Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 23, 2 (1993), 35 - 37 Review of Research Faculty of Science Mathematics Series

REMARK ON A FIXED POINT THEOREM OF CHANG

P. Veeramani

Department of Mathematics Indian Institute of Technology Madras 600 036, India

Abstract

The purpose of this paper is make some remarks on a fixed point theorem of Chang.

AMS Mathematics Subject Classification (1991): 47H10 Key words and phrases: fixed point.

In [1] Chang has mentioned that the following question namely "Which Banach spaces have the Fixed point property (F.P.P.) for generalized non-expansive mappings?" has been open for long time. Chang has attempted to answer this question in [1].

Definition 1. Let K be a nonempty subset of a normed linear space X. Then $T: K \to K$ is said to be generalized nonexpansive, if for every subset F of K with at lest two points and $T(F) \subset F$

$$\sup_{y \in F} ||Tx - Ty|| \le \sup_{y \in F} ||x - y||, \ x \in F.$$

The following result is the main theorem of [1].

Theorem 1 ([1], Theorem 3). Every Banch space having normal structure has the (F.P.P.) for generalized nonexpansive mapping.

It is proved that if K is a nonempty compact convex subset of a Banach space and $T: K \to K$ is a generalized nonexpansive mapping in the sense od Definition 1 and further if K has normal structure then T has a fixed point.

The following more general theorem than that of the above Theorem 1 of Chang has been proved by Pai and Veeramani in 1982.

Theorem 2. ([2], Corrolary 2.2) Let K be a nonempty weakly compact convex subset of a Banach space X. Assume that K has a normal structure. Let T be a mapping of K into itself which satisfies: for each closed convex subset F of K invariant under T there exists some $\alpha(F)$, $0 \le \alpha(F) < 1$, such that

$$||Tx - Ty|| \le \max\{\delta(x, F), \alpha\delta(F)\}$$

for $x, y \in F$ (where $\delta(x, F) = \sup\{||x-y|| : y \in F\}$ and $\delta(F)$ is the diameter of F). Then T has a fixed point.

It is obvious that Theorem 1 follows from Theorem 2.

Remark. The following Example 1 shows that Theorem 2 is more general than Theorem 1.

Example 1. Let K = [0, 2]. Define $T: K \to K$ by

$$Tx = \begin{cases} 0, & \text{for } x \neq 2\\ 3/2 & \text{for } x = 2. \end{cases}$$

Each closed convex subset F of K invariant under T and with $\delta(F) > 0$ will be of the form $[0, \gamma], \gamma < 2$.

For $\gamma < 2$,

$$T([0,\gamma])=\{0\}$$

and in this case

$$|Tx-Ty| \leq \max\{\delta(x,F),\alpha\delta(F)\},$$

for $x, y \in F$, is satisfied for any $\alpha > 0$.

For $\gamma = 2$,

$$T([0,\gamma]) = \{0,\frac{3}{2}\}$$

hence for $\alpha = 3/4$

$$|Tx - Ty| \le \max\{\delta(x, K), \alpha\delta(K)\},\$$

for $x, y \in K$, is satisfied and T(0) = 0. Since $|T(2) - T(1)| = \frac{3}{2}$, $|T(2) - T(1)| \le |2 - 1|$, for $1, 2 \in K$, is not satisfied.

In fact,

$$\sup_{y \in F} |Tx - Ty| \le \sup_{y \in F} |x - y|, \ x \in F$$

is also not satisfied for F = K.

References

- [1] Chih Sen Chang, Uniform convexity and the fixed point property, Univ. u Novom Sadu Zb. Rad. Prirod. Mat. Fak. Ser. Mat., 21,1(1991), 105 115.
- [2] Pai, D.V., Veeramani, P., On some fixed point theorems in Banach spaces, Internat. J. Math. and Math. Sci. 5, 1 (1982), 113 122.

REZIME

O TEOREMI O NEPOKRETNOJ TAČKI CHANGA

U radu se daju neke napomene o teoremi o nepokretnoj tački iz [1].

Received by the editors November 15, 1992