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Abstract

The purpose of this paper is to exhibit some m— metrization the-
orems of m— uniform spaces. Furthermore generalized probabilistic
m— spaces are introduced. Some preface remarks on contractions in
m— uniform spaces are given.
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Introduction

The concept of an m— uniform space has been investigated by S. Gahler [5].
For definitions of an m— metric space and a generalized m— metric space
see S. Gahler [5], [6] and [7]. Probabilistic metric spaces were introduced by
Menger [13]. For the reference to definitions and basic facts of the theory
of probabilistic metric spaces see for example (1], [2], [8], [9], [20], [21] and
(22).

At first in our paper are formulated definitions and lemmas on an m—
uniform structure (see § 1). The topology induced by the m— uniformity
is defined in § 2. In § 3 we establish the answer to the following question:
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when the topology 74 of the m— uniform space is completely regular and
when (X,U,7y) is a Hausdorft’s space ? (see Theorem 3.1).

In papers [14] and [15] examples of fixed - point theorems for selfmap-
pings in some m— uniform spaces are given. Definitions of such ”special”
m— uniform spaces as for example m — H— spaces and m — M — spaces are
given in § 4.

The section 5 generalize the well - known definitions of probabilistic
metric spaces. Finally §6 contains the m— metrization theorems of a Hicks
and Sharma type (compare [9] and [14]).

1. The m— uniform structure. The definitions and
lemmas

Let m be a positive integer. In the sequal M denotes the set {0,...,m} and
Mg, i, = M\ A{ki,...ki}, 0<k <ks<.ky<m, 0 <1< m.In the
sequal []5s denotes the set of all permutations of M.

Let X be a nonempty set and if @ = (a;)iem € XM, then p(a) denotes
the point (a,(;))iem, where p € [[pr- For a € XMy a = (a0, -, ai_y,

— . . 3 ! .
a,a;+1, -~~7am)7 aa,—»a,aj—m.’ - (a07 ey Q15 By B 15 -0y Q51,05 Ajt1, ooy am),
. . ’
1 #£ 7, a,a € X,...

For p € T[]y we denote

A, ={a€ XM :pla) = a}.

The diagonal set A C XM is defined in the following
A= U Ap,
p€[,, Mida}
where idp(j) =7, 7 € M.
V C XM is said to be symmetric iff V = p(V) for each p € [y -

We define
vl= U p(V).
pE] o \idm}

Remark 1.1. The following facts are obvious:
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a) V=V"1iff V =p(V) for each p € [[s,

by V-l = Upe[],, \fidpy P (V) for V.C XM

For subsets Vj, ..., V;, C XM we define the set

VooVio..oVy =ofoVi={ac XM : 3 cxay .y € Vi_y, i € M}
Following [5],if Vo = V) = ... = Vi, = V then we write oV instead of o, V.
Lemma 1.1.

a) IfU;,V; C XM U, CVi, 0<i<m, then

0
O’ZLZOUk C ok:OVk"

b) If A CV then

VoAo.oA=AoVoAo..oA=...=Ao..oAoV =V,
S——— S—_——

m m

Proof. The property a) follows immediately from the definition of o V.
For the proof of b) assume, for example, that o € Vo Ao ...o A. Thus for
some v € X the following relations hold

(0) (v,a1,.yam) €A
(1) (a0, v,...,ty,) € A
(m—-1) (ag, a1,y v,am) € A
(m). (ag, @1y -y Gm-1,v) EV

Suppose that a; # a; for each 7 # j, 4,5 € M. From (0) - (m-1), v = a;
for some ¢ € M. If v # ap,, then from (i), a; = a; for some j € M. If
v # am, then from (i), a; = a; for some j € M and j # i, 7 # m. This
contradiction proves that if a; # a; for each 1 # 7, 2,7 € M, then v = m,,,
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i.e. ag,, q, = a € V. From the above argumentation, VoAo..0oA C V.
If a = (ai)iem € V then a4, € Afori€ {0,..,m ~ 1} and aq,,_,a,, =
acV. Thusae€VoAo..oAandV CVoAo.o0A.

Remark 1.2. From Lemma 1.1 we get simple conclusions:
a)If ACV then V C oV,
b) oA = A.
We may omitt the proofs of the following Lemmas 1.2 - 1.4:

Lemma 1.2. For each U,V C XM,
Unv)yl=vu"'nv-l
Lemma 1.3. For each Vy,...,V,, ¢ XM,
°2"=0V{1 C (Oﬁovm—l)_l-

Lemma 1.4. For eachn € N and Vj,...,V,, C XM,

o(ﬂ Vi) C ﬂ(oV)

1=0 =0

Let U be a family of subsets U of XM. Following S. Gahler [5] the family
U 1s an m— uniform structure if I/ is a filter and in addition the conditions
hold:

U, ACU foreach U €U,
U, foreach U €U and p€ [[y, p(U) €U,
Us for each U €U thereexists V €Y that oV C U.

The ordered pair (X,U) is then called an m— uniform structure and mem-
bers of U are called entourages. A subfamily B of U is said to be a basis
for U iff every entourage contains some member of B. It is ea.sy to verify the
following fact:

Lemma 1.5. Let B be a family of subsets of XM such that
(B1) A€ B foreach Be B
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(B.2) for Bi, B, € B there exists By € B, such that Bs C B; N Bs,
(B.3) for each B € B there erists an A € B such that oA C B,
(B.4) i B € B and p € []ps, then (B) contains some member of B.

Then there ezxists a unique m— uniformity U on X for which B is a basis.
U is said to be generated by B and may be defined as the family

{U € 2X™ . there ezists B € B, such that B C U}.

Lemma 1.6. In an m— uniform structure (X,U) for each U € U there
erists a symmetric set V € U such that oV C U.

Proof. If U € U, then from Uj; there exists V* € U, that oV* C U. By Uy,
for each p € []as we have p(V*) € U. But U is a filter and therefore

V= N p(V*) eU.
From Lemma 1.2, the set V is symmetric.

Two basis are said to be equivalent iff they generate the same m— uni-
forp’ "~ “llowing assertion is obvious:

Lemma 1.7. Two basis b 1d By are equivalent iff each B € B contains
some By € By and vice - versa.

Lemma 1.8. If the family S of subsets S of XM satisfies
(8§.1)) AC S foreach S €S
(8.2) for each S € S, there exists V € S with oV C §,
(8.3) for each U € § and p € [[py there exists V € S thet V C p(U),

then § is an m— uniform subbasis.

Proof. Let B be a family of all finite intersections of members of S. Obviously,
for each U,V € B, UNV € B. Also, if B € B, then

B = ﬂSg, S; €S8, 1=0,..,n.

=0
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Thus for each ¢ € {0,...,n}, there exists V; such that oV; C S;. We have
A= V;i € B. Thus

oAzo(ﬂVg) C ﬂ(OV;;)C ﬂS{: B.
=0 =0 1=0

From Lemma 1.5, B is an m— uniform basis.

2. The topology induced by the m— uniformity
and remarks on the generalized m— metric space

Let a,a’ € X and a = (a;)iepm,, € XM for some (k,1) € M2, k < 1. Then
in the sequal [a,d’, a] denote the point &/ € XM, such that a} = a,a} = o'
and a} = a; for i € My, and

Uyal = {d' € X :[a,d’,a] € U}
for any U C XM,

Theorem 2.1. Let (X,U) be an m— uniform structure for some m > 1
and

where {a® € XMor . 5 = 1,..,n}, n € N, U € U, is an arbitrary finite
system of points. Then the family

Ula] = {Ula] : U €U}, a€ X,

is a neighbourhood system on X.

Proof. We will prove here that the conditions (N.1) - (N.4) of Th. 3.3.2 of
[19] (see also [18], p. 49, (A*)) hold.

(N.1) Every point of X is contained in at least one neighbourhood, and
is contained in each of its neighbourhoods. Indeed, if U € U and Ula] =
N~_o Uqs[a] then from the relations a € Afa] and A C U we get Ala] C Ulq]
and consequently a € Ulal;
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(N.2) The intersection of any two neighbourhoods of a point is a neigh-
bourhood of that point. Indeed, if U,V € U then U NV € Y. Thus from
(N1),a € (UnV)a]l. If o/ € (UNV)[a] then @’ € NI (U N V)u:[a]
i,e. @' € (UNV)us[a] for each s = 0,...,n. Thus [a,a’,0®] € UNYV and
la,d’, 0] € U, [a,d’,a®] € V for each s = 0, ..., n. Therefore a’ € [y Uy<[a]
and a’ € NI_, Vae[a] and (U N V)[a] C Ula] N V]a].

(N.3) Any set which contains a neighbourhood of a point is itself a
neighbourhood of that point. Indeed, if Ula] is given and A D Ula] then
V=UUAM c U, V]a] = A and thus A € U|a).

(N.4) Given Ula], we will show that there exists V{a] such that Ula] €
U|[b] for each b € V]a]. From Lemma 1.6, there exists V € U that oV C U
and V = V=1 Let b € V][a] and

m—2
V* = ( ﬂ Vaﬂ.’—»a [b]) n Va[b]7 o€ XMkl.
=0 )

Then V* € U[b] and for z € V we have the relations [a, z,a,, 4] € V, i =
0,....m — 2, [a,y,a] € V and [y,z,a] € V. Thus [a,z,0] € V ie. z €
(oV)[a] C Ula]. Therefore V* C Ula]. The proof of Theorem 2.1 is complete.

If & is an m~— uniformity on X, then the topology 7;; defined by the
neighbourhood system is called the topology induced by /. An ordered triple
(X,U,1y) is called an m— uniform space.

The proofs of Lemmas 2.1 - 2.2 follow immediately from Theorem 2.1:

Lemma 2.1. Let (X,U,Ty) be an m— uniform space. Then G C X is open
iff for each a € G, there exists an entourage U such that Ula] C G.

Lemma 2.2. IfB is a basis for Y and 3 = {B : for each a € B, there ezxists
U € B, that Ula] C B}, then 3 is a basis for 1.

Theorem 2.2. Let B be a basis of the m— uniformityld on X and A C X.
Then
AT = ﬂ U_I[A],
UeB

where U[A] = Uyea Ula] for U € B.



46 A.Miczko, B.Palczewski

Proof. By Lemma 2.2,a € A~ iff U[a]N A # § for each U € B iff there exists
z € A such that z € Ula] for every U € B iff a € U™ [z] for z € A and each
U € Biff a € U71[A] for each U € B.

S.Gébhler in [5] gives the following important for our investigations ex-
ample of the m— uniform space:

Example 2.1. Let (E, <) be a partial ordered set and the order relation <
have additional properties:

(£ .1) there exists O € FE that (O,¢) €< for each ¢ € E,

(£ .2)foreach ¢, € Eg = E\{0} there exists €’ € Eg, that (¢”,¢), (", ') €<
(i.e. Ep is directed set).

For ¢,¢ € E we write ¢ < € iff (¢,¢/) €<, e £ € if (e.) g< and € < € if
e<¢ and e # €.

Let X be a nonempty set and m be a positive integer. The function
o: XM — E is a generalized m— metric over X and E (see S.Gahler [5], p.
L 177 if '

M|, o(a) =0 for each a € A,

| M}  for each ¢ € Ey and each p € [ there exists ¢ € Eg such that
o(p(a)) # € whenever o(a) # ¢,

M} for each ¢ € Ey there exists ¢ € Ey such that o(a) # ¢ whenever
o(ag,q) 7 € foreachie M, a € X.

The order pair (X,0) is said to be a generalized m— metric space if o
has properties M{,, M} and Mj.

Remark 2.1. a) S.Gahler in [5] defines the generalized m— metric space in
the case M is non - necessary finite set.

b) If (X,0) is a generalized m— metric spaces, then the family B =
{U. C XM :¢€ Ep}, where U, = {a € XM : 0(a) # ¢}, € € Eq, is a basis
of the m— uniform structure (see [5}, Th. 9;) and if &/ is an m— uniform
structure on X, then there exists a generalized m— metric o which generates
same m— uniform structure (see [5], Th. 10).

Remark 2.2. a) Let (X,o0) be a generalized m— metric space with
card M < oco. The topology 7, is defined in the following way: Let o be a
family of all subset of XMk x Ey. For ¥; € o also | J;X; € 0. T <' X' iff
(a,€) € X, (a,¢) €Y and e < €. Fora € X and ¥ € o in the sequal Wx(a)
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denotes (see [5] , p. 183) the set {a' € X : gla,d’,a] # € for all (a,¢) € ¥}
and in the sequal W (a) denotes the set {a’ € X : o[a,a’,a] # € for all
(a,€) € X}. It is easy to verify, that Wg(a) = Uy <y, Wi (a) for each a € X
(see [5] , p. 184) and {Wx(a) : ¥ € o} is the system of neighbourhood at a,
for each a € X (see [5], Theorems 12 - 17) .

b) In particular in a generalized m— metric space (X,0), A~ = Ngcp Wx(4)
(see (5], Th. 18).

3. Remarks on separation axioms

S.Gahler ([6], Th. 25) proved, that if the generalized m— metric space (X, o)
has the additional property

M7 For each two different points z,y € X there exists a € X Mo1 gych
that ofz,y,a] # 0, then X is a Hausdorff’s space. Moreover, he proved in [6]
(see Th. 27), that if the order relation < is dense in Fy and for each a € X
and ¥ € o the set Wy(a) is open and Wy (a) is closed then the generalized
m— metric space (X, o) is a completely regular topological space.

The above Gihler’s results on separation axioms for generalized m—
metric spaces give us the motivation for the below consideration

Theorem 3.1. Let B be a family of subsets of XM of the form B = {U, C
XM : ¢ € Eo}, where Eg is a partially ordered set with properties (< .1) -
(< .2) of Example 2.1. If

(3.1) for each € € Eg, A C U,,

(3.2) if §,¢ € Ep, 8 < ¢, then Us C U,

(3.3) for each € € Ey there erists € € Ey, that oUgs C U
(3.4) for each ¢ € Ey and each p € [[y, p(U) € B,

then B is the base of an m— uniform structure U and (X,U,Ty) is a com-
pletely regular topological space. If in addition the property holds

(3.5) A=) U

ceEyg

then (X,U,Ty) is a Hausdor{f’s topological space.
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Proof. Let us consider the family
B'={Uy.C X?:¢€ Ey forsome ae XMor},

where

Ua,c = {(.’L‘, Z/) € X2 : ['T; yaa] € Uca € € EO}
Obviously A = {(z,2z) : 2 € X} C Uy C X2 for each ¢ € Eo. If
W=V,o0V,0..0V, and [z,y,0] € W then [v,y,a] € V,_, [z,v,a] €
Ve 2,9, 00,50) € Ve, ., 1 €{0,...,m — 2}, for some v € X.

In particular we get (z,y) € Vu,, and (z,v) € V,, Therefore

€m-—-1"

(2,9) € Vayepn_, © Va,em

and thus for each U, . there exists V5, that oV, 5 = V50V, 5 C Uy, C X?
(Obviously, Ao(BoC) = (Ao B)o( for each A, B,C € B'). It is obvious,
that if Uy, Us,er € B’ then there exists 7 € Eg that Uyy C Uge N Uy .
The family B’ is the basis of the usual uniformity 2’ and the topology 7y
is weaker then 7. It is well - known (see for example [19], Th. 11.2.2) that
Ty is completely regular and therefore 7y, is completely regular too.

If (3.5) holds then for each a € X, {a} = Ala] = N, Aas[a] =
Ns(Nuew U)asla] = Nuew Ulal = (NU)[a] € Ule] and (X, U, Ty) is a Haus-
dorff’s space.

4. Some examples of m— uniform spaces

In this section of our paper we give definitions and examples of m — H—
spaces and m — M— spaces. In such spaces we may prove some fixed - point
theorems (see [14] and [15]).

Let (J, <) be a directed and partially ordered set. Let X be a nonempty
set, m be a positive integer and let 5 be a family of nonempty subsets of
XM of the form

B={U;.,cXM:jeJ ec(0,r)}, re R, r>0,

R% = Ry U {400}, such that

(4.1) A= (] Uje
(7,6 )eTx(0,7)
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(4.2) Uis C Uj whenever (i,6) < (j,¢)
((4,6) < (4,e) iff i < 5 and 6 < o),

(4.3) Uj. = U;CI for each (7,¢) € J x (0,r),

(4.4) foreach 7 € J andeach ¢ € (0,r) there exists ¢ € (0,7),
that OUJ"(I C U',E,
(4.5) foreach je€J each €€ (0,7) and each a € XM, if a € U,

then there exists € < e that a € U; .

It is easy to verify that B is the base of an m— uniform structure fulfilling
assumptions of Theorem 3.1. We say that an m— uniform structure is an
m — H— structure if it is generated by the base B fulfilling (4.1) - (4.5).

If (X,U)is an m—H— structure generated by B, then the neighbourhood
system {Ula| : @ € X, U € U} (or equivalently {U, [a] : j € J, ¢ €
(0,7), a € X} defines the topology 7;; and the ordered triple (X,U,7;) is
called an m — H— space.

A filter ¥ in an m — H— space (X,U,7Ty) is a Cauchy filter iff for each
(a,j,€) € XMoo x J x (0,7), Fx F C Ujeo for some FF € F. A m — H-
space (X,U,Tu) is complete iff each Cauchy filter in X converges to a point
of X.

Example 4.1. Let (J, <) be a directed and partially ordered set and X be
a nonempty set. Let o = (0;);es be a family of functions o; : XM — R,
such that the conditions hold

(M1o)n oj(a) =0foreach a € A, j € J,

(Mip)n for each different a,a’ € X there exists a € XMo1 and j € J,
that oj[a,a’,a] > 0,

(M3)n oj(a) = oj(p(e)) for each o € X™, j € J and p € [[py,

(M3)y for each j € J and each € € (0,r) there exists § > 0 that for
each o € XM and v € X we have g;(a) < € whenever o;( 0y, —,) < 8.

We say that the pair (X, o) fulfilling (M, )1 —(M3)y (with the topology
7, defined as usual) is a H — m— metric space. Obviously, (X,0), 0 =
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(0j)jes, is a generalized m— metric space in the sense of S. Gihler (see
Example 2.1).

A sequence (z,) in a H — m— metric space (X,0), 0 = (7})jes, is a
Cauchy sequence iff for every @ € XMo1 and j € J, 0;l2n, Tnyp,a] — 0 as
n,p — oo and H — m— metric space (X,o) is sequentially complete iff each
Cauchy sequence in X converges to a point of X.

Example 4.2. Let X be a nonempty set, m be a positive integer and let
B be a family of nonempty subsets of XM of the form B = {U. C XM : ¢ ¢
(0,7)}, € R, r > 0, such that

(4.6) A= () U;

0<e<r
(4.7) if 0<é<e<r then UsCU,
(4.8) U.=U" foreach ¢€(0,7),

(4.9) for each € € (0,7) there exists € € (0,7), that o Uy C U,

(4.10) for each €€ (0,r) and each a € XM, if a € U,

then there exists € < € that a € U,.

We say (see [14]) that an m— uniform structure is an m — H — structure
if it is generated by the base B fulfilling (4.6) - (4.10). Obviously, an m— H —
structure is an m — H— structure too.

Example 4.3. Let X be a nonempty set and ¢ : XM — R, we have
properties

(M) o(a) =0 for each a € A,

(Myp)y for each different a,a’ € X there exists a € X Mo that
ola,a’;a] > 0,

(My)y o(a) = o(p()) for each a € XM and p € [y,

(Ms)y  for each € > 0 there exists § > 0 that for each @ € XM and
v € X we have o(a) < € whenever g(ag;—y) <6, t=0,...,m.

We say (for m = 1, compare [11]) that the pair (X, o) fulfilling (M, )y —
(M3)y (with the topology 7, defined as usual) is a H — m— metric space.
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‘Remark 4.1. Each H — m— metric space (H — m— metric space) is an
m — H— space (m — H — space, respectively). For the proof of this assertion
let (X,0), 0 = (05)jes, be an H — m— metric space and H; () = h(e —
oj(a)), a € XM, €€ (0,7), 7 € Ry, where h(t) = 0 for t < 0 and h(t) = r
for t > 0, t € R. It is evident that 7{;,(-) : R — [0,7] is a non - decreasing,
left continuous function with inf{#; () : ¢ € R} = 0 and sup{H,,(t) : t €
RYy=r,jeJ Let Uje = {a € XM : H;q(€) > — €}, €€ (0,7). It is easy
to see that B = {U;.:j € J, e € (0,7)} is the base of the m— uniformity &
such that all properties (4.1) - (4.5) are fulfilled for B and (X,U,7) is an
m — H— space. We also have for € € (0,7), a € U;. iff H;.(€) > 7 — € iff
oj(a) < e. Thus 7y = 75, 0 = (0;)jeu-

We say that the function 7 : [0,7)¥ — [0,7), 7 € Ry, is a triangle
function on [0,r) if

(T.1) T(a,a,...,a) < a for each a € (0,7),

(T.2) T(a)= T(p(a)) for each & € [0,7)™ and p € [],,

(T.3) T(a) < T(al) for each a,a! € [0,7)M,0 < a! (i.e. a; < a} for
1€ M).

Let (J, <) be a partially ordered and directed set. Let X be a non - void
set, B be a family of nonempty subset of XM of the form B = {U,. C XM .

j€eJ, ee(0,7)}, r € R%, such that (4.1) - (4.3) and (4.5) are fulfilled and
in addition the following conditions hold

(4.11) for each j € J and € = (g, -, €m) € (0,7)M
the relation holds o’ ,U; ., C U; 1(), where T is a triangle function on [0,7).

We say that an m— uniform structure (X,i) is an M — m— structure if
it is generated by B fulfilling (4.1) - (4.3) and (4.5) and (4.11). The ordered
triple (X,U,7y) is called then an m — M— space.

Example 4.4. Let (J,<) be as above and m be a positive integer. Let X
be a nonempty set and o = (0;);cs be the family of functions o; : XM —
Ry, j € J, such that o has properties

(M1a)n — (M3)y and in addition the following condition holds (M3)y
for each j € J, each @ € XM and each v € X,

aj(e) <Y 0j(0am)-

=1
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The pair (X, o) is called a space generated by o = (0;);c.-

Remark 4.2. Each generalized m— metric space of Example 4.4 is a M —
m— space. Indeed, if B = {U;.:j € J, e € (0,r)}, where U, = {a € XM :
oi(a) < €}, j € J, € € (0,7), then B is a basis of some m— uniformity /. All
properties (4.1) - (4.3), (4.5) and (4.11) are fulfilled for the family B with
T(a) = minf{a; : 1 € M}, a € [0,7]M.

Let X be a non - void set and let B be a family of nonempty subsets
of XM of the form B = {U, C XM : ¢ € (0,r)} such that (4.6) - (4.8) and
(4.10) are fulfilled and in addition the following condition holds

(4.12) for each ¢ = (€o, ..., em) € (0,7)M, o7 U, C Ur(e), where T is a
triangle function on [0, 7).

We say that an m— uniform structure (X,U) is an m — M — structure
if it is generated by B fulfilling (4.6) - (4.8), (4.10) and (4.12). The ordered
triple (X,U,7Ty) is called then a m — M — space (for m = 1, see [14]).

Example 4.5. Following S.Gahler [3], let X be a nonempty set and m be
a positive integer. The function o : XM — R, is an m— metric (see [3], [4]
and [5]) if o has properties (M1,)y — (M2)n and

(M3)g for each & € XM and each v € X,

ola) < Z (g, —v)-

1=0

The pair (X,0) is called then an m— metric space. It is easy to verify that
an m— metric space is an m — M — space.

5. The definitions of mm— probabilistic spaces

In this paragraph we generalize the will - known definitions of P PM — spaces
and PM — space (see for example [2], [8], [9], [13], [14], [17] and [20]).

A function f : R — [0,1] is a distribution function if it is a non -
decreasing, left continuous function with inf f = 0 and sup f = 1. The set of
all distribution functions we denote D (see also Schweizer and Sklar [20]).

Let F: XM x R — D, Fu(t) =0t Fla,t), t € R, @ € XM. We say
that F is a pre - probabilistic m— metric structure (PPM — m— structure)
on X if the following conditions hold
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(F1) F,(0)=0forall a € XM
(F.2) Fa(e) =1forall e > 0iff « € A.

In this case the pair (X, F) is called a preprobabilistic m— metric space
(PPM — m— space).

The PPM —m— structure F on X is a probabilistic m— metric structure
(PM —m— structure) and the pair (X, F') is a probabilistic m— metric space
(PM — m— space) if F is symmetric, i.e. the following additional condition
holds

F.3) Fy = F,, foreach a € XM and p € .
p(a) M

A PM — m— space (X, F) is an H — m— space (for m = 1 compare
Hicks and Sharma [9]) that satisfies the following condition

(FA)y for each € > 0 there exists § > 0 that F,(¢) > 1 — € whenever
Foo,.,(6)>1—é,foreach i € M and v € X.

Remark 5.1.

a) Hicks and Sharma prove in [9] that a topological space (X,7T) is
metrizable iff there exists an H — 1— structure on X which induces 7.

b) It is evident that if (X, F') is a H — m— space then the family B =
{U.Cc XM:0<e< 1}, where U, ={a € X™: Fy(e)>1—¢€}, 0< e <1,
is the base of a m — H — structure U.

c) A.Menger space is a PM — 1— space that satisfies the condition

. (5'1) F(a:,z)(€ + 6) 2 T(F(r,y)(€)7 F(y,z)(a))v

where T is a t— norm i.e. T:[0,1]> — [0,1] and

(5-2) T(0,0)=0, T(z,1)==x
(5.3) T(z,y)=T(y,7)
(5.4) T(z,y) < T(z',y") if <zl y<yl,

(5.5) T(T(z,y),2) = T(=,T(y,2)), =,9,z€[0,1].
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d) The fixed - point theory in PM — 1— spaces was begin from 1972
with the paper [21] of Sehgal and Bharuda - Reid. They say in [21] that a
mapping f of PM —1— space (X, F) into itself is a contraction if there exists
k € [0,1), such that for each z,y € X, F(y;,5y)(kt) > F(; () for all t > 0.
Sehgal and Bharuda - Reid proved that if (X, F') is a complete Menger space
with 7'(z,y) = min{z,y}, =,y € [0,1], and f : X — X is a contraction,
then there exists a unique fixed point Z of f in X and lim f"z = z for each
z € X. Many authors generalize the result from [21] for selfmappings in a
sequentially complete Menger space in the case if m = 1 (see for example
references of [15]). The associative law (5.5) of the definition of a Menger
space is very strong and we can not translate (5.5) from the case m = 1 into
the case m > 1. Therefore we will consider the generalization of a Menger
space in which the condition (5.5) is replaced by less restrictive (F.4)py.

We say that a PM — m— space (X, F) is a Menger m— space if it has
properties (F.1) - (F.3) and (F.4)ps for € = (¢q, ..., ) € (0, )M, Fo(T(€)) >
1 — T(¢), whenever Fa,..._,.,(fi) >1—¢ foreachi e M, a € XM, v € X,

where T’ is a triangle function fulfilling (T.1) - (T.3).

Following Nguyen Xuan Tan [17] let D; be the set of all non - decreasing
left - continuous functions from RY into R, , where R = RU{—o0o}U {+00}.

We say that (X, F) is a generalized probabilistic m— metric space,
shortly GPM — m— space if F : XM x R! — D; and the following con-
ditions are fulfilled:

(5.6) F,(0)=0for all @ € XM,

(5.7) if @ € A then F,(e¢) =1forall e >0,

(5.8) Fale€) = Fp(a)(e€) for each p € [[py and € > 0,

(5.9) Fa(min{eo,...,em}) > min{Fa, _,(€0); - Fau,_..(€m)}
for each € = (€g, ..., &) € (0,00)M, a € XM and v € X.
Remark 5.2.

a) It is easy to see that sup{Fyu(t) : t € RE‘; =sup{F,(t):1 >0} <1
for each a@ € XM, Indeed, if @ € A, then from (5.7) , Fy(t) = 1 for each
t > 0. Suppose that « ¢ A. Then ayy—a, € A and obviously Fy, ., (1) =1
for any t > 0.
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Thus from (5.9) we get

1= Fy, ., (t) = Fy (min{t, ...,t}) <

ag—ay

min{Faao—nzo (t)’ Faa1—>ao (t)7 M) Faam—n:g (t)} =
Min{F,(t),1,...,1} = F,(t).
b) A GPM — 1 space was introduced by Nguyen Xuan Tan [17]. In
fact, Nguyen Xuan Tan assumes that a triangle function T (i.e. T(z,y) =

min{z,y}, z,y € (0,00)) fulfils an associative law and he de facto use this
property of T in his argumentations.

Let Dy be the set of all non - decreasing left - continuous functions from
R'into [0,1]). We say that (X, F) is a generalized probabilistic m — H— space
if (5.6) - (5.8) and (F.4)y are fulfilled for F : XM x R! — D,. The pair
(X,F), F: XMxR! — D, is said to be a generalized probabilistic m — M—
space if (5.6) - (5.8) and (F.4)ps are fulfilled.

6. Some m— metrization theorem

Theorems of this section are generalizations of results of Hicks and Sharma,
[8] and [9] (see also [14]).

Theorem 6.1. Let (X,U,Ty) be an m—H— space with the base B = {U;, C
XM .jeJ ee(0,r)}, re R' | of its m— uniformity U. Then the family
of functions o = (0;)jeq, 0; : XM — Rﬂ_,

o3(a) = { qrice@rracl o€ locer Te
a € XM, where Ul = XM\ U, € € (0,r), has properties:
(6.1) the family 0 = (0;)jes is a H — m— metric on X,
(6.2) 7, = Tu.
(6.3) (X,0) is sequentially complete iff (X,U,Ty) is complete.

Proof. At first (compare [9] and [11]) we prove the following property of o :
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(6.1) o € UJ'E iff aj(a) < €.

Indeed, if @ € Uj . then from (4.5), a € U o« for some € < eiff a ¢ U] .. Thus
for o;(a) > 0, gj(a) =sup{§ € (0,r):a g U;5} < <e. O < crj(a) <€
then a € Upcser Ul s and & = sup{é € (0,7) : @ € U§} < e. Thus there
exists n > 0 that ' + n < eand a ¢ U T it @ € Uj ey CUj ..

Now, from (4.1) and (4.3), o;(a) = 0 for each @ € A and if a and o' are
different points of X, then there exists a € XMo1 that o,[a,a’,a] > 0 for
some j € J. From (4.3), 0;(a) = oj(p(a)) for each p € [[ps . For the proof
of the property (M3)y assume that € € (0,7) and j € J. From (4.4), there
exists 6§ € (0,7), that oU;s C Uj, and thus if ag,, € Ujs, i € M, then
a € Uj.. From (6.4), we get o;j(a) < ¢ whenever gj(a,,,) < §, 1 € M.
Thus for each ¢ € (0,7) there exists § € (0,r), that o;(a) < ¢ whenever
oi(ag ) < 6, 1€ M, v € X, @ € XM, The assertions (6.2) - (6.3) follow
immediately from (6.4).

Remark 6.1. Let (X,U,7;) be an m — H— space with the base B = {U, :
0 < € < r} of its m— uniformity /. Then the function o : XM — R,

sup{e €(0,r):ae U} ifa€Upcee, Ul
ola) = .
0, if @ € Moceer Ve,
a« € XM, where U! = XM\ U,, ¢ € (0,7), has properties:
(6.5) the function o is an H — m— metric on X,
(6.6) 7T, = Tu
(6.7) (X, 0) is sequentially complete iff (X,U,7y) is complete.
The above assertion follows immediately from Theorem 6.1 (for m = 1,
see [14]).

Example 6.1. Let (X, F) be a probabilistic m — H— space. Let {U;. =
a € XM Fu(j) >1~¢}, j€ R}, € €(0,1). Then the family B = {U; :
JE R! , € € (0,1)} is the base of an m — H— structure . From Theorem
6.1 there exists the family o = (0;),er, such that (6.1) - (6.3) are fulfilled.

Remark 6.2. Let us consider two ”contraction conditions” with a contrac-
tion constant k € (0,1) for a selfmapping f in a probabilistic H — m— space
(X,F):

(6.8) for each t € R, e € (0,1) and @ € XM
F

Yap—fag,ay —~fay

() > 1 — ke whenever F,(t) > 1—¢,
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(6.9) for each t € R, ¢ € (0,1) and @ € XM, F,
1 — ke whenever F,(t) > 1 —e.

(kt) >

ag—fag,a; —~fay

It is easy to see that conditions (6.8) - (6.9) are equivalent to the following
conditions:

(6.10) if o« € U, . then Qao— fag,a1—fa; € Uske foreacht € Ry, € € (0,1),

(6.11)if o € U then gy, 09,0, fa; € Ukte foreacht € Ry, € € (0,1),
respectively.

From Theorem 6.1 the conditions (6.10) - (6.11) imply the following
contraction conditions:

(6-12) Ul(aao—*fao,al—*fal) < kO’t(a), te R+a
(6.13) ori( ey fag,a1—a, ) < koy(a), t € Ry, respectively.

But it is evident that (6.13) implies (6.12) because oy, < oy, if t; > ¢y
for each ty,t3 € R4.

Example 6.2. Let (X, F') be a probabilistic H —m— space. Let U, = {a €
XM :F,(¢) > 1—¢}, € € (0,1). Then the family B = {U. C XM : ¢ € (0,1)}
is the base of an H — m— structure ¥/. On the base of Remark 6.1 (see also
[14]) there exists o : XM — R, such that (6.5) - (6.7) are fulfilled.

Remark 6.3. Let f be a selfmapping in a probabilistic H ~ m— space
(X, F). Suppose that the condition holds

(6.14) for each ¢ € (0,1) and @ € XM, (

Yag—fag.ay —fa, (K€) > 1 — ke whenever Fy(€) > 1 — ¢, where k € (0, 1).
The condition (6.14) is equivalent to the following

(6.15) Oag— fag,a3—fa1 € Uke whenever a € U, for each € € (0,1), a €
XM,
and this condition implies the contraction condition:

(6'16) a(aao—'fﬂoyal—'fal) < ko(a)
for each a € XM where o is defined in Remark 6.1.

Theorem 6.2. Let (X,U,7Ty) be an M —m— space with the base B = {U; :
j € J, € €(0,1)} of its M — m— structure U and o; : XM RE_, j€EJd,
are defined as in Theorem 6.1. Then
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(6.17) (X,0) is a space generated by the family o = (0;)ecs (as in
Ezample 4.4),

(6.18) Ty = T,

(6.19) as (6.16).

Proof. It is enough to prove "the triangle inequality” for o = (0;);cs. Let
0i(Qa;—v) = €, € € (0,7), i € M. Then ay, ., € U foreach ¢! > ¢;, 1 € M.
Thus from (4.11),

& € Up(cg,..;em) C UT(,\,___’,\) C Uy, A =max{e; : 1€ M}.
If for example A = ¢, then o(a) < ) = €0 + 6§ = 0j( ;) + & and since §

is an arbitrary number of (0, r), then

m

73(@) < 03(0tai0) < 3 05(0asw0)

Remark 6.4. Let (X,U,7y) be an m — M — space with the base B =
{U. : 0 < e <r}, € Ry, of its m— uniformity . Then the function
o: XM — R, defined an in Remark 6.1 has properties

(6.20) o is an m— metric on X

(6.21) 7y = 7,

(6.22) as (6.19).
The above assertion follows immediately from Theorem 6.2 (for m = 1, see
[11)).
Remark 6.5. The results of this paragraph give a possibility to prove some
fixed - point theorems in PM - m - spaces or in GPM - m - spaces for the
large class of contraction mappings. For this purpose it is enough to use

fixed - point results for contractions in m - metric spaces or in genralized m
- metric spaces, respectively.
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REZIME
NEKA UOPSTENJA VEROVATNOSNIH METRICKIH PROSTORA

U ovom radu su ispitivana neka m - metricka tvrdjenja na m - uniform-
nim prostorima. Uvedeni su uopsteni m - verovatnosni prostori i date neke
napomene o kontrakciji u m - uniformnim prostorima.
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