{i+1}, ..., a_{j-1}, a', a_{j+1}, ..., a_m)$, $i \neq j, a, a' \in X, ...$

For $p \in \prod_{M}$ we denote

$$\Delta_p = \{ \alpha \in X^M : p(\alpha) = \alpha \}.$$

The diagonal set $\Delta \subset X^M$ is defined in the following

$$\Delta = \bigcup_{p \in \prod_{M} \setminus \{id_{M}\}} \Delta_{p},$$

where $id_{\mathbf{M}}(j) = j, j \in M$.

 $V \subset X^M$ is said to be symmetric iff V = p(V) for each $p \in \prod_M$.

We define

$$V^{-1} = \bigcup_{p \in \prod_{M} \setminus \{ \mathrm{id}_{M} \}} p(V).$$

Remark 1.1. The following facts are obvious:

a)
$$V = V^{-1}$$
 iff $V = p(V)$ for each $p \in \prod_{M}$

b)
$$V^{-1} = \bigcup_{p \in \prod_M \setminus \{ id_M \}} p^{-1}(V)$$
 for $V \subset X^M$.

For subsets $V_0,...,V_m \subset X^M$ we define the set

$$V_0 \circ V_1 \circ \dots \circ V_m = \circ_{k=0}^m V_k = \{\alpha \in X^M : \exists_{v \in X} \alpha_{a_i \to v} \in V_{m-i}, \ i \in M\}.$$

Following [5], if $V_0 = V_1 = \dots = V_m = V$ then we write $\circ V$ instead of $\circ_{k=0}^m V_k$.

Lemma 1.1.

a) If
$$U_i, V_i \subset X^M, U_i \subset V_i, \ 0 \le i \le m, \ then$$

$$\circ_{k=0}^m U_k \subset \circ_{k=0}^0 V_k,$$

b) If $\Delta \subset V$ then

$$V \circ \underbrace{\Delta \circ \ldots \circ \Delta}_{m} = \Delta \circ V \circ \Delta \circ \ldots \circ \Delta = \ldots = \underbrace{\Delta \circ \ldots \circ \Delta}_{m} \circ V = V.$$

Proof. The property a) follows immediately from the definition of $\circ_{k=0}^m V_k$. For the proof of b) assume, for example, that $\alpha \in V \circ \Delta \circ ... \circ \Delta$. Thus for some $v \in X$ the following relations hold

$$(0) \qquad (v,a_1,...,a_m) \in \Delta$$

$$(1) \qquad (a_0, v, ..., a_m) \in \Delta$$

•••

$$(m-1) \qquad (a_0, a_1, ..., v, a_m) \in \Delta$$

$$(m).$$
 $(a_0, a_1, ..., a_{m-1}, v) \in V$

Suppose that $a_i \neq a_j$ for each $i \neq j$, $i, j \in M$. From (0) - (m-1), $v = a_i$ for some $i \in M$. If $v \neq a_m$, then from (i), $a_i = a_j$ for some $j \in M$. If $v \neq a_m$, then from (i), $a_i = a_j$ for some $j \in M$ and $j \neq i$, $j \neq m$. This contradiction proves that if $a_i \neq a_j$ for each $i \neq j$, $i, j \in M$, then $v = m_m$,

i.e. $\alpha_{a_m \to a_m} = \alpha \in V$. From the above argumentation, $V \circ \Delta \circ ... \circ \Delta \subset V$. If $\alpha = (a_i)_{i \in M} \in V$ then $\alpha_{a_i \to a_m} \in \Delta$ for $i \in \{0, ..., m-1\}$ and $\alpha_{a_m \to a_m} = \alpha \in V$. Thus $\alpha \in V \circ \Delta \circ ... \circ \Delta$ and $V \subset V \circ \Delta \circ ... \circ \Delta$.

Remark 1.2. From Lemma 1.1 we get simple conclusions:

- a) If $\Delta \subset V$ then $V \subset \circ V$,
- b) $\circ \Delta = \Delta$.

We may omitt the proofs of the following Lemmas 1.2 - 1.4:

Lemma 1.2. For each $U, V \subset X^M$,

$$(U\cap V)^{-1}=U^{-1}\cap V^{-1}.$$

Lemma 1.3. For each $V_0, ..., V_m \subset X^M$,

$$\circ_{k=0}^{m} V_{k}^{-1} \subset (\circ_{l=0}^{m} V_{m-1})^{-1}.$$

Lemma 1.4. For each $n \in N$ and $V_0, ..., V_n \subset X^M$,

$$\circ(\bigcap_{i=0}^n V_i)\subset \bigcap_{i=0}^n (\circ V_i).$$

Let \mathcal{U} be a family of subsets U of X^M . Following S. Gähler [5] the family \mathcal{U} is an m- uniform structure if \mathcal{U} is a filter and in addition the conditions hold:

$$egin{array}{lll} U_1 & \Delta \subset U & ext{for each} & U \in \mathcal{U}, \ U_2 & ext{for each} & U \in \mathcal{U} & ext{and} & p \in \prod_M, \ p(U) \in \mathcal{U}, \ U_3 & ext{for each} & U \in \mathcal{U} & ext{there exists} & V \in \mathcal{U} & ext{that} & \circ V \subset U. \end{array}$$

The ordered pair (X, \mathcal{U}) is then called an m- uniform structure and members of \mathcal{U} are called entourages. A subfamily \mathcal{B} of \mathcal{U} is said to be a basis for \mathcal{U} iff every entourage contains some member of \mathcal{B} . It is easy to verify the following fact:

Lemma 1.5. Let \mathcal{B} be a family of subsets of X^M such that

$$(\mathcal{B}.1)$$
 $\Delta \in B$ for each $B \in \mathcal{B}$

- $(\mathcal{B}.2)$ for $B_1, B_2 \in \mathcal{B}$ there exists $B_3 \in \mathcal{B}$, such that $B_3 \subset B_1 \cap B_2$,
- $(\mathcal{B}.3)$ for each $B \in \mathcal{B}$ there exists an $A \in \mathcal{B}$ such that $\circ A \subset B$,
- $(\mathcal{B}.4)$ if $B \in \mathcal{B}$ and $p \in \prod_{M}$, then (B) contains some member of \mathcal{B} .

Then there exists a unique m- uniformity $\mathcal U$ on X for which $\mathcal B$ is a basis. $\mathcal U$ is said to be generated by $\mathcal B$ and may be defined as the family

$$\{U \in 2^{X^M} : \text{ there exists } B \in \mathcal{B}, \text{ such that } B \subset U\}.$$

Lemma 1.6. In an m- uniform structure (X,\mathcal{U}) for each $U \in \mathcal{U}$ there exists a symmetric set $V \in \mathcal{U}$ such that $\circ V \subset \mathcal{U}$.

Proof. If $U \in \mathcal{U}$, then from U_3 there exists $V^* \in \mathcal{U}$, that $\circ V^* \subset U$. By U_2 , for each $p \in \prod_M$ we have $p(V^*) \in \mathcal{U}$. But \mathcal{U} is a filter and therefore

$$V = \bigcap_{p \in \prod_{M} \setminus \{\mathrm{id}_{M}\}} p(V^{*}) \in \mathcal{U}.$$

From Lemma 1.2, the set V is symmetric.

Two basis are said to be equivalent iff they generate the same m- uniform following assertion is obvious:

Lemma 1.7. Two basis \mathcal{B} and \mathcal{B}_1 are equivalent iff each $B \in \mathcal{B}$ contains some $B_1 \in \mathcal{B}_1$ and vice - versa.

Lemma 1.8. If the family S of subsets S of X^M satisfies

- (S.1)) $\Delta \subset S$ for each $S \in S$
- (S.2) for each $S \in S$, there exists $V \in S$ with $\circ V \subset S$,
- (S.3) for each $U \in S$ and $p \in \prod_M$ there exists $V \in S$ thet $V \subset p(U)$,

then S is an m- uniform subbasis.

Proof. Let \mathcal{B} be a family of all finite intersections of members of \mathcal{S} . Obviously, for each $U, V \in \mathcal{B}$, $U \cap V \in \mathcal{B}$. Also, if $B \in \mathcal{B}$, then

$$B = \bigcap_{i=0}^{n} S_i, \quad S_i \in \mathcal{S}, \quad i = 0, ..., n.$$

Thus for each $i \in \{0,...,n\}$, there exists V_i such that $\circ V_i \subset S_i$. We have $A = \bigcap_{i=0}^n V_i \in \mathcal{B}$. Thus

$$\circ A = \circ (\bigcap_{i=0}^{n} V_i) \subset \bigcap_{i=0}^{n} (\circ V_i) \subset \bigcap_{i=0}^{n} S_i = B.$$

From Lemma 1.5, \mathcal{B} is an m- uniform basis.

2. The topology induced by the m- uniformity and remarks on the generalized m- metric space

Let $a, a' \in X$ and $\alpha = (a_i)_{i \in M_{k_1}} \in X^{M_{k_1}}$ for some $(k, 1) \in M^2$, k < 1. Then in the sequal $[a, a', \alpha]$ denote the point $\alpha' \in X^M$, such that $a'_k = a, a'_1 = a'$ and $a'_i = a_i$ for $i \in M_{k_1}$, and

$$U_{\alpha}[a] = \{a' \in X : [a,a',\alpha] \in U\}$$

for any $U \subset X^M$.

Theorem 2.1. Let (X,\mathcal{U}) be an m- uniform structure for some $m \geq 1$ and

$$U[a] = \bigcap_{s=1}^{n} U_{\alpha^{s}}[a]$$

where $\{\alpha^s \in X^{M_{01}} : s = 1,...,n\}, n \in \mathbb{N}, U \in \mathcal{U}, \text{ is an arbitrary finite system of points. Then the family}$

$$\mathcal{U}[a] = \{U[a] : U \in \mathcal{U}\}, \ a \in X,$$

is a neighbourhood system on X.

Proof. We will prove here that the conditions (N.1) - (N.4) of Th. 3.3.2 of [19] (see also [18], p. 49, (A^*)) hold.

(N.1) Every point of X is contained in at least one neighbourhood, and is contained in each of its neighbourhoods. Indeed, if $U \in \mathcal{U}$ and $U[a] = \bigcap_{s=0}^n U_{\alpha^s}[a]$ then from the relations $a \in \Delta[a]$ and $\Delta \subset U$ we get $\Delta[a] \subset U[a]$ and consequently $a \in U[a]$;

- (N.2) The intersection of any two neighbourhoods of a point is a neighbourhood of that point. Indeed, if $U, V \in \mathcal{U}$ then $U \cap V \in \mathcal{U}$. Thus from (N.1), $a \in (U \cap V)[a]$. If $a' \in (U \cap V)[a]$ then $a' \in \bigcap_{s=0}^n (U \cap V)_{\alpha^s}[a]$ i.e. $a' \in (U \cap V)_{\alpha^s}[a]$ for each s = 0, ..., n. Thus $[a, a', \alpha^s] \in U \cap V$ and $[a, a', \alpha^s] \in U$, $[a, a', \alpha^s] \in V$ for each s = 0, ..., n. Therefore $a' \in \bigcap_{s=0}^n U_{\alpha^s}[a]$ and $a' \in \bigcap_{s=0}^n V_{\alpha^s}[a]$ and $(U \cap V)[a] \subset U[a] \cap V[a]$.
- (N.3) Any set which contains a neighbourhood of a point is itself a neighbourhood of that point. Indeed, if U[a] is given and $A \supset U[a]$ then $V = U \cup A^M \in \mathcal{U}$, V[a] = A and thus $A \in \mathcal{U}[a]$.
- (N.4) Given U[a], we will show that there exists V[a] such that $U[a] \in \mathcal{U}[b]$ for each $b \in V[a]$. From Lemma 1.6, there exists $V \in \mathcal{U}$ that $\circ V \subset U$ and $V = V^{-1}$. Let $b \in V[a]$ and

$$V^* = (\bigcap_{i=0}^{m-2} V_{lpha_{oldsymbol{a_i}
ightarrow oldsymbol{a}}} V_{lpha}[b]) \cap V_{lpha}[b], \ lpha \in X^{M_{k1}}.$$

Then $V^* \in \mathcal{U}[b]$ and for $z \in V$ we have the relations $[a, z, \alpha_{a_i \to b}] \in V$, i = 0, ..., m-2, $[a, y, \alpha] \in V$ and $[y, z, \alpha] \in V$. Thus $[a, z, \alpha] \in V$ i.e. $z \in (oV)[a] \subset U[a]$. Therefore $V^* \subset U[a]$. The proof of Theorem 2.1 is complete.

If \mathcal{U} is an m- uniformity on X, then the topology $\mathcal{T}_{\mathcal{U}}$ defined by the neighbourhood system is called the topology induced by \mathcal{U} . An ordered triple $(X, \mathcal{U}, \mathcal{T}_{\mathcal{U}})$ is called an m- uniform space.

The proofs of Lemmas 2.1 - 2.2 follow immediately from Theorem 2.1:

Lemma 2.1. Let $(X, \mathcal{U}, \mathcal{T}_{\mathcal{U}})$ be an m- uniform space. Then $G \subset X$ is open iff for each $a \in G$, there exists an entourage U such that $U[a] \subset G$.

Lemma 2.2. If \mathcal{B} is a basis for \mathcal{U} and $\beta = \{B : \text{for each } a \in B, \text{ there exists } U \in \mathcal{B}, \text{ that } U[a] \subset B\}, \text{ then } \beta \text{ is a basis for } \mathcal{T}_{\mathcal{U}}.$

Theorem 2.2. Let \mathcal{B} be a basis of the m- uniformity \mathcal{U} on X and $A\subset X$. Then

$$A^- = \bigcap_{U \in \mathcal{B}} U^{-1}[A],$$

where $U[A] = \bigcup_{a \in A} U[a]$ for $U \in \mathcal{B}$.

Proof. By Lemma 2.2, $a \in A^-$ iff $U[a] \cap A \neq \emptyset$ for each $U \in \mathcal{B}$ iff there exists $x \in A$ such that $x \in U[a]$ for every $U \in \mathcal{B}$ iff $a \in U^{-1}[x]$ for $x \in A$ and each $U \in \mathcal{B}$ iff $a \in U^{-1}[A]$ for each $U \in \mathcal{B}$.

S.Gähler in [5] gives the following important for our investigations example of the m- uniform space:

Example 2.1. Let (E, \leq) be a partial ordered set and the order relation \leq have additional properties:

- $(\leq .1)$ there exists $O \in E$ that $(O, \epsilon) \in \leq$ for each $\epsilon \in E$,
- $(\leq .2)$ for each $\epsilon, \epsilon' \in E_0 = E \setminus \{0\}$ there exists $\epsilon'' \in E_0$, that $(\epsilon'', \epsilon), (\epsilon'', \epsilon') \in \leq$ (i.e. E_0 is directed set).

For $\epsilon, \epsilon' \in E$ we write $\epsilon \leq \epsilon'$ iff $(\epsilon, \epsilon') \in \leq$, $\epsilon \not\leq \epsilon'$ if $(\epsilon, \epsilon') \not\in \leq$ and $\epsilon < \epsilon'$ if $\epsilon \leq \epsilon'$ and $\epsilon \neq \epsilon'$.

Let X be a nonempty set and m be a positive integer. The function $\sigma: X^M \to E$ is a generalized m- metric over X and E (see S.Gähler [5], p. . 177) if

 M'_{1a} $\sigma(\alpha) = 0$ for each $\alpha \in \Delta$,

 M_2' for each $\epsilon \in E_0$ and each $p \in \prod_M$ there exists $\epsilon' \in E_0$ such that $\sigma(p(\alpha)) \not\geq \epsilon$ whenever $\sigma(\alpha) \not\geq \epsilon$,

 M_3' for each $\epsilon \in E_0$ there exists $\epsilon' \in E_0$ such that $\sigma(\alpha) \not\geq \epsilon$ whenever $\sigma(\alpha_{a_i \to a}) \not\geq \epsilon'$ for each $i \in M, a \in X$.

The order pair (X, σ) is said to be a generalized m- metric space if σ has properties M'_{1a} , M'_{2} and M'_{3} .

Remark 2.1. a) S.Gähler in [5] defines the generalized m- metric space in the case M is non-necessary finite set.

- b) If (X, σ) is a generalized m- metric spaces, then the family $\mathcal{B} = \{U_{\epsilon} \subset X^{M} : \epsilon \in E_{0}\}$, where $U_{\epsilon} = \{\alpha \in X^{M} : \sigma(\alpha) \not\geq \epsilon\}$, $\epsilon \in E_{0}$, is a basis of the m- uniform structure (see [5], Th. 9₂) and if \mathcal{U} is an m- uniform structure on X, then there exists a generalized m- metric σ which generates same m- uniform structure (see [5], Th. 10).
- Remark 2.2. a) Let (X, σ) be a generalized m- metric space with card $M < \infty$. The topology τ_{σ} is defined in the following way: Let σ be a family of all subset of $X^{M_{k1}} \times E_0$. For $\Sigma_i \in \sigma$ also $\bigcup_i \Sigma_i \in \sigma$. $\Sigma \leq' \Sigma'$ iff $(\alpha, \epsilon) \in \Sigma$, $(\alpha, \epsilon') \in \Sigma'$ and $\epsilon \leq \epsilon'$. For $\alpha \in X$ and $\Sigma \in \sigma$ in the sequal $W_{\Sigma}(a)$

denotes (see [5], p. 183) the set $\{a' \in X : \sigma[a,a',\alpha] \not\geq \epsilon \text{ for all } (\alpha,\epsilon) \in \Sigma\}$ and in the sequal $W'_{\Sigma}(a)$ denotes the set $\{a' \in X : \sigma[a,a',\alpha] \not> \epsilon \text{ for all } (\alpha,\epsilon) \in \Sigma\}$. It is easy to verify, that $W_{\Sigma}(a) = \bigcup_{\Sigma' < \Sigma} W'_{\Sigma'}(a)$ for each $a \in X$ (see [5], p. 184) and $\{W_{\Sigma}(a) : \Sigma \in \sigma\}$ is the system of neighbourhood at a, for each $a \in X$ (see [5], Theorems 12 - 17).

b) In particular in a generalized m- metric space $(X,\sigma),\ A^-=\bigcap_{\Sigma\in E}W_\Sigma(A)$ (see [5], Th. 18).

3. Remarks on separation axioms

S.Gähler ([6], Th. 25) proved, that if the generalized m- metric space (X, σ) has the additional property

 $M'_{\mathcal{T}_{\sigma}}$ For each two different points $x,y\in X$ there exists $\alpha\in X^{M_{01}}$ such that $\sigma[x,y,\alpha]\neq 0$, then X is a Hausdorff's space. Moreover, he proved in [6] (see Th. 27), that if the order relation \leq is dense in E_0 and for each $a\in X$ and $\Sigma\in\sigma$ the set $W_{\Sigma}(a)$ is open and $W'_{\Sigma}(a)$ is closed then the generalized m- metric space (X,σ) is a completely regular topological space.

The above Gähler's results on separation axioms for generalized mmetric spaces give us the motivation for the below consideration

Theorem 3.1. Let \mathcal{B} be a family of subsets of X^M of the form $\mathcal{B} = \{U_{\epsilon} \subset X^M : \epsilon \in E_0\}$, where E_0 is a partially ordered set with properties $(\leq .1)$ - $(\leq .2)$ of Example 2.1. If

- (3.1) for each $\epsilon \in E_0$, $\Delta \subset U_{\epsilon}$,
- (3.2) if $\delta, \epsilon \in E_0$, $\delta < \epsilon$, then $U_{\delta} \subset U_{\epsilon}$,
- (3.3) for each $\epsilon \in E_0$ there exists $\epsilon' \in E_0$, that $\circ U_{\epsilon'} \subset U_{\epsilon}$
- (3.4) for each $\epsilon \in E_0$ and each $p \in \prod_M$, $p(U) \in \mathcal{B}$,

then \mathcal{B} is the base of an m- uniform structure \mathcal{U} and $(X,\mathcal{U},\mathcal{T}_{\mathcal{U}})$ is a completely regular topological space. If in addition the property holds

$$\Delta = \bigcap_{\epsilon \in E_0} U_{\epsilon}$$

then $(X, \mathcal{U}, \mathcal{T}_{\mathcal{U}})$ is a Hausdorff's topological space.

Proof. Let us consider the family

$$\mathcal{B}' = \{ U_{\alpha,\epsilon} \subset X^2 : \epsilon \in E_0 \text{ for some } \alpha \in X^{M_{01}} \},$$

where

$$U_{\alpha,\epsilon} = \{(x,y) \in X^2 : [x,y,\alpha] \in U_{\epsilon}, \ \epsilon \in E_0\}.$$

Obviously $\Delta = \{(x,x): x \in X\} \subset U_{\alpha,\epsilon} \subset X^2 \text{ for each } \epsilon \in E_0.$ If $W = V_{\epsilon_0} \circ V_{\epsilon_1} \circ ... \circ V_{\epsilon_m} \text{ and } [x,y,\alpha] \in W \text{ then } [v,y,\alpha] \in V_{\epsilon_m}, \ [x,v,\alpha] \in V_{\epsilon_{m-1}}, \ [x,y,\alpha_{a_i \to v}] \in V_{\epsilon_{m-i-2}}, \ i \in \{0,...,m-2\}, \text{ for some } v \in X.$

In particular we get $(x,y) \in V_{\alpha,\epsilon_m}$ and $(x,v) \in V_{\alpha,\epsilon_{m-1}}$. Therefore

$$(x,y) \in V_{\alpha,\epsilon_{m-1}} \circ V_{\alpha,\epsilon_m}$$

and thus for each $U_{\alpha,\epsilon}$ there exists $V_{\alpha,\delta}$, that $\circ V_{\alpha,\delta} = V_{\alpha,\delta} \circ V_{\alpha,\delta} \subset U_{\alpha,\epsilon} \subset X^2$ (Obviously, $A \circ (B \circ C) = (A \circ B) \circ C$ for each $A, B, C \in \mathcal{B}'$). It is obvious, that if $U_{\alpha,\epsilon}$, $U_{\alpha,\epsilon'} \in \mathcal{B}'$ then there exists $\eta \in E_0$ that $U_{\alpha,\eta} \subset U_{\alpha,\epsilon} \cap U_{\alpha,\epsilon'}$. The family \mathcal{B}' is the basis of the usual uniformity \mathcal{U}' and the topology $\mathcal{T}_{\mathcal{U}'}$ is weaker then $\mathcal{T}_{\mathcal{U}}$. It is well - known (see for example [19], Th. 11.2.2) that $\mathcal{T}_{\mathcal{U}'}$ is completely regular and therefore $\mathcal{T}_{\mathcal{U}}$ is completely regular too.

If (3.5) holds then for each $a \in X$, $\{a\} = \Delta[a] = \bigcap_s \Delta_{\alpha^s}[a] = \bigcap_s (\bigcap_{U \in \mathcal{U}} U)_{\alpha^s}[a] = \bigcap_{U \in \mathcal{U}} U[a] = (\bigcap_u U)[a] \in \mathcal{U}[a]$ and $(X, \mathcal{U}, \mathcal{T}_{\mathcal{U}})$ is a Hausdorff's space.

4. Some examples of m- uniform spaces

In this section of our paper we give definitions and examples of $m - \mathcal{H}$ -spaces and $m - \mathcal{M}$ -spaces. In such spaces we may prove some fixed - point theorems (see [14] and [15]).

Let (J, \leq) be a directed and partially ordered set. Let X be a nonempty set, m be a positive integer and let \mathcal{B} be a family of nonempty subsets of X^M of the form

$$\mathcal{B} = \{U_{j,\epsilon} \subset X^M : j \in J, \ \epsilon \in (0,r)\}, \ r \in R_+^{\sharp}, \ r > 0,$$

 $R_{+}^{\sharp}=R_{+}\cup\{+\infty\},$ such that

(4.1)
$$\Delta = \bigcap_{(j,\epsilon) \in J \times (0,\tau)} U_{j,\epsilon}$$

$$(4.2) U_{i,\delta} \subset U_{j,\epsilon} \text{whenever} (i,\delta) \leq (j,\epsilon)$$

$$((i, \delta) \le (j, \epsilon) \text{ iff } i \le j \text{ and } \delta \le \epsilon),$$

$$(4.3) U_{j,\epsilon} = U_{j,\epsilon}^{-1} for each (j,\epsilon) \in J \times (0,r),$$

- (4.4) for each $j \in J$ and each $\epsilon \in (0,r)$ there exists $\epsilon' \in (0,r)$, that $\circ U_{j,\epsilon'} \subset U_{j,\epsilon}$,
- (4.5) for each $j \in J$ each $\epsilon \in (0,r)$ and each $\alpha \in X^M$, if $\alpha \in U_{j,\epsilon}$ then there exists $\epsilon' < \epsilon$ that $\alpha \in U_{j,\epsilon'}$.

It is easy to verify that \mathcal{B} is the base of an m- uniform structure fulfilling assumptions of Theorem 3.1. We say that an m- uniform structure is an $m-\mathcal{H}-$ structure if it is generated by the base \mathcal{B} fulfilling (4.1) - (4.5).

If (X,\mathcal{U}) is an $m-\mathcal{H}-$ structure generated by \mathcal{B} , then the neighbourhood system $\{U[a]: a \in X, U \in \mathcal{U}\}$ (or equivalently $\{U_{j,\epsilon}[a]: j \in J, \epsilon \in (0,r), a \in X\}$ defines the topology $\mathcal{T}_{\mathcal{U}}$ and the ordered triple $(X,\mathcal{U},\mathcal{T}_{\mathcal{U}})$ is called an $m-\mathcal{H}-$ space.

A filter \mathcal{F} in an $m-\mathcal{H}$ - space $(X,\mathcal{U},\mathcal{T}_{\mathcal{U}})$ is a Cauchy filter iff for each $(\alpha,j,\epsilon)\in X^{M_{01}}\times J\times (0,r),\ F\times F\subset U_{j,\epsilon,\alpha}$ for some $F\in\mathcal{F}$. A $m-\mathcal{H}$ -space $(X,\mathcal{U},\mathcal{T}_{\mathcal{U}})$ is complete iff each Cauchy filter in X converges to a point of X.

Example 4.1. Let (J, \leq) be a directed and partially ordered set and X be a nonempty set. Let $\sigma = (\sigma_j)_{j \in J}$ be a family of functions $\sigma_j : X^M \to R_+$ such that the conditions hold

$$(M_{1a})_{\mathcal{H}} \ \sigma_j(\alpha) = 0 \text{ for each } \alpha \in \Delta, \ j \in J,$$

 $(M_{1b})_{\mathcal{H}}$ for each different $a, a' \in X$ there exists $\alpha \in X^{M_{01}}$ and $j \in J$, that $\sigma_j[a, a', \alpha] > 0$,

$$(M_2)_{\mathcal{H}} \ \sigma_j(\alpha) = \sigma_j(p(\alpha)) \text{ for each } \alpha \in X^m, \ j \in J \text{ and } p \in \prod_M$$

 $(M_3)_{\mathcal{H}}$ for each $j \in J$ and each $\epsilon \in (0,r)$ there exists $\delta > 0$ that for each $\alpha \in X^M$ and $v \in X$ we have $\sigma_j(\alpha) < \epsilon$ whenever $\sigma_j(\alpha_{a_i \to v}) < \delta$.

We say that the pair (X, σ) fulfilling $(M_{1a})_{\mathcal{H}} - (M_3)_{\mathcal{H}}$ (with the topology \mathcal{T}_{σ} defined as usual) is a $\mathcal{H} - m$ - metric space. Obviously, (X, σ) , $\sigma =$

 $(\sigma_j)_{j\in J}$, is a generalized m- metric space in the sense of S. Gähler (see Example 2.1).

A sequence (x_n) in a $\mathcal{H}-m-$ metric space $(X,\sigma),\ \sigma=(\sigma_j)_{j\in J}$, is a Cauchy sequence iff for every $\alpha\in X^{M_{01}}$ and $j\in J,\ \sigma_j[x_n,x_{n+p},\alpha]\to 0$ as $n,p\to\infty$ and $\mathcal{H}-m-$ metric space (X,σ) is sequentially complete iff each Cauchy sequence in X converges to a point of X.

Example 4.2. Let X be a nonempty set, m be a positive integer and let \mathcal{B} be a family of nonempty subsets of X^M of the form $\mathcal{B} = \{U_{\epsilon} \subset X^M : \epsilon \in (0,r)\}, r \in \mathbb{R}, r > 0$, such that

(4.6)
$$\Delta = \bigcap_{0 < \epsilon < r} U_{\epsilon}$$

(4.8)
$$U_{\epsilon} = U_{\epsilon}^{-1} \quad \text{for each} \quad \epsilon \in (0, r),$$

(4.9) for each
$$\epsilon \in (0, r)$$
 there exists $\epsilon' \in (0, r)$, that $\circ U_{\epsilon'} \subset U_{\epsilon}$

(4.10) for each
$$\epsilon \in (0, r)$$
 and each $\alpha \in X^M$, if $\alpha \in U_{\epsilon}$

then there exists $\epsilon' < \epsilon$ that $\alpha \in U_{\epsilon'}$.

We say (see [14]) that an m- uniform structure is an m-H- structure if it is generated by the base \mathcal{B} fulfilling (4.6) - (4.10). Obviously, an m-H- structure is an $m-\mathcal{H}-$ structure too.

Example 4.3. Let X be a nonempty set and $\sigma: X^M \to R_+$ we have properties

$$(M_{1a})_H$$
 $\sigma(\alpha) = 0$ for each $\alpha \in \Delta$,

 $(M_{1b})_H$ for each different $a,a'\in X$ there exists $\alpha\in X^{M_{01}}$ that $\sigma[a,a',\alpha]>0$,

$$(M_2)_H$$
 $\sigma(\alpha) = \sigma(p(\alpha))$ for each $\alpha \in X^M$ and $p \in \prod_M$,

 $(M_3)_H$ for each $\epsilon > 0$ there exists $\delta > 0$ that for each $\alpha \in X^M$ and $v \in X$ we have $\sigma(\alpha) < \epsilon$ whenever $\sigma(\alpha_{a_i \to v}) < \delta, i = 0, ..., m$.

We say (for m = 1, compare [11]) that the pair (X, σ) fulfilling $(M_{1a})_H - (M_3)_H$ (with the topology \mathcal{T}_{σ} defined as usual) is a H - m- metric space.

Remark 4.1. Each $\mathcal{H}-m-$ metric space (H-m- metric space) is an $m-\mathcal{H}-$ space (m-H- space, respectively). For the proof of this assertion let $(X,\sigma),\ \sigma=(\sigma_j)_{j\in J}$, be an $\mathcal{H}-m-$ metric space and $\mathcal{H}_{j,\alpha}(\epsilon)=h(\epsilon-\sigma_j(\alpha)),\ \alpha\in X^M,\ \epsilon\in(0,r),\ r\in R_+,\ \text{where }h(t)=0\ \text{for }t\leq 0\ \text{and }h(t)=r$ for $t>0,\ t\in R$. It is evident that $\mathcal{H}_{j,\alpha}(\cdot):R\to[0,r]$ is a non-decreasing, left continuous function with $\inf\{\mathcal{H}_{j,\epsilon}(t):t\in R\}=0\ \text{and sup}\{\mathcal{H}_{j,\alpha}(t):t\in R\}=r,\ j\in J.$ Let $U_{j,\epsilon}=\{\alpha\in X^M:\mathcal{H}_{j,\alpha}(\epsilon)>r-\epsilon\},\ \epsilon\in(0,r).$ It is easy to see that $\mathcal{B}=\{U_{j,\epsilon}:j\in J,\ \epsilon\in(0,r)\}$ is the base of the m- uniformity \mathcal{U} such that all properties (4.1)- (4.5) are fulfilled for \mathcal{B} and $(X,\mathcal{U},\tau_{\mathcal{U}})$ is an $m-\mathcal{H}-$ space. We also have for $\epsilon\in(0,r),\ \alpha\in U_{j,\epsilon}$ iff $\mathcal{H}_{j,\alpha}(\epsilon)>r-\epsilon$ iff $\sigma_j(\alpha)<\epsilon$. Thus $\tau_{\mathcal{U}}=\tau_{\sigma},\ \sigma=(\sigma_j)_{j\in J}.$

We say that the function $T:[0,r)^M\to [0,r),\ r\in R_+$, is a triangle function on [0,r) if

- $(T.1) \ T(a, a, ..., a) \le a \text{ for each } a \in (0, r),$
- (T.2) $T(\alpha) = T(p(\alpha))$ for each $\alpha \in [0, r)^M$ and $p \in \prod_M$,
- (T.3) $T(\alpha) \leq T(\alpha^1)$ for each $\alpha, \alpha^1 \in [0, r)^M, \alpha \leq \alpha^1$ (i.e. $a_i \leq a_i^1$ for $i \in M$).

Let (J, \leq) be a partially ordered and directed set. Let X be a non - void set, \mathcal{B} be a family of nonempty subset of X^M of the form $\mathcal{B} = \{U_{j,\epsilon} \subset X^M : j \in J, \ \epsilon \in (0,r)\}, \ r \in R_+^{\sharp}$, such that (4.1) - (4.3) and (4.5) are fulfilled and in addition the following conditions hold

(4.11) for each
$$j \in J$$
 and $\epsilon = (\epsilon_0, ..., \epsilon_m) \in (0, r)^M$

the relation holds $o_{k=0}^m U_{j,\epsilon_k} \subset U_{j,T(\epsilon)}$, where T is a triangle function on [0,r).

We say that an m- uniform structure (X,\mathcal{U}) is an $\mathcal{M}-m-$ structure if it is generated by \mathcal{B} fulfilling (4.1) - (4.3) and (4.5) and (4.11). The ordered triple $(X,\mathcal{U},\mathcal{T}_{\mathcal{U}})$ is called then an $m-\mathcal{M}-$ space.

Example 4.4. Let (J, \leq) be as above and m be a positive integer. Let X be a nonempty set and $\sigma = (\sigma_j)_{j \in J}$ be the family of functions $\sigma_j : X^M \to R_+, j \in J$, such that σ has properties

 $(M_{1a})_{\mathcal{H}} - (M_2)_{\mathcal{H}}$ and in addition the following condition holds $(M_3)_{\mathcal{H}}$ for each $j \in J$, each $\alpha \in X^M$ and each $v \in X$,

$$\sigma_j(\alpha) \leq \sum_{i=1}^m \sigma_j(\alpha_{a_i \to v}).$$

The pair (X, σ) is called a space generated by $\sigma = (\sigma_i)_{i \in J}$.

Remark 4.2. Each generalized m- metric space of Example 4.4 is a $\mathcal{M}-m-$ space. Indeed, if $\mathcal{B}=\{U_{j,\epsilon}:j\in J,\ \epsilon\in(0,r)\}$, where $U_{j,\epsilon}=\{\alpha\in X^M:\sigma_j(\alpha)<\epsilon\},\ j\in J,\ \epsilon\in(0,r)$, then \mathcal{B} is a basis of some m- uniformity \mathcal{U} . All properties (4.1) - (4.3), (4.5) and (4.11) are fulfilled for the family \mathcal{B} with $T(\alpha)=\min\{a_i:i\in M\},\ \alpha\in[0,r]^M$.

Let X be a non - void set and let \mathcal{B} be a family of nonempty subsets of X^M of the form $\mathcal{B} = \{U_{\epsilon} \subset X^M : \epsilon \in (0,r)\}$ such that (4.6) - (4.8) and (4.10) are fulfilled and in addition the following condition holds

(4.12) for each $\epsilon = (\epsilon_0, ..., \epsilon_m) \in (0, r)^M$, $o_{k=0}^m U_{\epsilon_k} \subset U_{T(\epsilon)}$, where T is a triangle function on [0, r].

We say that an m- uniform structure (X,\mathcal{U}) is an m-M- structure if it is generated by \mathcal{B} fulfilling (4.6) - (4.8), (4.10) and (4.12). The ordered triple $(X,\mathcal{U},\mathcal{T}_{\mathcal{U}})$ is called then a m-M- space (for m=1, see [14]).

Example 4.5. Following S.Gähler [3], let X be a nonempty set and m be a positive integer. The function $\sigma: X^M \to R_+$ is an m- metric (see [3], [4] and [5]) if σ has properties $(M_{1a})_H - (M_2)_H$ and

 $(M_3)_H$ for each $\alpha \in X^M$ and each $v \in X$,

$$\sigma(\alpha) \leq \sum_{i=0}^{m} \sigma(\alpha_{\alpha_i \to \nu}).$$

The pair (X, σ) is called then an m- metric space. It is easy to verify that an m- metric space is an m-M- space.

5. The definitions of m- probabilistic spaces

In this paragraph we generalize the will - known definitions of PPM - spaces and PM - space (see for example [2], [8], [9], [13], [14], [17] and [20]).

A function $f: R \to [0,1]$ is a distribution function if it is a non-decreasing, left continuous function with $\inf f = 0$ and $\sup f = 1$. The set of all distribution functions we denote D (see also Schweizer and Sklar [20]).

Let $F: X^M \times R \to D$, $F_{\alpha}(t) =_{\text{not}} F(\alpha, t)$, $t \in R$, $\alpha \in X^M$. We say that F is a pre-probabilistic m-metric structure (PPM - m-structure) on X if the following conditions hold

(F.1)
$$F_{\alpha}(0) = 0$$
 for all $\alpha \in X^M$

(F.2)
$$F_{\alpha}(\epsilon) = 1$$
 for all $\epsilon > 0$ iff $\alpha \in \Delta$.

In this case the pair (X, F) is called a preprobabilistic m- metric space (PPM-m- space).

The PPM-m- structure F on X is a probabilistic m- metric structure (PM-m- structure) and the pair (X,F) is a probabilistic m- metric space (PM-m- space) if F is symmetric, i.e. the following additional condition holds

(F.3)
$$F_{\alpha} = F_{p(\alpha)}$$
 for each $\alpha \in X^M$ and $p \in \prod_M$.

A PM - m space (X, F) is an H - m space (for m = 1 compare Hicks and Sharma [9]) that satisfies the following condition

 $(F.4)_H$ for each $\epsilon > 0$ there exists $\delta > 0$ that $F_{\alpha}(\epsilon) > 1 - \epsilon$ whenever $F_{\alpha_{\alpha_i \to v}}(\delta) > 1 - \delta$, for each $i \in M$ and $v \in X$.

Remark 5.1.

- a) Hicks and Sharma prove in [9] that a topological space (X, \mathcal{T}) is metrizable iff there exists an H-1- structure on X which induces \mathcal{T} .
- b) It is evident that if (X, F) is a H m space then the family $\mathcal{B} = \{U_{\epsilon} \subset X^{M} : 0 < \epsilon < 1\}$, where $U_{\epsilon} = \{\alpha \in X^{m} : F_{\alpha}(\epsilon) > 1 \epsilon\}$, $0 < \epsilon < 1$, is the base of a m H structure \mathcal{U} .
 - c) A.Menger space is a PM-1- space that satisfies the condition

(5.1)
$$F_{(x,z)}(\epsilon+\delta) \ge T(F_{(x,y)}(\epsilon), F_{(y,z)}(\delta)),$$

where T is a t- norm i.e. $T:[0,1]^2 \rightarrow [0,1]$ and

$$(5.2) T(0,0) = 0, T(x,1) = x$$

$$(5.3) T(x,y) = T(y,x)$$

(5.4)
$$T(x,y) \le T(x^1,y^1)$$
 if $x \le x^1, y \le y^1$,

(5.5)
$$T(T(x,y),z) = T(x,T(y,z)), \ x,y,z \in [0,1].$$

d) The fixed - point theory in PM-1 - spaces was begin from 1972 with the paper [21] of Sehgal and Bharuda - Reid. They say in [21] that a mapping f of PM-1 - space (X,F) into itself is a contraction if there exists $k \in [0,1)$, such that for each $x,y \in X$, $F_{(fx,fy)}(kt) \geq F_{(x,y)}(t)$ for all t>0. Sehgal and Bharuda - Reid proved that if (X,F) is a complete Menger space with $T(x,y) = \min\{x,y\}$, $x,y \in [0,1]$, and $f:X \to X$ is a contraction, then there exists a unique fixed point \bar{x} of f in X and $\lim_{x \to X} f$ or each $x \in X$. Many authors generalize the result from [21] for selfmappings in a sequentially complete Menger space in the case if m=1 (see for example references of [15]). The associative law (5.5) of the definition of a Menger space is very strong and we can not translate (5.5) from the case m=1 into the case $m \geq 1$. Therefore we will consider the generalization of a Menger space in which the condition (5.5) is replaced by less restrictive $(F.4)_M$.

We say that a PM-m- space (X,F) is a Menger m- space if it has properties (F.1) - (F.3) and $(F.4)_M$ for $\epsilon=(\epsilon_0,...,\epsilon_m)\in(0,1)^M$, $F_\alpha(T(\epsilon))>1-T(\epsilon)$, whenever $F_{\alpha_{a_i\to v}}(\epsilon_i)>1-\epsilon_i$ for each $i\in M,\ \alpha\in X^M,\ v\in X$, where T is a triangle function fulfilling (T.1) - (T.3).

Following Nguyen Xuan Tan [17] let D_1 be the set of all non - decreasing left - continuous functions from R^{\sharp} into R_+ , where $R^{\sharp} = R \cup \{-\infty\} \cup \{+\infty\}$.

We say that (X, F) is a generalized probabilistic m- metric space, shortly GPM-m- space if $F:X^M\times R^{\sharp}\to D_1$ and the following conditions are fulfilled:

- (5.6) $F_{\alpha}(0) = 0$ for all $\alpha \in X^{M}$,
- (5.7) if $\alpha \in \Delta$ then $F_{\alpha}(\epsilon) = 1$ for all $\epsilon > 0$,
- (5.8) $F_{\alpha}(\epsilon) = F_{p(\alpha)}(\epsilon)$ for each $p \in \prod_{M}$ and $\epsilon > 0$,
- $(5.9) \ F_{\alpha}(\min\{\epsilon_0,...,\epsilon_m\}) \ge \min\{F_{\alpha_{a_i \to v}}(\epsilon_0),...,F_{\alpha_{a_m \to v}}(\epsilon_m)\}$

for each $\epsilon = (\epsilon_0, ..., \epsilon_m) \in (0, \infty)^M$, $\alpha \in X^M$ and $v \in X$.

Remark 5.2.

a) It is easy to see that $\sup\{F_{\alpha}(t):t\in R_{+}^{\sharp}\}=\sup\{F_{\alpha}(t):t>0\}\leq 1$ for each $\alpha\in X^{M}$. Indeed, if $\alpha\in\Delta$, then from (5.7), $F_{\alpha}(t)=1$ for each t>0. Suppose that $\alpha\not\in\Delta$. Then $\alpha_{a_{0}\to a_{1}}\in\Delta$ and obviously $F_{\alpha_{a_{0}\to a_{1}}}(t)=1$ for any t>0.

Thus from (5.9) we get

$$\begin{split} 1 &= F_{\alpha_{a_0 \to a_1}}(t) = F_{\alpha_{a_0 \to a_1}}(\min\{t,...,t\}) \leq \\ &\min\{F_{\alpha_{a_0 \to a_0}}(t), \ F_{\alpha_{a_1 \to a_0}}(t),...,F_{\alpha_{a_m \to a_0}}(t)\} = \\ &Min\{F_{\alpha}(t),1,...,1\} = F_{\alpha}(t). \end{split}$$

b) A GPM-1 space was introduced by Nguyen Xuan Tan [17]. In fact, Nguyen Xuan Tan assumes that a triangle function T (i.e. $T(x,y) = \min\{x,y\}, \ x,y \in (0,\infty)$) fulfils an associative law and he defacto use this property of T in his argumentations.

Let D_2 be the set of all non-decreasing left-continuous functions from R^{\sharp} into [0,1]. We say that (X,F) is a generalized probabilistic $m-\mathcal{H}-$ space if (5.6)-(5.8) and $(F.4)_H$ are fulfilled for $F:X^M\times R^{\sharp}\to D_2$. The pair $(X,F),\ F:X^M\times R^{\sharp}\to D_2$ is said to be a generalized probabilistic $m-\mathcal{M}-$ space if (5.6)-(5.8) and $(F.4)_M$ are fulfilled.

6. Some m- metrization theorem

Theorems of this section are generalizations of results of Hicks and Sharma, [8] and [9] (see also [14]).

Theorem 6.1. Let $(X, \mathcal{U}, \mathcal{T}_{\mathcal{U}})$ be an $m-\mathcal{H}-$ space with the base $\mathcal{B} = \{U_{j,\epsilon} \subset X^M : j \in J, \ \epsilon \in (0,r)\}, \ r \in R_+^{\sharp}, \ of \ its \ m- \ uniformity \ \mathcal{U}.$ Then the family of functions $\sigma = (\sigma_j)_{j \in J}, \ \sigma_j : X^M \to R_+^{\sharp},$

$$\sigma_{j}(\alpha) = \begin{cases} \sup\{\epsilon \in (0,r) : \alpha \in U_{j,\epsilon} & \text{if } \alpha \in \bigcup_{0 < \epsilon < r} U'_{j,\epsilon} \\ 0, & \text{if } \alpha \in \bigcap_{0 < \epsilon < r} U_{j,\epsilon} \end{cases}$$

 $\alpha \in X^M$, where $U'_{j,\epsilon} = X^M \setminus U_{j,\epsilon}$, $\epsilon \in (0,r)$, has properties:

- (6.1) the family $\sigma = (\sigma_j)_{j \in J}$ is a $\mathcal{H} m metric$ on X,
- (6.2) $T_{\sigma} = T_{\mathcal{U}}$
- (6.3) (X, σ) is sequentially complete iff $(X, \mathcal{U}, \mathcal{T}_{\mathcal{U}})$ is complete.

Proof. At first (compare [9] and [11]) we prove the following property of σ :

(6.1)
$$\alpha \in U_{j,\epsilon}$$
 iff $\sigma_j(\alpha) < \epsilon$.

Indeed, if $\alpha \in U_{j,\epsilon}$ then from (4.5), $\alpha \in U_{j,\epsilon'}$ for some $\epsilon' < \epsilon$ iff $\alpha \notin U'_{j,\epsilon'}$. Thus for $\sigma_j(\alpha) > 0$, $\sigma_j(\alpha) = \sup\{\delta \in (0,r) : \alpha \notin U_{j,\delta}\} \le \epsilon' < \epsilon$. If $0 < \sigma_j(\alpha) < \epsilon$ then $\alpha \in \bigcup_{0 < \delta < r} U'_{j,\delta}$ and $\delta' = \sup\{\delta \in (0,r) : \alpha \in U'_{\delta}\} < \epsilon$. Thus there exists $\eta > 0$ that $\delta' + \eta < \epsilon$ and $\alpha \notin U'_{j,\delta'+\eta}$ iff $\alpha \in U_{j,\delta'+\eta} \subset U_{j,\epsilon}$.

Now, from (4.1) and (4.3), $\sigma_j(\alpha) = 0$ for each $\alpha \in \Delta$ and if a and a' are different points of X, then there exists $\alpha \in X^{M_{01}}$ that $\sigma_j[a,a',\alpha] > 0$ for some $j \in J$. From (4.3), $\sigma_j(\alpha) = \sigma_j(p(\alpha))$ for each $p \in \prod_M$. For the proof of the property $(M_3)_{\mathcal{H}}$ assume that $\epsilon \in (0,r)$ and $j \in J$. From (4.4), there exists $\delta \in (0,r)$, that $\circ U_{j,\delta} \subset U_{j,\epsilon}$ and thus if $\alpha_{a_i \to v} \in U_{j,\delta}$, $i \in M$, then $\alpha \in U_{j,\epsilon}$. From (6.4), we get $\sigma_j(\alpha) < \epsilon$ whenever $\sigma_j(\alpha_{a_i \to v}) < \delta$, $i \in M$. Thus for each $\epsilon \in (0,r)$ there exists $\delta \in (0,r)$, that $\sigma_j(\alpha) < \epsilon$ whenever $\sigma_j(\alpha_{a_i \to v}) < \delta$, $i \in M$, $v \in X$, $\alpha \in X^M$. The assertions (6.2) - (6.3) follow immediately from (6.4).

Remark 6.1. Let $(X, \mathcal{U}, \mathcal{T}_{\mathcal{U}})$ be an m - H space with the base $\mathcal{B} = \{U_{\epsilon} : 0 < \epsilon < r\}$ of its m uniformity \mathcal{U} . Then the function $\sigma : X^{M} \to R_{+}$,

$$\sigma(\alpha) = \begin{cases} \sup\{\epsilon \in (0, r) : \alpha \in U'_{\epsilon}\} & \text{if } \alpha \in \bigcup_{0 < \epsilon < r} U'_{\epsilon} \\ 0, & \text{if } \alpha \in \bigcap_{0 < \epsilon < r} U_{\epsilon}, \end{cases}$$

 $\alpha \in X^M$, where $U'_{\epsilon} = X^M \setminus U_{\epsilon}$, $\epsilon \in (0, r)$, has properties:

(6.5) the function σ is an H-m- metric on X,

$$(6.6) \mathcal{T}_{\sigma} = \mathcal{T}_{\mathcal{U}}$$

(6.7) (X, σ) is sequentially complete iff $(X, \mathcal{U}, \mathcal{T}_{\mathcal{U}})$ is complete.

The above assertion follows immediately from Theorem 6.1 (for m = 1, see [14]).

Example 6.1. Let (X, F) be a probabilistic $m - \mathcal{H}$ - space. Let $\{U_{j,\epsilon} = \alpha \in X^M : F_{\alpha}(j) > 1 - \epsilon\}$, $j \in \mathbb{R}^{\sharp}$, $\epsilon \in (0,1)$. Then the family $\mathcal{B} = \{U_{j,\epsilon} : j \in \mathbb{R}^{\sharp}_+, \ \epsilon \in (0,1)\}$ is the base of an $m - \mathcal{H}$ - structure \mathcal{U} . From Theorem 6.1 there exists the family $\sigma = (\sigma_j)_{j \in \mathbb{R}_+}$ such that (6.1) - (6.3) are fulfilled.

Remark 6.2. Let us consider two "contraction conditions" with a contraction constant $k \in (0,1)$ for a selfmapping f in a probabilistic $\mathcal{H}-m-$ space (X,F):

(6.8) for each
$$t \in R$$
, $\epsilon \in (0,1)$ and $\alpha \in X^M$

$$F_{\alpha_{\alpha\alpha} \to f_{\alpha\alpha}, \alpha_1 \to f_{\alpha_1}}(t) > 1 - k\epsilon \text{ whenever } F_{\alpha}(t) > 1 - \epsilon,$$

(6.9) for each
$$t \in R$$
, $\epsilon \in (0,1)$ and $\alpha \in X^M$, $F_{\alpha_{a_0 \to fa_0, a_1 \to fa_1}}(kt) > 1 - k\epsilon$ whenever $F_{\alpha}(t) > 1 - \epsilon$.

It is easy to see that conditions (6.8) - (6.9) are equivalent to the following conditions:

(6.10) if
$$\alpha \in U_{t,\epsilon}$$
 then $\alpha_{a_0 \to fa_0, a_1 \to fa_1} \in U_{t,k\epsilon}$ for each $t \in R_+, \epsilon \in (0,1)$,

(6.11) if
$$\alpha \in U_{t,\epsilon}$$
 then $\alpha_{a_0 \to fa_0, a_1 \to fa_1} \in U_{kt,k\epsilon}$ for each $t \in R_+, \epsilon \in (0,1)$, respectively.

From Theorem 6.1 the conditions (6.10) - (6.11) imply the following contraction conditions:

$$(6.12) \quad \sigma_t(\alpha_{a_0 \to fa_0, a_1 \to fa_1}) \le k\sigma_t(\alpha), \ t \in R_+,$$

(6.13)
$$\sigma_{kt}(\alpha_{a_0 \to fa_0, a_1 \to a_1}) \leq k\sigma_t(\alpha), t \in R_+$$
, respectively.

But it is evident that (6.13) implies (6.12) because $\sigma_{t_1} \leq \sigma_{t_2}$ if $t_1 \geq t_2$ for each $t_1, t_2 \in R_+$.

Example 6.2. Let (X, F) be a probabilistic H-m- space. Let $U_{\epsilon} = \{\alpha \in X^{M} : F_{\alpha}(\epsilon) > 1-\epsilon\}, \ \epsilon \in (0,1)$. Then the family $\mathcal{B} = \{U_{\epsilon} \subset X^{M} : \epsilon \in (0,1)\}$ is the base of an H-m- structure \mathcal{U} . On the base of Remark 6.1 (see also [14]) there exists $\sigma: X^{M} \to R_{+}$, such that $(6.5) \cdot (6.7)$ are fulfilled.

Remark 6.3. Let f be a selfmapping in a probabilistic H - m - space (X, F). Suppose that the condition holds

(6.14) for each
$$\epsilon \in (0,1)$$
 and $\alpha \in X^M$,

$$F_{\alpha_{a_0 \to fa_0, a_1 \to fa_1}}(k\epsilon) > 1 - k\epsilon$$
 whenever $F_{\alpha}(\epsilon) > 1 - \epsilon$, where $k \in (0, 1)$.

The condition (6.14) is equivalent to the following

(6.15)
$$\alpha_{a_0 \to f a_0, a_1 \to f a_1} \in U_{k\epsilon}$$
 whenever $\alpha \in U_{\epsilon}$ for each $\epsilon \in (0, 1), \alpha \in X^M$,

and this condition implies the contraction condition:

$$(6.16)\ \sigma(\alpha_{a_0\to fa_0,a_1\to fa_1})\leq k\sigma(\alpha)$$

for each $\alpha \in X^M$, where σ is defined in Remark 6.1.

Theorem 6.2. Let $(X, \mathcal{U}, \mathcal{T}_{\mathcal{U}})$ be an $\mathcal{M}-m-$ space with the base $\mathcal{B} = \{U_{j,\epsilon} : j \in J, \epsilon \in (0,1)\}$ of its $\mathcal{M}-m-$ structure \mathcal{U} and $\sigma_j : X^M \to R_+^{\sharp}, j \in J$, are defined as in Theorem 6.1. Then

(6.17) (X,σ) is a space generated by the family $\sigma=(\sigma_j)_{J\in J}$ (as in Example 4.4),

(6.18)
$$T_{\mathcal{U}} = T_{\sigma}$$

$$(6.19)$$
 as (6.16) .

Proof. It is enough to prove "the triangle inequality" for $\sigma = (\sigma_j)_{j \in J}$. Let $\sigma_j(\alpha_{a_i \to v}) = \epsilon_i, \ \epsilon_i \in (0, r), \ i \in M$. Then $\alpha_{a_i \to v} \in U_{\epsilon'_i}$ for each $\epsilon'_i > \epsilon_i, \ i \in M$. Thus from (4.11),

$$\alpha \in U_{T(\epsilon_0, \dots; \epsilon_m)} \subset U_{T(\lambda, \dots, \lambda)} \subset U_{\lambda}, \ \lambda = \max\{\epsilon'_i : i \in M\}.$$

If for example $\lambda = \epsilon'_0$, then $\sigma(\alpha) < \epsilon'_0 = \epsilon_0 + \delta = \sigma_j(\alpha_{a_i \to v}) + \delta$ and since δ is an arbitrary number of (0, r), then

$$\sigma_j(\alpha) \le \sigma_j(\alpha_{a_i \to v}) \le \sum_{i=0}^m \sigma_j(\alpha_{a_i \to v}).$$

Remark 6.4. Let $(X, \mathcal{U}, \mathcal{T}_{\mathcal{U}})$ be an m-M- space with the base $\mathcal{B}=\{U_{\epsilon}: 0<\epsilon< r\},\ r\in R_{+},\ \text{of its }m-$ uniformity $\mathcal{U}.$ Then the function $\sigma: X^{M} \to R_{+}$ defined an in Remark 6.1 has properties

(6.20) σ is an m- metric on X

(6.21)
$$T_{\mathcal{U}} = T_{\sigma}$$

$$(6.22)$$
 as (6.19) .

The above assertion follows immediately from Theorem 6.2 (for m = 1, see [11]).

Remark 6.5. The results of this paragraph give a possibility to prove some fixed - point theorems in PM - m - spaces or in GPM - m - spaces for the large class of contraction mappings. For this purpose it is enough to use fixed - point results for contractions in m - metric spaces or in genralized m - metric spaces, respectively.

References

[1] Cain G.L., Kasriel Jr.R.H., Fixed and Periodic Points of Local Vontraction Mappings on Probabilistic Metric Spaces, Math. System Theory 9(4), (1976), 289-297.

- [2] Florescu S., Probabilistic pseudometrics, Math. Revue DÁnal. Numer. et de Theorie de L'Approx. 24(47), 1-2, (1982), 21-29.
- [3] Cähler S., 2 metrische Räume und ihre topologische Structur, Math. Nachr. 26,(1963), 115-148.
- [4] Über die Uniformisierbareit 2 metrischer Räume, Math. Nachr. 28,(1965), 235-244.
- [5] Cähler S., Untersuchungen über verallgemeinerte m metrische Räume I, Math. Nachr. 40,(1969), 165-189.
- [6] Cähler S., Untersuchungen über verallgemeinerte m metrische Räume II, Math. Nachr. 40,(1969), 229-264.
- [7] Cähler S., Unersuchungen über verallgemeinerte m metrische Räume III, Math. nachr. 41(1969), 23-36.
- [8] Hicks T.L., Fixed Point Theory in Probabilistic Metric Spaces, Univ. u Novom Sadu Zb. Rad. Prirod. - Mat. Fak. Ser. Mat., 14(1984), 35-42.
- [9] Hicks T.L., Sharma P.L., Probabilistic metric structures: topological classification, Univ. u Novom Sadu Zb. Rad. Prirod. - Mat. Fak. Ser. Mat., 14(1984), 35-42.
- [10] Kelley J.L., General Topology, Van Nostrand, Princeton, New Jersey, 1955.
- [11] Mamuzić Z., Introduction to general topology, Groningen, 1963.
- [12] Menger K., Untersuchungen über allgemeine Metrik, Math. Ann. 100(1928), 75-163.
- [13] Menger, K., Statistical metrics, Proc. Nat. Acad. Sci U.S.A. 10(1960), 313-334.
- [14] Miczko A., Converse of generalized Banach contraction principles in some uniform spaces, Preprints, University of Gdańsk (to appear).
- [15] Miczko A., Palczewski B., Contractions in probabilistic m metric spaces, Rev. of Research, Faculty of Science, Math. Series, (in review).
- [16] Murdeshwar M.C., Naimpally S.A., Quasi Uniform Topological Spaces, Preprints of Research Papers 4(2), Noordhoff, 1966.

- [17] Nguyen Xuan Tan, Generalized Probabilistic Metric Spaces and Fixed Point Theorem, Math. Nachr. 129(1986). 205-218.
- [18] Nöbeling G., Grundlagen der Analytischen Topologie, Springer Verlag, Heidelberg, 1954.
- [19] Pervin W.J., Fundations of general topology, Acad. Press, New York, 1964.
- [20] Schweizer B., Sklar A., Probabilistic Metric Spaces, North Holland, New York, 1983.
- [21] Sehgal V.M., Bharuda Reid A.T., Fixed points of contraction mappings on probabilistic metric spaces, Math. System Theory 6(1972), 97-102.
- [22] Sherwood H., Complete probabilistic metric spaces, Z. Wahrsch. Verw. Geb. 20(1971), 117-128.

REZIME

NEKA UOPŠTENJA VEROVATNOSNIH METRIČKIH PROSTORA

U ovom radu su ispitivana neka m - metrička tvrdjenja na m - uniformnim prostorima. Uvedeni su uopšteni m - verovatnosni prostori i date neke napomene o kontrakciji u m - uniformnim prostorima.

Received by the editors December 24, 1989