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Abstract

The semilinear singularly perturbed boundary value problem is
solved numerically by a finite-difference method which uses a com-
bination of the Hermite scheme and the standard central scheme on
a special non-equidistant mesh. The method is a modification of that
given in [6]. We prove the same result (fourht order accuracy uniform
in the perturbation parameter), but without the constraint on the non-
linearity which was used in [6].
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1. Introduction

We shall consider a numerical method for the following singularly perturbed
boundary value problem:

(1.1a) Tu:= —2u’ + ¢(z,u) =0, z€l=][0,1],
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(1.1b) Bu := (u(0),u(1)) = (0,0),

where ¢ € (0,¢*], usually ¢* << 1. This problem arises in practice, see [2],
[3]. It was treated numerically in various papers (let us mention [4-8] and
for other references see [6] where a survey was given) under appropriate
smoothness assumptions on ¢ and the standard condition:

(1.2) co(T,u) > >0, z€l, veR.

Under this condition the solution to (1.1) has in general two boundary layers
of width O(e). Because of that we shall use a non-equidistant discretization
mesh which is dense in the layers. A modification of the finite-difference
method from [6] will be applied.

The method from [6] uses the fourth order Hermite scheme on a special
non-equidistant mesh, which was introduced in [7]. The mesh is generated
by a rational function which maps equidistant points into appropriate mesh
points. Such an approach was introduced in [1], but a more complicated
logarithmic mesh generating function was applied there. In [6], because of
the stability reasons, the Hermite scheme is abandoned at some mesh points,
and the standard second order central scheme is used. Nevertheless, the
combination has the fourth order uniform accuracy (troughout the paper
by wuniform we shall mean uniform in ¢). Essentially, this is because the
central scheme is used outside the layers, where £%|u”| is small. The same
method was used in [5], where its accuracy was improved to the sixth order
by the Richardson extrapolation. The Hermite scheme was also used in [4]
in combination with the solution to the reduced problem corresponding to

(1.1).
In addition to (1.2), the method from [6] requires the following condi-

tions:
(1.3a) cu(z,u)y<c*, ze€l, ué€R,

(1.3b) 5c, —2¢* > 0,

(note that in fact the condition on ¢, was formulated in [6] in a different way
— however, (1.3) describes its essence). Obviously, the condition (1.3) is an
unpleasant restriction on the nonlinearity of the function c¢. It was introduced
in [6] in order to prove the uniform stability of the discrete problem. Our
aim here will be to modify the method from [6] in such a way that (1.3b)
will not be needed. In addition to that, the smoothness assumption on ¢ will
be relaxed, as well as the conditions (1.2) and (1.3a). Precise assumptions
will be given in the next section.
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Let us briefly explain the way in which we shall avoid (1.3b). Of course,
we have to know where that condition was used in [6]. The Fréchet derivative
of the discrete operator from [6] is not an L—matrix, but Theorem 1 from
[6] shows that it is strictly diagonally dominant. The condition (1.3b) is
used in that analysis. We can see from the proof that (1.3b) is not needed
in one case (case II.1), and that is the case when we have the L—form. This
gives us the idea to insist on the L—form and to replace the Hermite scheme
by the central scheme whenever the Hermit scheme would spoil that form.
In this way we shall obtain a discretization which uses the central scheme
more than the discretization from [6], but its stability can be proved very
easily. On the other hand, the fourth order uniform consistency is more
complicated to prove, but we shall do that due to the fact that the central
scheme will be used still sufficiently far from the layers. However, for this
we shall need a mesh generating function which is smoother that the one
from [6]. Our method will be given in Section 3, and in Section 4 we shall
give some numerical results.

2. Preliminaries

Throughout the paper we shall assume the following two hypotheses on the
problem (1.1), cf. [3, Chapter 3]:

H1. Let the reduced problem ¢(z,u) = 0, z € I, havea C'*(I)—solution ug.

Then there exist C%(I)—functions d; and dy, independent of ¢ and such that

di(z)>d. >0, i=1,2, z €1,

di(t) > —uo(t), da(t) > ue(t), t=0,1,

and we assume:

H2. c € CHI*W), W ={(z,u):z €I, y(z)<u < zz)},
y(z) 1= up(z) — da(z), z(z):= uo(z)+ di(z);
> ez, u) > e >0, (z,u) e W.
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Lemma 1. There ezist a sufficiently small e* such that for e € (0,e*] the
problem (1.1) has a solution u. which satisfies (z,u.(z)) € W and u. €
C8(I). Such a solution is unique.

Proof. We have
2(t) >0, t=0,1,
and if * is sufficiently small, it follows:
Tz(z) > —22"(z) + cudu >0, z € 1.

Thus, z is an upper solution to the problem (1.1). It can be shown similarly
that y is a lower solution. This means that u. exists and

y(z) <u(z) < z(z), z€l.
Such a u. is unique because the operator (T,B) is inverse monotone. O
Remark 1. If there exist constants u, and u* such that

u* > 0> uk, e(z,u”) 202 c(z,u.), z€I,

then we can take y = %4, 2z = u*. Then in Lemma 1 we do not need the
assumption that e* is sufficiently small. For such a reasoning cf. [10].

Throughout the paper we shall denote by M any (in the sense of O(1))
positive constant which is independent of . Later on, these consta,nts will

be independent of the discretization mesh as well. Let 0 < v < c*. Then we
have:

Lemma 2. The following estimates hold for z € I :
(2.1a) | ( W< M{1+e™ klexp(—vyz/e) + exp(y(z — 1)/¢)]},
(2.1b) k=0(1)4,

(2.1¢)  Jul(e)| < M{e*™* + e [exp(—7yz/e) + exp(v(z — 1)/e)]},

(2.1d) k =5,6.



On numerical solution of . .. ) 367

Proof. The estimates (2.1a) follow from [7]. Then differentiate (1.1a) four
times to get the estimate for £ = 6. To estimate lugs)(x)| we shall use a
technique from [1]. Let ¢ € C%(I). Then for §; € I, i = 1,2, & < 6y, it
holds that

§1)] + 1g(62)]
/t<|g(1 80 — "
g/ < 0 TR (6 61) max 19"(9), € [or, 6]

This follows from the expansion

06— ol = 02 a0 + G2

61 — t)?
—L%jlﬂWQO,51<®1<t,t<®2<6}
Next, set g = u£4). If 2 € [0,3] take & = 2, 6 = z + 55 < 1, and if
S [%7 1]: 6y =z — 5% 2 0, 6 = z. Then use the estimates of |u£4)(z)|

and |u£6)(:1:)| to get (2.1b) for k =5. O

g”(®2)'—

Note that ¢ € C4(I*R) was used in [7] in order to prove the second
order uniform accuracy, while [6] used a stronger smoothness assumption
for the fourth order accuracy (in fact, instead of (2.1b) estimates of type
(2.1a) were used in [6] for & = 5,6 as well, but for that ¢ € C®(I*R) was
needed). Also note that in H2 the conditions (1.2) and (1.3a) are relaxed,
while (1.3b) has not been assumed at all.

Let us turn to the discretization mesh. The mesh points will be given

by:
(2:2) z; = A(t:), ti = ih, i=0(1)n,
1
h==, n=2m, me N\{l},
n
where:

p(t) = 224, 1€ 0,a]

At) =< 7(t) == w(t — @) 4 £tz — ® + p(@)(t - a) + p(a), t € (o, 3]
1-A1-1t), te[i1]

1 1
Here q is an arbitrary parameter from ((¢*)3,3) and a = ¢ — €3 > 0, where
we assume that ¢* < §. The coefficient w is determined from 7(3) = 3 :

0= (5 - )z~ dlals — @) + a5 ~ @)t +act]),
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and a is chosen so that w > 0 (such an a, independent of ¢, obviously exists).

The function A from [6] uses p and a tangent line for 7, so that A € C'1(I)
and A" is discontinuous and unbounded when ¢ — 0. By our choice of a and

T we get A € CH(I\{1}) and:

(2.32) NI < M, tel,

(2.3b) N0 < M, e I\z),

which we shall need in our analysis. A similar function A was used in [9],
and in [5] even a smoother function was required.
Let
hi =z, —z;.1, 1= 1(1)n,
T = hi +2h¢+1

By w", v" etc. we shall denote mesh functions on the mesh (2.2). They will
be identified with R™+! —column-vectors:

, t=11)n—1.

wh = [wo, w1, . - .wn]T, (w; := wf‘)
In particular, we shall take:
et =11,1,...1)T.
Let g be an arbitrary C'(/)—function. Then:
" =190, 91,-..9:)7, gi:= g(z;), 1=0(1)n.

Thus we shall have u?,y", 2*. The numerical approximation to u? will be
denoted by w?.

By || - || we shall denote the standard maximum vector norm:
Ry = ‘
1wl = max fwi,

and the corresponding matrix norm. Let
u)h — {wh : yh S wh S zh},
where the inequality sign in R™*! should be understood componentwise.

Finally, let us introduce some finite-difference schemes:
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- the scheme for approximation of the second derivative:
Dw; = [(wiyr — wi)/hig1 + (wim1 — wi)/hi]/hi 5

- the central scheme corresponding to the operator T :
Tew; = —2 Dw; + c(zi, w;);

- the Hermite scheme corresponding to the operator T, see [4-6]:
Tyw; = —eDw; + b7 c;_y + bie; + b eiyr,

where
¢; == c(z;,wj),

b — ht2 — hz2+1 + h,’hi+1

' 12hh; ’

bt — hiy = b+ hikiy

' 12hit1h;
bi=1-b —bF = R+ R+ Bhihitr

6h;hitq

3. The Numerical Method

Let us introduce the discretization of the problem (1.1) on the mesh (2.2):

(3.1a) Fuh =0,
(3.1b) where
(3.1¢) Fow” = wy,
Tyw, if 8- >0, b5 >0 and p; < 1
o h HW; ;. =Y 0 Z P s L
(3.1d) Faw® = { Tcw; otherwise,
(3.1e) i=11)n -1
(3.1f) Fouh = w,.
Here:

 [(Rir + Ri)lhitr = ha| + hihiga]e
pi 12¢2 '
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Theorem 1. Let £ be sufficiently small. Then for ¢ € (0,e*] the discrete
problem (3.1) has a unique solution w! in Wh. Moreover, the following
stability inequality holds for any w" and v* from W" :

(3.2) Jwh = oH| < [ Fwh — PP,
Proof. For the technique cf. {10]. The important thing is that the switching
between Ty and T does not depend on w”. Thus, the Fréchet derivative

A = F'(wh), wh € W", is well defined. Let A = [a;;]. The non-zero
elements of this tridiagonal matrix are:

agp = l’ Anp = ]-7

and for i = 1(1)n —1:

2¢2 N
Qi = e o
i hihi-l-l DiCy iy
g2 _
aii—1 = _h W + p; Cu,i—1»
PLLZY
2
£
T = — ——+P;|-Cu,i+1,
hiy1hi

where

Cu,j = Cu(Tj, Wy),

£ bf if Ty is applied at z;,
Pr=3 o if Tc is applied at z;,

pi=1-p; —pl.

It is obvious that we have
ai; >0, i=0(1)n,
and whenever T is used it holds that
k1 0.
However, the last inequality holds also when Ty is used. Indeed, because of

b >0 and p; <1
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we have )

— +bc* < s=ltpd) 0,
h;h; ! h:h; -

G;;-1 < —

[

and
a;;41 <0

holds in a similar way. Thus A is an L—matrix. Moreover, A is an M —ma-
trix since we have

(3.3) Aet > c,et,
(note that for this it is again important that p;", p > 0).
Now the existence of w” follows if we show:
F2" >0> Fyh.

Let us prove the first inequality (the second one can be handled similarly).
It is obvious that
ngh, Fnzh >0,

and for
Fz">0,i=1(1)n -1,

a sufficiently small £* is needed, cf. the proof of Lemma 1. Indeed, for some
w; € (z;-1,%i41) we have:

Fizh = —e22"(w;) + pye(zio1, zi1) + pic(i, 2)+

+pfe(ziga, zipn) 2 —€22"(Wi) + (p] + pi + pf )euds =
= —£2"(w;) + euds > 0.

Finally, let us prove (3.2). From (3.3) it follows that
1
A7 < =,
A7 < o
The same estimate holds for a matrix P of the form:
1
P= / F(o" + s(w” — v"))ds,
0
for any w”, v* € W". Then (3.2) follows from

wh — ot = PV (wh ~ ™). O

We can now formulate the fourth order uniform convergence result.
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Theorem 2. Let ¢* be sufficiently small. Then for € € (0,e*] it holds that

|lw? — ul|| < MA*.

Proof. Because of (3.2) it is sufficient to prove
Ir )l < MR,

where
rh = Fug.
First we shall prove
(3.4) Irs] < MA*,
for i = 1(1)m — 1. The same technique as in [1}, [4-9] will be used. The proof
will be divided into several steps.

Let i = 1(1)m — 1, thus [z;_1,2:41] C [0,3]. Because of that estimates
(2.1) will be used for z € [0, 3] only, and in this case they reduce to

(3-5a) [u(@)] < M(1+ e ve()), k= 0(1)4,
(3.5b) [ul) ()| < M(e*~* + e7*v.(z)), k=5,6,
(3.5¢) ve(z) := exp(—vyz/e).

The first case is:

I. Ty is applied at z;.

In this case (3.4) can be proved in the same way as in [6], but since
the estimates (3.5b) are rougher than in {6] and our function A is somewhat"
different, some details will be given. It holds that, see [6]:

r=eX(Qi+ R + 5:),
where

(higs — hi)(2h7 + 2h2,, + hihiy 1 )ul (z:)

Qi = 180 } )
p o U Al u ()
' 360(h; + hit1)
6
g = (hi + by — h%h?ﬂ)ug )(ﬂi)

144
o, Bi € (Zi-1, Tit1)-
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From (2.3a) it follows that
(3.6) hi < hip1 < AN (tig1) < Mh.
Using this and (3.5b), we get:
e21Qi| < MA*(hiyy = RN (tig1)*[e + € %ve(wic1)),

2| Ri + Si| < MA*N (2i41)* 1 + e Yv(2i21))-

I.1 Let t,_; > a. Then h; = h;1; and §; = 0. Moreover, from (3.6) and
Ve(Zio1) < we(p(a)) < eXP(_M/gl/Q)’

it follows:
£2|R1‘ + .5 < Mh4,

thus (3.4) is proved in this case.

I.2 Let ¢;_; < o and t;_; < ¢ — 3h. Now use (2.3b) to get
(3.7) higr = hi < R2N(tig1) < M2

From here and (3.6) it follows:

(3.8) e21Qul < MR e + X'(tiy1) N (tig1) e Pve(2io1)]-

Then because of t;_7 < ¢ — 3h we have {;41 < ¢. Now for k = 1,2 it holds
that
(3.9) A1) < pW(1), t € [a,q),

provided ¢* be sufficiently small, so that

W=

(3.10) (e")3w < aq.
Indeed, (3.10) guarantees that
(n—m)®(1) > p®(a) - 6w 2 0, 1€ [a,q),

and it follows:

(b =m)P W) 2 (n-m)P(a) =0, t€[a,q),
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first for £ = 2 and then for £ = 1. Using (3.9) and

q—ti_1
3 Kl

q—tiy1 2>

ve(zi-1) = exp(—vati—1/(q — ti-1)) < M exp(—yag/(q - ti-1)),
from (3.8) we obtain:
Qi < M1+ e3(g — tig1) e v (win)] <

< Mh1+ (g —tio1) "7 exp(—7vag/(g — tic1))] < MA*.

Similarly we can show:
Elei + Sz'| < Mht

and (3.4) follows again.

I.3 The remaining case is ¢ — 3h < #;_; < . Now use
Iril = €% = wl(7:) + b7 wl(zica) + biul(2i) + bf ul(zit1)l,
Yi € (Ziz1,Tig1)s
to get

lril <€ max  |ul()|[14b] + b+ b}) < M[e? + ve(zi—y)).

-1 STLTi41
Noting that this case is possible only if
1
£3 < 3h,

and using
ve(®io1) < ve(pu(g — 3h)) < M exp(—7agq/3h),

we get (3.4) in this case too.

II. T¢ is applied at z;.

This is possible if p; > 1 or b, < 0 (note that bf > 0fori=1(1)m—1).
We shall use:
(3.11) Iril < Me(higr — ho) el (@) + B2y |ul) (@),

0; € (®i—1, Tig1)-
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Ila. Let p; > 1.

This means that
e? < Mhi, < MR,

and form (3.5a), (3.6) and (3.7) it follows:
7l < M{R* + hY[(hiv1 — Ri)e™ + R e loc(ei 1)}

Then by distinguishing cases
ti-1 2 a

and
t;_1 <« and t;_1 < ¢q— 3h,

we can prove (3.4) in the same way as in cases I.1 and 1.2, respectively. If
g—3h<a<tiq,

(3.4) follows from
(3.12) il <€?2 max  |ul(z)]

i1 <TLTi41

in the same way as in case L.3.

IIb. Let b; < 0, i.e.
h? + hihipr < Ry,

which implies:
(3.13) V2N (tisy) < N(tizr).

ITIb.1 Let ¢;_1 > «. Then (3.13) reduces to
V2r'(tic1) < 7' (tigr)
which means that
(V3 = 1)[3ws? + 1(a)s + ()] < 120(hs + h?) + 2u"(a)h,

where
s =t_1—a>0.

From this we get:
(V2 - D)p'(a) < Mh,
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i.e.
1
es < Mh.

Now (3.4) follows from (3.11) in the same way as in case I.1.

IIb.2 Let t,_; < a and t,_; < ¢ — 3h. Since t;4; < ¢, from (3.9) for k = 1
and (3.13) we have

V2p!(tic1) < p'(tin),
i.e.
V2g - tip1)? < (¢ - tiz1)?,

which is equivalent to
h

2t — 1
Then we treat this case as [.3 (not 1.2 !) and prove (3.4) from (3.12).

tic1 > q— 2‘%

ITb.3 Let ¢ — 3h < t;_; < «. This is the same case as 1.3 and (3.4) fol-
lows from (3.12) by the same technique.

Thus, (3.4) is proved for i = 1(1)m — 1. When i = m + 1(1)n — 1, (3.4)
follows in the same way because of the symmetry of the mesh and the es-
timates (2.1) with respect to z = 1. The similar technique can be used for
1 = m as well. Note that the fact that A" is discontinuous at z = % does not
have any effect on the proof since h,, = hppyy. O

Remark 2. The sufficiently small £* required in Theorem 2 is the same
one as in Lemma 1 (the same £* is needed in Theorem 1 as well), and such
that £* < } (see the definition of A), and that (3.10) holds. However, accord-
ing to Remark 1, if 2 = u* and y = u, (that is, if 2" = u*e® and y* = u.e?),
we would need only ¢* < & (which is not a serious restriction) and (3.10),
but then, for a given £*, (3.10) can be regarded as a condition on the mesh
generating functon parameters a and g.

4. Numerical Results

In order to compare our method to the method from [6], we shall consider
the same linear test problem:

(4.1) —e*u +u—-1=0, w0)=mu(l)=0,
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for which the exact solution u. is known. Also, v&}e shall consider a nonlinear
problem from [2, pp. 166-168]:

—4
(4.2) — g2+ == =0, u(0)=u(1) =0,
b—u
written down with homogeneous boundary conditions. This problem models
the biological Michaelis-Menten process without inhibition. Here we have
u* =4 and u, = 0, thus ¢* =1 and ¢, = 21—5 Note that (1.3b) is not satisfied.

Let ;
h h
Eh = ”we - ue“a

where in case of problem (4.2) we shall replace u? by the numerical solution
- on the mesh (2.2) with n» = 512. We shall always use the mesh (2.2) with
a = 1 and ¢ = 0.48. By changing these parameters, it is possible to change
the percentage of the mesh points lying in the layers, cf.[5-9]. We shall also

calculate the experimental order of convergence:
InEp, —InFEn
Ordp = ————=

Tk In2

The results for problems (4.1) and (4.2) are given in Tables 1 and 2, respec-
tively.

Table 1. Fj and Ordy, for problem (4.1)

n 32 64 128 256
2.14(-2) | 5.50(-3) [ 1.24(-4) | 7.75(-6) | E
g=278 1.96 5.47 4.00 - Ordp,
e=27"% [1.79(-3) | 1.33(-4) |{ 9.17(-6) | 5.69(-7) | E}
k=16(8)48 | 3.75 3.86 4.01 ~ Ordy,

Table 2. Ej, and Ordy, for problem (4.2)

n | 32 | 64 | 128 | 256
e=27%1269(-2) | 9.19(-4) | 8.26(-5) | 4.86(-6) | Ej
k=16(8)48 | 4.87 3.48 4.09 - Ordy,

These results confirm the fourth order uniform convergence, obtained
theoretically. The results in Table 1 are worse for ¢ = 278 than the cor-
responding results from (6], but for other values of £ they are even slightly
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better than in [6]. The number of the mesh points lying in [0, ], is the same
as in [6]. It is denoted by n. and shown in Table 3, where we also present
the number of the mesh points at which 7 is used; this number is denoted
by n¢. The number n¢ is much greater in our method than in the method
from [6], nevertheless the fourth order uniform accuracy is retained.

Table 3. n. and ng for ¢ = 2732

n | 3264|128 | 256
n. | 8 [16 | 31 | 62 | [6] and our method
4161 4 6 (6]

nc

9 |11 | 15 23 our method

Finally, let us note that our method, in the same way as the method
from [6], can be applied to other semilinear singular perturbation problems
which do not satisfy the hypotesis H1 and H2, but their solutions behave as
described by Lemma 2.
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REZIME

O NUMERICKOM RESAVANJU SEMILINEARNIH
SINGULARNIH PERTURBACIONIH PROBLEMA
KORISCENJEM HERMITOVE SEME

Numericki se resava semilinearni singularno perturbovani konturni prob-
lem pomoéu metoda konaénih razlika koji koristi kombinaciju Hermitove i
standardne centralne seme na specijalnoj neekvidistantnoj mrezi. Metod
predstavlja modifikaciju postupka iz [6]. Dokazan je isti rezultat (Eetvrti
red taénosti, uniformno po perturbacionom parametru), ali bez ogranicenja
nelinearnosti koji je koriséen u [6].
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