Univ. u Novom Sadu Zb. Rad. Prirod.—Mat. Fak. Ser. Mat. 23, 2 (1993), 23 - 33 Review of Research Faculty of Science Mathematics Series

F. . . POINTS FOR THREE MAPPINGS

Jessy Antony, P. V. Subrahmanyam
Department of Mathematics
Indian Institute of Technology,
Madras 600 036, India

Abstract

In this paper we discuss some common fixed point theorems for three self mappings on a quasi-gauge space which extend the results for a metric space in [1], [2], [4] and [5].

AMS Mathematics Subject Classification (1991): 54H25 Key words and phrases: fixed point, quasi-gauge space.

1. Introduction

In this paper we discuss some common fixed point theorems for three self mappings on a quasi-gauge space which extend the results for a metric space in [1], [2], [4] and [5]. We need the concepts of quasi-gauge space, P-Cauchy sequence, Sequential completeness as in [6] and [8].

A quasi-pseudometric on a set X is a non-negative real valued function on $X \times X$ such that for any x, y, z in X. p(x,x) = 0 and $p(x,y) \le p(x,z) + p(z,y)$.

A quasi-gauge structure for a topological space (X,T) is a family P of quasi-pseudometrics on X such that T has as a subbase family $\{B(x,p,\varepsilon): x \in X, p \in P, \varepsilon > 0\}$ where $B(x,p,\varepsilon)$ is the set $\{y \in X: p(x,y) < \varepsilon\}$.

If a topological space has a quasi-gauge structure, it is called a quasi-gauge space.

The sequence $\{x_n\}$ in a quasi-gauge space is called left (right) P-Cauchy sequence if for each $p \in P$ and each $\varepsilon > 0$ there is a point in X and an integer k such that $p(x,x_m) < \varepsilon$, $(p(x_m,x) < \varepsilon)$ for all $m \ge k$. (x and x may depend upon ε and x)

A quasi-gauge space is left (right) sequentially complete if every left (right) P-Cauchy sequence in X converges to some element of X.

We prove the following result.

Theorem 1. Let T and I be commuting mappings and let T and J be commuting mappings of a left (right) sequentially complete quasi-gauge T_0 space satisfying the inequality for each p in P.

(1)
$$p(Tx, Ty) \le C \max \left\{ \begin{array}{l} p(Ix, Jy), & p(Ix, Tx), & p(Jy, Ty), \\ p(Ix, Ty), & p(Jy, Tx) \end{array} \right\}$$

for all x, y in X where $0 \le C < 1$.

Suppose that for all x in X, there exists an y in X such that

$$Tx = Iy = Jy.$$

If T is continuous and whenever $Tx_n \to x$ implies $p(Tx_n, x) \to 0$ as $n \to \infty$ for each p in P, then T, I and J have a unique common fixed point z.

Proof. Let x_0 be an arbitrary point in X, define a sequence $\{x_n\}$ inductively by choosing

$$Tx_{n-1} = Ix_n = Jx_n, \quad n = 1, 2, ...$$

Let us now suppose that set of real numbers $\{p(Tx_n, Tx_1), p(Tx_1, Tx_n)\}$ is unbounded. Then there exists an integer n such that

$$(1-C)\max\{p(Tx_n,Tx_1),p(Tx_1,Tx_n)\}>C\max\{p(Tx_1,Tx_0),p(Tx_0,Tx_1)\}$$

$$(2) \qquad \max \left\{ \begin{array}{l} p(Tx_n, Tx_1), \\ p(Tx_1, Tx_n) \end{array} \right\} > \max \left\{ \begin{array}{l} p(Tx_\tau, Tx_0), p(Tx_0, Tx_\tau) \\ 0 \le r < n \end{array} \right\}$$

These inequalities imply that for r = 1, 2, ...n.

$$C \max \left\{ \begin{array}{l} p(Tx_{\tau}, Tx_{0}), \\ p(Tx_{0}, Tx_{\tau}) \end{array} \right\} \leq C \max \left\{ \begin{array}{l} p(Tx_{\tau}, Tx_{1}) + p(Tx_{1}, Tx_{0}), \\ p(Tx_{0}, Tx_{1}) + p(Tx_{1}, Tx_{\tau}) \end{array} \right\} \\ < \max \{ p(Tx_{n}, Tx_{1}), p(Tx_{1}, Tx_{n}) \}$$

and so

$$(3) \quad \max \left\{ \begin{array}{l} p(Tx_n, Tx_1), \\ p(Tx_1, Tx_n) \end{array} \right\} > C \max \left\{ \begin{array}{l} p(Tx_r, Tx_0), p(Tx_0, Tx_r) \\ 0 \le r < n \end{array} \right\}$$

We now prove by induction that

$$\max \left\{ \begin{array}{l} p(Tx_n, Tx_1), \\ p(Tx_1, Tx_n) \end{array} \right\} \le C^k \max \{ p(Tx_r, Tx_s) : 1 \le r, s \le r \}$$

for k = 1, 2, ... Using inequality (1) we have

$$\begin{array}{lll} p(Tx_n,Tx_1) & \leq & C \max \left\{ \begin{array}{l} p(Ix_n,Jx_1), & p(Ix_n,Tx_n), & p(Jx_1,Tx_1), \\ p(Ix_n,Tx_1), & p(Jx_1,Tx_n) \end{array} \right\} \\ & = & C \max \left\{ \begin{array}{l} p(Tx_{n-1},Tx_0), & p(Tx_{n-1},Tx_n), & p(Tx_0,Tx_1), \\ p(Tx_{n-1},Tx_1), & p(Tx_0,Tx_n) \end{array} \right\} \end{array}$$

$$p(Tx_1, Tx_n) \leq C \max \left\{ \begin{array}{l} p(Ix_1, Jx_n), & p(Ix_1, Tx_1), & p(Jx_n, Tx_n), \\ p(Ix_1, Tx_n), & p(Jx_n, Tx_n) \end{array} \right\}$$

$$\leq C \max \left\{ \begin{array}{l} p(Tx_0, Tx_{n-1}), & p(Tx_0, Tx_1), & p(Tx_{n-1}, Tx_n), \\ p(Tx_0, Tx_n), & p(Tx_{n-1}, Tx_1) \end{array} \right\}$$

These inequalities further reduce to

$$\max\{p(Tx_n, Tx_1), p(Tx_1, Tx_n)\} \le Cp(Tx_{n-1}, Tx_n),$$

on using inequalities (2) and (3). Thus inequality holds for k = 1. Assume that the inequality holds for some k. Then

$$\max \left\{ \begin{array}{l} p(Tx_{n}, Tx_{1}), \\ p(Tx_{1}, Tx_{n}) \end{array} \right\} \leq C^{k} \max \left\{ \begin{array}{l} p(Tx_{r}, Tx_{s}) \\ 1 \leq r, s \leq n \end{array} \right\}$$

$$\leq C^{k+1} \max \left\{ \begin{array}{l} p(Ix_{r}, Jx_{s}), & p(Ix_{r}, Tx_{r}), \\ p(Jx_{s}, Tx_{s}), & p(Ix_{r}, Tx_{s}), \\ p(Jx_{s}, Tx_{r}) : & 1 \leq r, s \leq n \end{array} \right\}$$

$$\leq C^{k+1} \max \left\{ \begin{array}{l} p(Tx_{r-1}, Tx_{s-1}), & p(Tx_{r-1}, Tx_{r}), \\ p(Tx_{s-1}, Tx_{s}), & p(Tx_{r-1}, Tx_{s}), \\ p(Tx_{s-1}, Tx_{r}) : & 1 \leq r, s \leq n \end{array} \right\}$$

On using inequality (3), this reduces to

(4)
$$\max \left\{ \begin{array}{l} p(Tx_n, Tx_1), \\ p(Tx_1, Tx_n) \end{array} \right\} \le C^{k+1} \max \{ p(Tx_r, Tx_s) : 1 \le r, s \le r \}$$

Inequality follows by induction.

Letting k tend to infinity in inequality (4) it now follows that

$$\max\{p(Tx_n, Tx_1), p(Tx_1, Tx_n)\} = 0$$

giving a contraction to the assumption that the set of real numbers $\{p(Tx_n, Tx_1), p(Tx_1, Tx_n)\}$ is unbounded. It now follows that

$$M_p = \sup\{p(Tx_r, Tx_s) : r, s = 0, 1, ...\}$$

$$\leq \sup\{p(Tx_r, Tx_1) + p(Tx_1, Tx_s) : r, s = 0, 1, ...\}$$

is finite.

Now for arbitrary $\varepsilon > 0$ choose an integer N_p such that $C^{N_p}M_p < \varepsilon$ for each p in P.

$$\begin{split} p(Tx_m, Tx_{N_p+1}) & \leq & C \max \left\{ \begin{array}{l} p(Tx_{m-1}, Tx_{N_p}), & p(Tx_{m-1}, Tx_m), \\ p(Tx_{N_p}, Tx_{N_p+1}), & p(Tx_{m-1}, Tx_{N_p+1}), \\ p(Tx_{N_p}), Tx_m) \end{array} \right\} \\ & \leq & C \max \left\{ \begin{array}{l} p(Tx_r, Tx_s), & p(Tx_r, Tx_{r'}), \\ p(Tx_s, Tx_{s'}), & p(Tx_s, Tx_r), \\ m-1 \leq r, & r' \leq m, \\ N_p \leq s, & s' \leq N_p + 1 \end{array} \right\} \\ & \leq & C^2 \max \left\{ \begin{array}{l} p(Tx_r, Tx_s), & p(Tx_r, Tx_{r'}), \\ p(Tx_s, Tx_{s'}), & p(Tx_s, Tx_r), \\ m-2 \leq r, & r' \leq m, \\ N_p - 1 \leq s, & s' \leq N_p + 1 \end{array} \right\} \\ & \vdots \\ & \leq & C^{N_p} \max \left\{ \begin{array}{l} p(Tx_r, Tx_s), & p(Tx_r, Tx_{r'}), \\ p(Tx_s, Tx_{s'}), & p(Tx_s, Tx_{r'}), \\ p(Tx_s, Tx_{s'}), & p(Tx_s, Tx_r), \\ m-N_p \leq r, & r' \leq m, \\ 1 \leq s, & s' \leq N_p + 1 \end{array} \right\} \\ & \leq & C^{N_p} M_r \leq \varepsilon \end{split}$$

Similarly we can show that

$$p(Tx_{N_p+1}, Tx_m) < \varepsilon.$$

Hence $\{Tx_n\}$ is both left and right P-Cauchy sequence in a left (right) sequentially complete quasi-gauge space. So $\{Tx_n\} = \{Ix_{n+1}\} = \{Jx_{n+1}\}$

converges to some z in X.

Since T is continuous $\{T^2x_n\} = \{TIx_{n+1}\} = \{TJx_{n+1}\}$ converges to Tz.

$$p(Tz,z) \leq p(Tz,T^{2}x_{n}) + p(T^{2}x_{n},Tx_{n}) + p(Tx_{n},z)$$

$$\leq p(Tz,T^{2}x_{n}) + C \max \left\{ p(ITx_{n},Tx_{n}), p(Jx_{n},Tx_{0}), p(ITx_{n},Tx_{n}), p(Jx_{n},Tx_{n}), p(Jx_{n},T^{2}x_{n}) \right\}$$

Letting n tend to infinity since T has the property whenever $Tx_n \to x$, $p(Tx_n, x) \to 0$

$$p(Tz,z) \leq C \max\{p(Tz,z),p(z,Tz)\}.$$

Similarly on using inequality (1) for $p(Tx_n, T^2x_n)$ and letting n tend to infinity

$$p(z,Tz) \leq C \max\{p(z,Tz),p(Tz,z)\}.$$

Since C < 1 from these inequalities p(z, Tz) = p(Tz, z) = 0 for all p in P. There must exists ω in X such that

$$z = Tz = J\omega = I\omega$$
.

Then on using inequality (1) we have

$$p(Tx_n, T\omega) \le C \max \left\{ egin{array}{ll} p(Ix_n, J\omega), & p(Ix_n, Tx_n), \\ p(J\omega, T\omega), & p(Ix_n, T\omega), \\ p(J\omega, Tx_n) \end{array}
ight\}$$

$$p(z,T\omega) \leq p(z,Tx_n) + p(Tx_n,T\omega)$$

$$\leq p(z,Tx_n) + C \max \left\{ p(Tx_{n-1},z), p(Tx_{n-1},Tx_n), p(z,T\omega), p(Tx_{n-1},T\omega), p(z,Tx_n) \right\}$$

on letting n tend to infinity

$$\begin{array}{lll} p(z,T\omega) & \leq & Cp(z,T\omega) \\ p(T\omega,z) & \leq & p(T\omega,Tx_n) + p(Tx_n,z) \\ & \leq & C\max\left\{\begin{array}{l} p(I\omega,Jx_n), & p(I\omega,T\omega) \\ p(Jx_n,Tx_n), & p(I\omega,Tx_n), & p(Jx_n,T\omega) \end{array}\right\} + p(Tx_n,z) \\ & \leq & C\max\left\{\begin{array}{l} p(z,Tx_{n-1}), & p(z,T\omega), & p(Tx_{n-1},Tx_n), \\ p(z,Tx_n), & & & \\ p(z,Tx_n), & & & \\ p(z,T\omega) + p(Tx_{n-1},Tx_n) + p(Tx_n,z) \end{array}\right\} + p(Tx_n,z) \end{array}$$

Letting n tend to infinity

$$p(T\omega, z) \leq Cp(z, T\omega).$$

Since C < 1 from these inequalities

$$p(z,T\omega)=p(T\omega,z)=0,\ \ p\in P.$$

Hence

$$z=T\omega=I\omega=J\omega$$
 $Jz=JT\omega=TJ\omega=Tz=z$
 $Iz=IT\omega=TI\omega=Tz=z$

Thus z is the common fixed point of T, I and J.

Now suppose that T, I and J have another fixed point z'. Then

$$p(z,z') = p(Tz,Tz') \le C \max \left\{ egin{array}{ll} p(Iz,Jz'), & p(Iz,Tz), \\ p(Jz',Tz'), & p(Iz,Tz'), \\ p(Jz',Tz) \end{array}
ight\} \\ \le C \max \{ p(z,z'), & p(z',z) \}. \end{array}$$

Similarly

$$p(z',z) \le C \max\{p(z',z), p(z,z')\}.$$

So p(z,z') = p(z',z) = 0 for all p in P, uniqueness follows from this.

We now note that though it is not necessary for the mapping T to be continuous in Theorem 1 of [2], it is certainly necessary for the mapping T to be continuous, moreover T should satisfy the property that whenever Tx_n converges to x. $p(Tx_n, x)$ should also converges to zero for each p in P, in this theorem.

To see this let X = [0, 1], (X, P) be quasi-gauge left sequentially complete T_0 space where P is formed by the quasi-pseudometric

$$p(x,y) = \left\{ egin{array}{ll} x-y & ext{if} & x \geq y \ 0 & ext{if} & x \leq y < 1/2 \ 1 & ext{otherwise} \end{array}
ight.$$

Define the mapping T by

$$Tx = \left\{ egin{array}{ll} rac{1+x}{3} & ext{if} & x < rac{1}{2} \ rac{1}{3} & ext{if} & x \geq rac{1}{2} \end{array}
ight.$$

Choose J and I to be identity mapping. T, I and J satisfy all the conditions in the theorem with C = 1/2 except that whenever $Tx_n \to x$, $p(Tx_n, x) \to 0$ for all p in P. Hence T, I and J have no common fixed point.

The following example shows the necessity of the continuity of T.

Example. Let X = [0, 1] with the quasi-gauge structure P formed by the quasi-pseudometric

$$p(x,y) = \left\{ egin{array}{ll} x-y & ext{if} & x \geq y \ rac{y-x}{2} & ext{if} & y \geq x \end{array}
ight.$$

(X, P) is a left and right sequentially complete quasi-gauge T_2 space with the property that whenever $x_n \to x$, $p(x_n, x) \to 0$. Define the continuous mapping I by

$$Ix = \begin{cases} x & \text{if } x < \frac{1}{3} \\ \frac{1}{3} & \text{if } x \ge \frac{1}{3} \end{cases}$$

J and T by

$$Jx = \begin{cases} x & \text{if } x < \frac{1}{3} \\ 1 & \text{if } x \ge \frac{1}{3} \end{cases}$$
$$Tx = \begin{cases} \frac{1+x}{4} & \text{if } x < \frac{1}{3} \\ \frac{1}{4} & \text{if } x > \frac{1}{2} \end{cases}$$

satisfies all the conditions of the theorem with C=1/2 except that T is continuous. Hence they do not have a common fixed poit. Now we will prove a common fixed point theorem, in which it is not necessary for T to be continuous.

Theorem 2. Let TT and I be commuting mappings and let T and J be commuting mappings of a left (right) sequentially complete quasi-gauge T_0 space (X, P) satisfying the inequality for each p in P

$$(5) \max \left\{ \begin{array}{c} p(Tx, Ty), \\ p(Ty, Tx) \end{array} \right\} \leq C \max \left\{ \begin{array}{c} p(Ix, Jy), & p(Ix, Tx), & p(Jy, Ty), \\ p(Ix, Ty), & p(Jy, Tx) \end{array} \right\}$$

for all x, y in X where $0 \le C < 1$. If for each x in X, there exists an y in X such that

$$Tx = Iy = Jy$$

and if one of T, I and J is continuous with the property that whenever, for example, $Ix_n \to x$, $p(Ix_n, x) \to 0$ for each p in P. Then T, I and J have a unique common fixed point.

Proof. Let x_0 be an arbitrary point in X. Define the sequence $\{x_n\}$ inductively as in the proof of Theorem 1 by choosing x_{n+1} such that

$$Tx_n = Ix_{n+1} = Jx_{n+1}, \quad n = 0, 1, 2, ...$$

then $\{Tx_n\} = \{Ix_{n+1}\} = \{Jx_{n+1}\}$ is both left and right P-Cauchy sequence. Argument for this runs almost in the same lines as in the proof of Theorem 1. So we will omit the details.

Since $\{Tx_n\} = \{Ix_{n+1}\} = \{Jx_{n+1}\}$ is the left and right P-Cauchy sequence in a left (right) sequentially complete quasi-gauge space (X, P) has a limit z in X.

We will now suppose that the mapping I is continuous and for each p in P, $p(Ix_n, x) \to 0$ whenever $Ix_n \to x$. Then the sequence $\{ITx_n\} = \{I^2x_{n+1}\} = \{I^2x_{n+1}\}$ converges to the limit Iz.

Using the inequality (5) we have

$$\max \left\{ \begin{array}{l} p(TIx_n, Tx_n), \\ p(Tx_n, Tx_n) \end{array} \right\} \leq C \max \left\{ \begin{array}{l} p(I^2x_n, Jx_n), & p(I^2x_n, TIx_n), \\ p(Jx_n, Tx_n), & p(I^2x_n, Tx_n), \\ p(Jx_n, TIx_n) \end{array} \right\}$$

$$\begin{array}{lll} p(z,Iz) & \leq & p(z,Tx_n) + p(Tx_n,TIx_n) + p(TIx_n,Iz) \\ & \leq & p(z,Tx_n) + C \max \left\{ \begin{array}{ll} p(I^2x_n,Jx_n), & p(I^2x_n,TIx_n), \\ p(Jx_n,Tx_n), & p(I^2x_n,Tx_n), \\ p(Jx_n,TIx_n) \end{array} \right\} + \\ & + p(TIx_n,Iz) \end{array}$$

Letting n tend to infinity we have

$$p(z, Iz) < C \max\{p(z, Iz), p(Iz, z)\}.$$

Similarly we will get

$$p(Iz,z) \le C \max\{p(z,Iz),p(Iz,z)\}.$$

Since C < 1, p(z, Iz) = p(Iz, z) = 0 for all p in P. So z = Iz.

Using inequality (5) again we have

$$\max \left\{ \begin{array}{c} p(Tz,Tx_n), \\ p(Tx_n,Tz) \end{array} \right\} \leq C \max \left\{ \begin{array}{c} p(Iz,Jx_n), & p(Iz,Tz), & p(Jx_n,Tx_n), \\ p(Iz,Tx_n), & p(Jx_n,Tz) \end{array} \right\}$$

$$p(z,Tz) \leq p(z,Tx_n) + p(Tx_n,Tz) \\ \leq p(z,Tx_n) + C \max \left\{ \begin{array}{l} p(Iz,Jx_n), & p(Iz,Tz), \\ p(Jx_n,Tx_n), & p(Tz,Tx_n), \\ p(Jx_n,Tz) \end{array} \right\}$$

Then by letting n tend to infinity

$$p(z,Tz) \leq Cp(z,Tz).$$

Similarly $p(Tz, z) \leq Cp(z, Tz)$.

Since C < 1, Tz = z.

Then there exists a point ω in X such that

$$Tz = z = I\omega = J\omega$$
.

On using inequality (5) we have

$$\max \left\{ \begin{array}{l} p(z,T\omega), \\ p(T\omega,z) \end{array} \right\} \leq C \max \left\{ \begin{array}{l} p(Iz,J\omega), \ p(Iz,Tz), \ p(J\omega,T\omega), \\ p(Iz,T\omega), \ p(J\omega,Tz) \end{array} \right\} \\ \leq C p(z,T\omega)$$

for each p in P, then it follows that

$$z = T\omega$$
.

Thus $Jz = JT\omega = TJ\omega = Tz = z$ and we have proved that z is the common fixed point of T, I and J.

If the mapping J is continuous instead of I, then the proof that T, I and J have a common fixed point is of course similar.

If the mapping T is continuous the result follows from Theorem 1. The proof of uniqueness is the same as that in Theorem 1. Theorem 1 of [2] becomes a special case.

Corollary 1. Let T and I be commuting mappings of a sequentially complete quasi-gauge T_0 space satisfy the inequality for each p in P

$$\max \left\{ \begin{array}{c} p(Tx,Ty), \\ p(Ty,Tx) \end{array} \right\} \leq C \max \left\{ \begin{array}{c} p(Ix,Iy), \ p(Ix,Tx), \ p(Iy,Ty), \\ p(Ix,Ty), \ p(Iy,Tx) \end{array} \right\}$$

for all x, y in X where $0 \le C < 1$. If the range of T is contained in the range of I and if I is continuous and whenever $x_n \to x$, $p(Ix_n, x) \to 0$ for all p in P, then T and I have a unique common fixed point.

Proof. When I = J in Theorem 2 the condition that for each x in X there exists an y in X such that

$$Tx = Iy = Jy$$

reduces to the range of T is contained in the range of I. Then the result follows immediately from the theorem. This result for complete metric space was proved in [5]. Next corollary also follows similarly from Theorem 1 and for complete metric space it was given in [2] and for bounded metric space in [5].

Corollary 2. Let T and I be commuting mappings of a left (right) sequentially complete quasi-gauge T_0 -space satisfying the inequality for each p in P

 $p(Tx,Ty) \leq C \max \left\{ egin{array}{ll} p(Ix,Iy), & p(Ix,Tx), & p(Iy,Ty), \ p(Ix,Ty), & p(Iy,Tx) \end{array}
ight\}$

for all x, y in X where $0 \le C < 1$. If the range of T is contained in the range of I and if T is continuous, whenever $x_n \to x$, $p(Tx_n, x) \to 0$ for all p in P, then T and I have a unique common fixed point.

When the mapping I in Corollary 2 is the identity mapping we have the following result which will be a generalization of theorem in [1] and the theorem Ćirić [4].

Corollary 3. Let T be a mapping on a T-orbitally complete quasi-gauge T_0 space satisfying the inequality that for each p in P

$$\max\left\{egin{array}{l} p(Tx,Ty),\ p(Ty,Tx) \end{array}
ight\} \leq C\max\left\{egin{array}{l} p(x,y),\ p(x,Tx),\ p(y,Ty),\ p(x,Ty),\ p(y,Tx) \end{array}
ight\}$$

for all x, y in X where $0 \le C < 1$. Then T has a unique fixed point.

It can be noted that when I = J identity map $\{x_n : n = 0, 1, 2, ...\}$ which we choose in Theorem 2 is nothing but $x_0, Tx_0, T^2x_0, ...$ So sequential completeness can be replaced by T-orbital completeness.

References

[1] Fisher, B., Quasi-contractions on metric space, Proc. Amer. Math. Soc. 75 (1979), 321-325.

- [2] Fisher, B., Three mappings with a common fixed point, Math. Sem. Note. Vol. 10 (1982) 293-302.
- [3] Fisher, B., Common fixed points of commuting mappings, Bull. Inst. Math. Acad. Sinica.
- [4] Ćirić, Lj., On family of contractive maps and fixed points, Publ. Inst. Math. Vol. 17 (1974) 45-51.
- [5] Das, K., M., Naik, K., V., Common fixed point theorems for commuting maps on a metric space, Proc. Amer. Math. Soc. 77 (1979) 369-373.
- [6] Reilly, I., L., Quasi-Gauge Spaces, J. London Math. Soc. 6 (1973) 481-487.
- [7] Reilly, I., L., Some fixed point theorems, Bull. Austral. Math. Soc. 10 (1974) 359-363.
- [8] Subrahmanyam, P., V., Remarks on fixed point theorems related to Banach's contraction principle, J. Math. Phy. Sci. 8 (1974) 445-457.

REZIME

NEPOKRETNE TAČKE ZA TRI PRESLIKAVANJA

U radu su razmatrane teoreme o zajedničkoj fiksnoj tački za tri zasebna preslikavanja u kvazi-metričkom prostoru, koje proširuju rezultate metričkog prostora iz radova [1], [2], [4] and [5].

Received by the editors October 23, 1989