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Abstract

The two-point boundary layer problem, described by the second
order differential equation with coefficientes depending on the small
perturbation parameter, is considered. The approximate solution is
constructed as a sum of the layer function and a truncated orthogonal
series, using the asymptotic expansion of the first order. The theoret-
ical results are illustrated by two numerical examples.
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1. Introduction

We shall consider the boundary layer problem
(1.1) Ly = —ey’(z)+ f(z,e)y'(z) + g(z,€)y(z) = h(z,¢), = € [0,1]

(1.2) ¥(0) = a, y(1) = 3,

where ¢ € I = (0,£q), 0 < g¢ < 1 is a small parameter and f,g,h € C?(Q),
with @ =[0,1] x 1.

Let us suppose that one of the following ceses holds
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1° f(z,6) > M >0, g(z,e) > 0

2° f(2,6) =0, g(z,e) > K >0,

for all z € [0,1] and each ¢ sufficiently small. These conditions provide the
existence and the inverse monotonicity of the unique solution y(z) € C?[0, 1]
of the problem (1.1),(1.2).

In the case 1° we have a nonselfadjoint boundary value problem and its
solution displays a boundary layer at the right endpoint, and in the case
2° we have a selfadjoint problem and its solution, in general, displays two
boundary layers, one at each endpoint.

In the first part of this paper we shall construct the layer functions for
both cases and transform the original problem. In the second part we shall
determine the orthogonal projection of the unknown solution and state the
main theorem which enables us to evaluate the coefficients of the spectral
approximation, using the collocation method. In the third part we shall give
the error estimate and two numerical examples.

2. Transformation of the problem

Let us represent the functions f, g and h in the form of the asymptotic power

e [@,6) ] e [ fm(®)
(2.1) glz,e) | = Z gm(z) | €™.
h(z,e) m=0 | hu(z)

In the case 1° f(z,€) > M > 0 for sufficiently small ¢ implies fo(z) > 0 and
the solution of the reduced problem

(22)  Jo(2)yr(2) + go(2)yr(z) = ho(=), = € [0,1], yr(0) =

can be exactly evaluated. In the case 2° g(z,€) > K? > 0 implies go(z) > 0

and the reduced solution is yr(z) = Z—t‘;((f)l.

In the first case, according to [3], the layer function is of the form
(2.3) e(z) = Boe™®)

with
(2.4) Bo = B — yr(1)
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and

(2.5) )= _é / L ).

In the second case we have two layer functions, one for each endpoint:

(2.6) e(z) = 60€€($), ex(z) = 70e”($),

with the functions

= and M O = o — hO(O) - 4 90(1) - hO(l)
(2.7)60 - go(iL‘)’ K 90(0),70 A \/ go($)7ﬁl g go(l)'

and
e8) = [ Vabi o) = 7 [ Vit

Here, we shall denote e(z) = e;(z) + e2(z).

Using these layer functions we can transform original problem
(1.1),(1.2). The idea is to represent the solution in the form .

(2.9) 9(e) = e(z) + u(z)

where u(z) is the solution of the following problem:

(2.10) —eu” + f(a)u' + §(2)u = ¢(z), = €[0,1]
- (2.11) u(0) = A, u(l)= B,
with ; :
(2.12) f(z) = fo(z) + e fi(z), §(=) = go(z) + eg1(z)
and

(2.13) o(z) = ho(z) + ehi(z) + (fo(2) — fo(2) filz)—
' —efo(z) f2(z) — go(z) ~ eg1(z)) (),

1l
(2.14) A=a— et fo 20U B = yp(1)

for the nonselfadjoint problem, and

(215)  ple) = ho(e) + eha(e) + (IEL — cgy(2))e(),

2+/90(7)

(2.16) A = yr(0) - %, B = yr(1) — ok, k= koeFr,
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1 1
k= -—E/ 1/g0(t)dt, ko= 4 M
0

go(1)’
for the selfadjoint problem.

Remark 1. Since equation (2.10) is obtained by rejecting terms containing
e', for i — 2, (2.9) represents the approximation to the exact solution y(z)
of the order O(£?).

3. Orthogonal projecting

Let o,, denote the projecting operator, such that

i3

(3.1) on : u(z) — ux(z) = Z‘aka(z),

k=0
where @4, k = 0,1,...,n—are classical orthogonal polynomials upon [0,1].
The notation ~—means that the summation involves the term for £ = 0

multiplied by .

As the elements of the orthogonal basis we shall choose shifted Cheby-
shev polynomials T;(z), orthogonal upon the interval [0,1] with respect to

the weight function
1

pE) = o D)

They represent a particular solution of the differential equation
z(l—z)y = (¢ - %)y‘#— Ky=0,k=01,...
and can be determined by Bounnet’s recurrence relation
(3.2) Ti(2) = (42 - 2)Ti(e) - Tia(e), k= 1,...,
Ty(z)=1, Ty = 2z — 1.
It is well known that polynomials T;” form the basis of the Hilbert space

L[0,1] — —f : [0,1] — R, mesurable such that f < +— —



Layer functions and spectral approximation 355

Here, we define the inner product and norm as

(f.9) = /0 f(@)a(2)p(@)de, -2 = (f,])

and for each ¢,j — N it is valid that (T, Tj‘) =7b; ;.

K3

So, when speaking of the spectral approximation for the solution u(2) of
the problem (2.10),(2.11), we, in fact, want to find its orthogonal projection
in terms of the definition (3.1). For that purpose we are going to use the
collocation method, which means that we look for u,, — P" such that

(3.3) un(0) = A, un(1) = B

and

(3.4) — ey (@) + Fled)ug(zs) + §(z)un(z) = @(z), i=1,...,n— 1,

where we use the Gauss-Lobato collocation nodes

(3.5) zizé(cos%{Jrl),i:l,...,n—l.

Here P™ denotes the space of all the real polynomials of degree up to n.
Now, we can state the theorem which enables us to evaluate the coeffi-

cients of the orthogonal projection u,(z) in (3.3),(3.4).

Theorem 1. The coefficients a of the spectral approzimation
(3.6) un(z) = Y wpTi(z)
k=0

for the solution u(z) of the problem (2.10),(2.11) represent the solution of
the system

n
(3.7) ka,z'ak =p,1=0,...,n
k=0

with
(3.8) fro=(-1% fin=1,k=0,...,n, po= A, o, = B
fet1:, = (dz; — g)fk,i — freo1i + 4f(2)T(e)+
+2k 35 kma2) Ti(2)
(3.9) ©; = ¢(zi),1=1...,n=-Lk=1,...,n-1
fo,i 9(z:), fri = 2f(z:) + (22 — Dg(=)),
i=1,...,n—1,

where the points z;, are given by (3.5).
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Proof. We substitute (3.6) into (3.3) and (3.4). Since

(3.3) gives the first and the last equation in the system (3.7) with notation
(3.8). In order to obtain the other n — 1 equations, whose coeflicients are
determined recurrently by (3.9), we have to start from (3.2). Deriving it,
we come to

10y En(e)= (e -2F7e) - 15 (0) +4T5(w)
) T h(e) = (42 — 2)Fz) - T () + 8T 2).

The substitution of (3.6) into (3.4) gives that the coefficients at axy,, for
k=1,...,n, are

(3.11) ferri = —€F 5 (20) + fle)E Ta(@s) + §(2) Ty (22),

wi = (z;), i=1,...,n.
After the use of (3.2) and (3.10) we have

Jreyr; = —e(dzi — 2)F (zi) + eF (i) — 8T (i) +
+f(x:) (42 — 2)F i) — fx)TiTy(20) + 4F (@) Ti(z:) +
+g(z;) {4z; — 2)F i) — §(xi)T_q(zs), i =1,...,n — 1.

According to the notation (3.11) this gives

(3.12)  far1s = (42 — 2) fri — fre-1, — 8T i) + 4f(2:) T (:),

Since
0
Fla)=2k Y Tx)
i=k—1(2)

(3.12) finally gives us the first equality in (3.9). The notation j = k — 1(2)
means that the summation involves only the terms with indices
k—1,k—3,...up to 0 or 1. The last two equalities in (3.9) are obtained
derectly from (3.11), which, when k& = —1, gives

T(zi) =0, TT(xs) =0, Tp(z;)=1,i=1,...,n—1,
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and, when k = 0,

T {z:)=0,4z;) =2, Ty(z;)=22; -1, i=1,...,n — 1.

For the evaluation of T%(z;) in (3.9) one has to use the recurrence relation
(3.2). O

Remark 2. The same procedure can be carried out using a larger number
of terms in asymptotic expansion.

4. Special cases

If we consider a special case of the differencial equation (1.1) where the
coefficients do not depend on ¢, i.e. if we have the problem

(4.1) Ly — —ey{(2) + f(z)yT=) + g(z)y(z) = h(z), - [0,1],

with the boundary conditions (1.2), we can determine the layer functions
(2.3) and (2.6) in a simpler way, which enables us to avoid the calculation
of the integrals (2.5) and (2.8). These constructions are proposed in [1]. In
the case of the nonselfadjoint problem, in the layer function (2.3) we take

(42) ey = E DA

and in the selfadjoint case in (2.6) we take

g om0 ue) &) = =/ 5, 0 = 8- ur(D),
v(z) = —1/ 9_(611(1 - z).

Using the same procedure for the transformation of the original problem we
shall come, again to the problem (2.10),(2.11) with

(4.4) f(z) = f(2), §(z) = g(=)

and

(4.5) p(z) = h(z) - (g(z) -

OOENG)
2 e(a)

_)
(4.6) A=a—fee" "=, B=ygn(l)
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for the nonselfadjoint problem, and
(4.7) p(z) = h(z) - (9(z) — 9(0))ex(z) — (9(=) — g(1))ea(2)
A= yp(0) = (B— yr(1)e V<
(48) = YR - = YR € 60 s
B =yr(1) — (a - yR(O))e_\/‘E
for the selfadjoint problem.

Let us notice that the term (2.9) will now represent the exact solution to
the problem (4.1),(1.2). Using the above notation the system for evaluation
of the coeflicients of the spectral approximation (3.6) is again given by the
Theorem 1.

5. The error estimate

Since there is no method for an exact error estimate in the case of spectral
approximations, we are going to use an approximate error estimate proposed
in [2]. Tt is known that when n — — the spectral approximation (3.6) of
the function u(z) tends to u(z). Thus, it is necessary to increase n until the
values for the coeflicients ag, evaluated for n — 1 and n, become sufliciently
close. Then, we can suppose that up,_; (evaluated using 2(n— 1) collocation
points) sufficiently well approximates the exact solution and we can write

(5.1) 4(x) — up(2)— Hon-1(z) — un(z)=

Let us denote by

n

(5.2) Un(z) = e(z) + ua(2z) = e(z) + Y wTi(2)
k=0

2n—1

(5.3) Yan—1(z) = e(&) + tan_1(z) = e(z) + Z BT ()

the approximations to (2.9), where u,(z) and uzn_l(a:) are spectral approx-
imations of the problem (2.10),(2.11). For the estimate of the error function

(5:4) d(z) = 9(z) - yu(2)5

where y(z) is the exact solution to the problems (4.1),(1.2) we can prove the
following theorem:
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Theorem 2. For the problem (4.1),(1.2) we have

2n—1

(5.5) Z:%—wﬁ—ijﬁ—

k=n+1

Proof. For the problem (4.1),(1.2) the exact solution y(z) = §(z) is given
by (2.9) Thus,

d(z) = §(z) - yu(z)—= u(z) — ua(2)~

By (5.1)
2n-1 n
(5.6) d(z) — Han_1(2) — ()= =Y BTi(z) = Y wTi(z)—
k=0 k=0
- Z_-bk—ak——Tk_(:B)—}- Z- b (z)=
k=0 k=n+1

Using the fact that 2, {z)— 1 for all z — [0,1] and £ = 0,1, ... the above
relation gives (5.5).

In the case of problems (1.1),(1.2), the estimate (5.5) becomes

2n—1
(5.7) d(z) — Z by —ar—+ Z b—+ Me?,
k=0 ] k=n+1

because of Remark 1.

6. Numerical examples

As the first example we shall consider the nonselfadjoint boundary layer
problem

o —er W(L;:)Zm V=2 i)z& sin 7(21__;)+
e =T o) = vy <o

given in [4]. According to formulas (2.3)-(2.5), the layer function is

_21-z
e(z) = —e ¢z,
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In the following tables we shall give order of the error (5.6) for different
values of n at several points of boundary layer and out of the boundary
layer.

e=10"°
X v n=3 n=>5 n="7 n=9
out the layer E(-2) | E(-3) | E(-5) | E(-6)
0.999995 | 0.99995 | B(-6) | E(-7) | E(-9) | E(-10)
0.999999 0.86 | E(7) | E(-8) | E(9) | E(.10)
0.9999995 | 0.63 | E(-7) | E(-8) | E(-10) | E(-10)
0.9999998 | 0.33 | E(8) | B(-8) | E(-10) | E(-10)
0.9999999 | 0.18 | B(-8) | E(-9) | E(-10) | E(-10)
0.99999999 | 0.02 | E(-9) | E(_10) | E(-10) | E(-10)
Table 1.
e=10"%
X n=3 n=>5 n="7 n=9 n=13
out the layer E(-2) | E(-3) | E(-5) | E(-6) | E(-8)

0.99999995 | 0.99995 | E(-8) | E(-9) | E(-10) | E(-10) | E(-10)
0.99999999 | 0.86 | E(-9) | E(-10) | E(-10) | E(-10) | E(-10)
0.999999995 | 0.63 | E(-9) | E(-10) | E(-10) | E(-10) | E(-10)
0.999999998 | 0.33 | E(-10) | B(-10) | E(-10) | E(-10) | E(-10)
0.999999999 | 0.18 | E(-10) | E(-10) | E(-10) | E(-10) | E(-10)
0.9999999999 | 0.02 | B(-10) | E(-10) | E(-10) | E(-10) | E(-10)

Table 2.

For the second example we shall take the selfadjoint problem

(6.2) — ey +y = cos’mx — 2em?cos 2rrz, y(0) = y(1) =0

from [1]. According to (2.6) and (4.2)

In the following tables we give the order of the error (5.6) at several
points of the left-end boundary layer and out of the layer.
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e=10"°
X y n=5 | n=8 | n=12
0.0001 | -0.095 | E(-5) | E(-7) | E(-9)
0.0003 | -0.25 | E(4) | E(-7) | E(-9)
0.0008 | -0.55 | B(-4) | E(-6) | E(-9)
0.0015 | 0.78 | E(4) | E(-6) | E(-9)
0.0025 | 0.92 | E(-3) | E(-6) | E(-9)
0.005 | -0.993 | E(3) | E(-6) | E(-9)
0.001 | -0.999 | E(-3) | E(:5) | £(-9)
out of layer E(-2) | E(-5) | E(-8)

Table 3.

£=10"12
b e y n=5 | n=8 | n=12
0.0000001 | -0.095 | B(-8) | E(-9) | E(-9)
0.0000003 | 0.25 | B(-7) | E(-9) | E(-9)
0.0000008 | -0.55 | B(7) | E(-9) | E(-9)
0.0000015 | 0.78 | E(-7) | E(-9) | E(-9)
0.0000025 | -0.92 | B(-6) | E(-8) | E(-9)
0.000005 | -0.093 | B(-6) | E(-8) | E(-9)
0.000001 | -0.999 | E(:6) | E(8) | B(-9)
out of layer E(-2) | E(-5) | E(-8)

Table 4

e=10"18
X y n=5 | n=8 | n=12
0.0000000001 | -0.095 | B(-9) | E(-9) | E(-9)
0.0000000003 | 0.25 | B(-9) | E(-9) | E(-9)
0.0000000008 | -0.55 | £(-9) | E(-9) | E(-9)
0.0000000015 | -0.78 | E(-9) | E(-9) | E(-9)
0.0000000025 | 0.92 | E(:9) | B(-9) | E(.9)

0.000000005 | -0.993 | E(-9) | E(-9) | E(-9)
0.000000001 | -0.999 | B(-9) | B(-9) | E(-9)
out of layer E(-2) | E(-5) | E(-9)

Table 5.

These numerical examples show the high accuracy of the proposed met-
hod using only a small number of terms in the appropriate orthogonal series.
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It is also significant that these results are better than those obtained by the
use of the first two terms in asymptotic solutions for the given problems.
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REZIME

FUNKCIJE SLOJA I SPEKTRALNE APROKSIMACIJE

Posmatra se konturni problem opisan diferencijalnom jednatinom drugog
reda, ¢iji koeficijenti zavise od malog perturbacionog parametra. PribliZzno
redenje je konstruisano kao zbir funkcije sloja i parcijalne sume ortogonalnog
reda, koristedi asimptotski razvoj prvog reda. Teorijski rezultati su ilus-
trovani na dva numeritka primera.
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