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Abstract

In this paper we discuss some common fixed point theorems for
three self mappings on a quasi-gauge space which extend the results
for a metric space in [1], [2], {4] and {5].
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1. Introduction

In this paper we discuss some common fixed point theorems for three self
mappings on a quasi-gauge space which extend the results for a metric space
in [1], [2], [4] and [5]. We need the concepts of quasi-gauge space, P-Cauchy
sequence, Sequential completeness as in [6] and [8].

A quasi-pseudometric on a set X is a non-negative real valued function
on X x X such that for any z, y, zin X .
p(z,z) = 0 and p(z,y) < p(z,2) + p(z,9).

A quasi-gauge structure for a topological space (X,T) is a family P of

quasi-pseudometrics on X such that 7" has as a subbase family { B(z,p,¢):
z € X, p€ P, € >0} where B(z,p,c) is the set {y € X : p(z,y) < €}.
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If a topological space has a quasi-gauge structure, it is called a quasi-gauge
space.

The sequence {z,} in a quasi-gauge space is called left (right) P-Cauchy
sequence if for each p € P and each € > 0 there is a point in X and an
integer k such that p(z,z,,) < &, (p(m,z) < €) for all m > k. (z and k
may depend upon ¢ and p.)

A quasi-gauge space is left (right) sequentially complete if every left
(right) P-Cauchy sequence in X converges to some element of X.

We prove the following result.

Theorem 1. Let T and I be commuting mappings and let T and J be com-
muting mappings of a left (right) sequentially complete quasi-gauge To space
satisfying the inequality for each p in P.

. p(Iz,Jy), p(Iz,Tz), p(Jy,Ty),
(1) p(Tz,Ty) <C max{ wI2.Ty), p(Jy,Ts)

for all z, y in X where 0 < C < 1.
Suppose that for all x in X, there exists an y in X such that
Te =1y=Jy.

If T is continuous and whenever Tz, — = itmplies p(Tz,,z) — 0 asn — oo
for each p in P, then T, I and J have a unique common fized point z.

Proof. Let zo be an arbitrary point in X, define a sequence {z,} inductively
by choosing
Tz, =1z, =Jz,, n=1,2,..

Let us now suppose that set of real numbers {p(Tz,,Tz1), p(Tz1,Tx,)} is
unbounded. Then there exists an integer n such that

(1-C)max{p(Tzn,Tz1),p(Tz1,Txy,)} > Cmax{p(Tz,,Txo),p(Tzo,Tz1)}

. p(Tzna Tzl), P(Tl'r,Tl'o)aP(Tzo, T.’II,.)
(2) max{ p(Tz,Tz,) > max 0<r<mn
These inequalities imply that for r = 1,2, ...n.
p(T.’II.,-,TIB()), < p(TzT,Tzl) +p(Tzl,T$0),
¢ max { p(Tzo, Tz,) Cmax\ o Tay)+ p(Te1, Te,)
< max{p(Tzn,Tz1),p(Tz1,T2y)}
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and so

p(Tz,, Tz1), p(Tz,,Txo),p(Txo, Tx,)
(3) ma.x{ o(Tzy. Ty) > C'max 0<r<n

‘We now prove by induction that

p(Tz'fHTml), k
< .
maX{ p(T(El,Tzn) - ¢ max{p(TzT’Tms) 01 S r,s S T}

for k = 1,2, ... Using inequality (1) we have

p(Ix'n,Jxl), p(Imn7Tmn)7 p(Jxl,T:cl),
< "
PTen,Tor) < Cma {p(fzn,Tzl), p(Jz1,Tz,)

p(Txrn-1,Tz0), p(Txp_1,T2y), p(Txo,Tzy),
Cma”‘{ P(Ten-1,T21), p(T0,Tn)

Iy p(Izlﬂjmn.), p(levTxl)a P(Jmean)a
<
p(Tz1,Tz,) < Cmax{ oIz, T2y, p(Jon, Tz

p(T-'EOaTm'n.—l)a p(TIBo,TIEl), p(Tx'n.—hTmn)a }

< V)
B pmax{ p(TIBo,T:En), p(Tx'n.—laTxl)

These inequalities further reduce to
max{p(T:vn, T:l:l),p(TiL'l, Tmn)} < Cp(Tmn—l ) Tzn)a

on using inequalities (2) and (3). Thus inequality holds for k = 1.
Assume that the inequality holds for some k. Then

p(TIBn,T.’E]), < k P(T$T,T$s)
""”‘{ WToTon) | = O™\ 1<ns<n
p(Iz,,Jz,), p(Iz,,Tz,),
< C*1 max P(J-'ES,T-'ES), p(Iz'r,Tzs)7
p(Jzs,Tx,): 1<r,8<n
p(Tz,_1,Tzs_1), p(T2r-1,Tz,),
< C*lmax p(Tzs_1,Tzs), p(Tz,—1,Tz;),
p(Tzs—1,Tz,): 1<r,5<n

On using inequality (3), this reduces to

p(Tﬂ:n, Tzl),

(4) max{ 2T, Tz,) } < C**' max{p(Tz,,Tz,): 1 <r,s <7}
1 n
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Inequality follows by induction.
Letting k tend to infinity in inequality (4) it now follows that

max{p(Tz,,Tz1),p(Tx1,T2,)} =0

giving a contraction to the assumption that the set of real numbers
{p(Tz,,,Tz1),p(Tz1,Tx,)} is unbounded.
It now follows that

M, = sup{p(Tz,,Tz,): r,s=0,1,...}
< sup{p(Tz,,Tz,)+ p(Tz1,Tz,): 7,5=0,1,...}

is finite.
Now for arbitrary ¢ > 0 choose an integer N, such that C» M, < ¢ for each
pin P.

IN

C max p(T:cNP,TzNPH), p(T:cm_l,T:chH),
p(Tzn,), Tz.,)
p(Tz,,Tz,), p(Tz,,Tz,),
p(Tzs,Tzy), p(Tzs,Tz,),
m—1<r, v <m,
N,<s, <N, +1
p(Tz.,Txs), p(Tz,,Tz,),
p(Tzs, Tzy), p(Tzs,Tz,),
m-—2<r, r<m,
Ny—1<s, & <N, +1

P(sz—l, Tpr)a p(sz——l, sz)a
p(sza Tsz-l-l)

IN

C max

C? max

IA

p(Tzrasz)a p(T:ET,TIETI),

p(TzsaTzs')a P(sz,Tzr)’
m—N,<r, r'<m,
1<s, & <Ny+1

< CNrmax

< CNPM,, <e€
Similarly we can show that
p(Tzn41,TTrm) < €.

Hence {T'z,} is both left and right P-Cauchy sequence in a left (right)
sequentially complete quasi-gauge space. So {T'z,} = {Izp41} = {JZnt1}
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’

converges to some z in X. »
Since T is continuous {T%z,} = {TIzn41} = {T'JTny1} converges to Tz.

p(Tz,z) < p(Tz,T*zy)+p(T?zn, Txy) + p(T T, 2)
p(ITz,,Tz,),
< p(Tz,T%*z,)+ Cmax{ p(ITz,,T?z,), p(Jzn,Txo),
p(ITz,,Tz,), p(Jzn, T z,)
Letting n tend to infinity since T' has the property whenever Tz, — «z,
p(Tzy,z) — 0
p(Tz,z) < Cmax{p(T'z,2),p(z,T2)}.
Similarly on using inequality (1) for p(Tz,,T?z,) and letting n tend to
infinity
p(2,Tz) < C max{p(z,Tz),p(Tz,2)}.
Since C < 1 from these inequalities p(z,Tz) = p(Tz,z) =0forall pin P. .
There must exists w in X such that

z=Tz=Jw=lw.
Then on using inequality (1) we have

p(I:cn,Jw), p(IiEn,T:En),
WTz,,Tw) < Cmax{ p(Jio,Tw), pllmaT),
p(Jw,Tzy,)

p(z,Tw) < p(z,Tzn) + p(T2n,Tw)

p(Tzﬂ'—bZ)a p(Tzn—laTzn)a
< p(2,Tz,)+ Cmax{  p(z,Tw), p(Tzn-1,Tw),
p(z,Tzy)

on letting » tend to infinity

p(z, Tw)
P(Tw, z)

Cp(za Tw)
p(Tw,Tzy) + p(Tzn, 2)
p(lw,Jz,), p(Iw,Tw)
¢ max { p(Jz'"" T:l:.n), p(Iw,Tzn), p(JiEn, TU) + P(Tzn, Z)

p(Z, Tzn—1)7 p(z, Tw)*) p(Tz’n-laTz’n),
C max (2, Txy), + p(Tzyp, 2)
P(ZaTw) + P(Tl'n—l, Tzn) + P(Tl'm Z)

<
<

IN

!
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Letting n tend to infinity
p(Tw,z) < Cp(z,Tw).
Since C < 1 from these inequalities
p(z,Tw) = p(Tw,z) =0, pe P.
Hence
z2=Tw=Iw=Jw
Jz=JTw=TJw=Tz=2
Iz=1Tw=TIw=Tz==
Thus z is the common fixed point of T', I and J.
Now suppose that T', I and J have another fixed point z’. Then

p(Iz,J2"), p(I1z,Tz),
p(z,2") = p(T2,T2") < Cmaxq p(J2',TZ'), p(Iz,T?"),
p(J2',Tz)

Cmax{p(z,2"), p(?,2)}

IA

Similarly
p(z',2) < Cmax{p(#,z), p(z,2")}.
So p(z,2') = p(2',2) = 0 for all p in P, uniqueness follows from this.

We now note that though it is not necessary for the mapping T to be
continuous in Theorem 1 of [2], it is certainly necessary for the mapping
T to be continuous, moreover T should satisfy the property that whenever
Tz, converges to z. p(Tz,,z) should also converges to zero for each p in
P, in this theorem.

To see this let X = [0,1], (X, P) be quasi-gauge left sequentially com-
plete Ty space where P is formed by the quasi-pseudometric

z—y if z>y
p(z,y)=< 0 if z<y<1/2
1 otherwise ’

Define the mapping T by

s = {

if z<
if z>

- ot
w

B

b= =
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Choose J and I to be identity mapping. T, I and J satisfy all the conditions
“in the theorem with C = 1/2 except that whenever T'z,, — z, p(Tz,,z) — 0
for all pin P. Hence T, I and J have no common fixed point.

The following example shows the necessity of the continuity of 7.

Example. Let X = [0,1] with the quasi-gauge structure P formed by the
quasi-pseudometric :

_Jz-y if z2>y
P(xay)—{y;_z if y>z
(X, P) is a left and right sequentially complete quasi-gauge T, space with
- the property that whenever z,, — 2z, p(z,,z) — 0. Define the continuous
mapping / by
\ Iz = {

z if z<
Jz_{l if >

Te = 1—11 if z<
14 if >

if z<
if z2>

wi= 8
| |t

J and T by

G0 | Q3 1

OO |t |t

satisfies all the conditions of the theorem with C = 1/2 except that T is
continuous. Hence they do not have a common fixed poit. Now we will
prove a common fixed point theorem, in which it is not necessary for T to
be continuous.

Theorem 2. Let TT and I be commuting mappings and let T and J be
commuting mappings of a left (right) sequentially complete quasi-gauge Ty
space (X, P) satisfying the inequality for each p in P

(Tz,Ty), (Iz,Jy), p(Iz,Tz), p(Jy,Ty),
(5)max{ I;(Ty,Ti) }Scmax{ ’ p?fx,l’}y), p(Jy,I’}x)y ’ }

for all z, y in X where 0 < C < 1. If for each x in X, there exists an y in
X such that
Te=1y=Jy

and if one of T, I and J is continuous with the property that whenever, for
ezample, Iz, — z, p(Iz,,z) — 0 for each p in P. Then T, I and J have a
unique common fized point.
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Proof. Let zg be an arbitrary point in X. Define the sequence {z,} induc-
tively as in the proof of Theorem 1 by choosing z,41 such that

TIIJn = I$n+1 = J(L‘n+1, n= 0,1,2,...

then {Tz.} = {IZnt1} = {JZ,41} is both left and right P-Cauchy sequence.
Argument for this runs almost in the same lines as in the proof of Theorem
1. So we will omit the details.

Since {Tz,} = {Izn41} = {JZny1} is the left and right P-Cauchy se-
quence in a left (right) sequentially complete quasi-gauge space (X, P) has
a limit z in X.

We will now suppose that the mapping [ is continuous and for each p

in P, p({z,,z) — 0 whenever [z,, — z. Then the sequence {[Tz,} =
{TIz,41} = {I*z,41} converges to the limit [z.

Using the inequality (5) we have

p(szTb,an), p(sz’n)TIzn)7
max{ p(?j{:"’gin))’ } < Cmax¢ p(Jen,Tzn), p(1%z,, Tz,),
PLEEns L %n p(Jz,, Tlz,)

p(z,1z) < p(z2,Tz,) + p(Tz,, T1z,) + p(TIzy, [2)
p(I*z,,Jz,), p(I*z,,Tlz,),
p(z,Tzn) + Cmax{ p(Jzn,Tz,), p(1%2,,Tz,), +
p(Jzn, T1z,,)

IA

+p(TIz,, 12)
Letting n tend to infinity we have
p(z,1z) < Cmax{p(z,1z),p(1z,2)}.
Similarly we will get
p(1z,2) < Cmax{p(z,1z),p(1z,2)}.
Since C < 1, p(z,1z) = p(Iz,z) =0 for all pin P. So z = [=.
Using inequality (5) again we have

»(Tz,Tzy), p({z,Jz,), p(1z,Tz), p(Jzs,Tzy),
max{ p(Tz,,Tz) < Cmax p(1z,Tz,), p(Jzyn,T2)
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p(z,Tz) < p(z,Tz,)+ p(Tz,,T2)
p(Iz,Jzv), p(12,Tz),
p(z,Tz,) + Cmax p(Jzn,Tzy), p(Tz,Tz,),
p(Jz,,TZ)

IN

Then by letting »n tend to infinity
p(,T2) < Cp(2,T=).

Similarly p(Tz,z) < Cp(z,Tz).
Since C < 1, Tz = =.
Then there exists a point w in X such that

Tz=z=Iw=Jw.
On using inequality (5) we have

w{ Gl ) < cmme MRS

IN

IN

Cp(z,Tw)
for each p in P, then it follows that
z=Tw.

Thus Jz = JTw = TJw = Tz = z and we have proved that z is the common
fixed point of T, I and J.

If the mapping J is continuous instead of I, then the proof that T, I
and J have a common fixed point is of course similar.

If the mapping T is continuous the result follows from Theorem 1. The
proof of uniqueness is the same as that in Theorem 1. Theorem 1 of [2]
becomes a special case.

Corollary 1. Let T and I be commuting mappings of a sequentially com-
plete quasi-gauge Ty space satisfy the inequality for each p in P

p(Tz,Ty), p(Iz, ly), p({z,Tz), p(ly,Ty),
max{ p(Ty,Tz) < € max p(Iz,Ty), p({y,Tx)

for all z, y in X where 0 < C < 1. If the range of T is contained in the
range of I and if I is continuous and whenever ¢, — z, p(Iz,,z) — 0 for
all p in P, then T and I have a unigque common fized point.
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Proof. When I = J in Theorem 2 the condition that for each z in X there
exists an y in X such that

Tz=Iy=Jy

reduces to the range of T is contained in the range of I. Then the result
follows immediately from the theorem. This result for complete metric space
was proved in [5]. Next corollary also follows similarly from Theorem 1 and
for complete metric space it was given in [2] and for bounded metric space

in [5].

Corollary 2. Let T and I be commuting mappings of a left (right) sequen-
tially complete quasi-gauge Ty -space satisfying the inequality for each p in
P
p(Iz,1y), p(Iz,Tz), p(1y,Ty),
s i AR

for all z, y in X where 0 < C < 1. If the range of T 1s contained in the
range of I and if T is continuous, whenever z,, — z, p(Tz,,z) — 0 for all
pin P, then T and I have a unique common fized point.

When the mapping I in Corollary 2 is the identity mapping we have the
following result which will be a generalization of theorem in [1] and the
theorem Ciri¢ [4].

Corollary 3. Let T be a mapping on a T-orbitally complete quasi-gauge To
space satisfying the inequality that for each p in P

o(Tz,Ty), p(z,y), p(z,Tz), p(y,Ty),
max{ p(Ty,Tz) } s C.max{ o(z,Ty), p(y,Tz) }

for all z, y in X where 0 < C < 1. Then T has a unique fized point.
Tt can be noted that when I = J identity map {z,: n =0,1,2,...} which

we choose in Theorem 2 is nothing but zg, T'zo, T2z0, ... So sequential
completeness can be replaced by T-orbital completeness.
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REZIME
NEPOKRETNE TACKE ZA TRI PRESLIKAVANJA

U radu su razmatrane teoreme o zajednickoj fiksnoj tacki za tri zasebna
preslikavanja u kvazi-metrickom prostoru, koje prosiruju rezultate metrickog
prostora iz radova [1], [2], [4] and [5].
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