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Abstract

A recurrence relation for the number of 2-factors of the cartesian
product P5 x P, is derived in the paper. By solving the recurrence
relation we obtain an explicit formula for the number f(n) of 2-factors
in P; x P, is obtained.
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1. Introduction

Let P, denote a path with n vertices, and let f,,(n) be the number of 2-
factors in the cartesian product P, X P,.

Since P,, X P, is isomorphic to P, x P,,, we may consider the vertex-set
of P, X P, as {0,1,---,m—1} x {0,1,---,n— 1} so that P, X P, can be
represented graphically as an m-by-n grid in the usual cartesian plane. For
instance , Figure 1. contains such a representation of Ps X P7, with one of
its 2-factors drawn in bold lines. It is easy to prove the following statement.

Theorem 1. P,, x P, has a 2-factor iff the number of vertices is even, i.e.
iff at least one of the numbers m,n 1is even,
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From now on we shall consider only the case when at least one of m
and n is even.

It is obvious that Fy(n)= F,(1)=0 for n,m >1

Since F,(n) = F,(m), we may take 3 < m < n, without the loss of
generality.

Consider now a labelled graph P,, x F,, and any of its 2-factors. The
total number of cells of that graph is (m —1)-(n—1). With each cell of that
graph we associate an element of the set {0,1} in the following way : if the
cell w lies in the interiors of an odd number of circuits of the given 2-factors,
then the element associated with w is 1, in all other cases the associated
member is 0.

111111110711
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110J1]0]1]1
Fig.1

In that way, with each 2-factors of the labeled graph P, x P, we as-
sociated uniquely a binary matrix A = [a; ;](m-1)x(n-1) Which satisfies the
following conditions:

e The first adjacency condition for two columns:
(1) (Vi)(1<j<n=-2)
(a1 =011 =0 V Gm_1; = am_1541 =0)
( two adjacent zeros are not allowed in the first or in the last row ).

e The second adjacency condition for two columns:

(Vi)(1<i<(m=2)(Vj))(1 <j<(n-2)

(ai,jv Ait1,5, Aiy+1, ai+1.j+1) g {(070v0’0)v (17 1,1, 1)7 (1a 0,0, 1), (07 1, 170)}
(2)
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e The first condition for the first and the last columns:

(3) (@11 = Gm-11 = G p=1 = Q11 = 1)

e The second condition for the first and the last columns:
(4) | (Vi1 <i<m—2)

(a1 =@ai4+11=0 V ain_1 =aiy1,n-1 =0)

Conversely, it can be proved that with each binary matrix A = [a; ;](m—-1)x(rn-1)
satisfying the conditions (1) - (4) a 2-factor of P, X P, can be uniquely
associated. In that way a bijection is established between all 2-factors of
the labelled graph P, X P, and all binary matrices 4 = [a;;](m-1)x(n-1)
satisfying the conditions (1) - (4) .

We are now going to solve the equivalent problem of enumeration of such
matrices. For given m, we consider graph D with the vertex set V(D) =
{0,1,...,2""1 — 1} in which the two vertices p and ¢ are adjacent iff the
numbers p and ¢ satisfy the following condition: Let pipz--pm—1 and
9102 - Gm_1 be the binary representations of p and ¢ , then:

(5) (VHI<j<n=2p=q =0V pn_1=gn_1=0)
i
(i1 <i<m-2)Vi)(1<j<n-2)
(6) (piapH-laqia Qi+1) Ql {(0707070)7(1a1a1a1)7(1707071)7(07 15 1’0)}

Definition 1. A vertez p € V(D) is said to be the main vertezx ; if its
binary representation Ppipz - Pm—1 Satisfies the following conditions:

(7) P1=pm—1 =1

and
(8) (Vi)(1 <i<m— 1)=(pi = piy1 = 0)
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In this way the problem of enumeration of all binary matrices 4 =
[ai,j](m_l)x(n_l) satisfying the conditions (1) - (4) is reduced to the problem
of enumeration of all walks of the length n— 2 in D with the initial and final
vertices in the set of main vertices.

Let m = 5. The adjacency matrix of the associated digraph D is

000000000001 O01 01
0000000000O0T1 1101
00000000O0O0OTI1O0O0O0 1
000000O0O0T1T11000T10
000000000O0O0O0O0T10 1
0 00000000O0O00O0T1 1 0 1
000000O0OOOO0O0O0O0O0 O
000000O0O0O0O0O0OTI1T100
0001000000O0T1010 1
0001000000011 101
00010000000T100 01
111000001 1100010
01 0001010100000 0
1 1001101110000 00
0001000000010000
11 1011001110000 0]

The set of main vertices is {11, 13, 15}.

If we denote by f;(k) the number of walks of the length k having the
initial vertex ¢ and the final vertex is a main vertex, then for m = 5, we
have:

fo(k) = fi(k = 1)+ fis(k = 1)+ fis(k—1)

fi(k) = fulk = 1)+ fia(k = 1) + fis(k = 1)+ fis(k = 1)
fa(k) = fulk = 1)+ fis(k = 1)

f3(k) = falk — 1)+ folk = 1) + fro(k = 1) + fra(k — 1)
fa(k) = fia(k = 1) + fis(k — 1)

fs(k) = fiz(k = 1) + fis(k — 1) + fis(k = 1)
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Je(k) =0
fr(k) = fia(k = 1)+ fis(k - 1)
fa(k) = fs(k = 1)+ fu(k — 1) + fis(k = 1) + fis(k — 1)
folk) = falk — 1)+ fuu(k = 1) + fia(k — 1) + fua(k — 1) + fis(k — 1)
fio(k) = falk = 1)+ fu(k— 1)+ fis(k = 1)
fun(k) = folk=1)+ fi(k=1)+ fa(k—1)+ fa(k—1)+ fo(k—1)+ fro(k—1)+ fra(k—1)
frzlk) = fulk = 1)+ fs(k — 1)+ fe(k = 1) + fo(k — 1)
f13(k) = fo(k—=1)+ fi(k—1)+ fa(k=1)+ fs(k=1)+ fr(k—1)+ fa(k—1)+ fo(k—1)
fra(k) = fa(k = 1)+ fu(k—1)
fis(k) = folk=1)+ filk=1)+ fa(k=1)+ fa(k~1)+ fs(k—1)+ fa(k—1)+ fa(k—1)+ fro(k—]
f(k) = fu(k = 2) + fis(k —2) + fis(k - 2)

Now, it is easy to see that:

fi(k) = fa(k)
oK) = falk)
fa(k) = fi2(k)
fs(k) = fro(k)
f7(k) = fra(k)
fin(k) = fia(k)

and the system can be reduced to:

(9) folk) =2 fu(k = 1)+ fis(k - 1)
(10) fi(k) = fa(k=1)+2- fu(k = 1)+ fis(k = 1)
(11) fa(k) = fu(k = 1) + fis(k—1)
falk) = filk = 1)+ fs(k = 1) + fr(k = 1) + fo(k — 1)
(12) fs(k) = fa(k = 1) + fu(k - 1) + fis(k = 1)
Jo(k) = folk = D)+ fuk = 1)
(13) fo(k) =2 fs(k—=1)+2- fulk - 1)+ fis(k—1)

(14)  fulk)= folk—1)+2- filk— 1)+ falk = 1) + fs(k - 1)+
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(k= 1)+ fo(k - 1)
(15) fis(k) = fo(k = 1)+ 2- fi(k = 1)+ 2 fo(k — 1)+
2+ fsk = 1)+ folk— 1)
(16) flk) =2 fu(k = 2)+ fis(k—2)
Using (9) and (16) in (10) - (15), the system can be reduced to:
(17) fi(k) = fa(k — 1) + f(k+ 1)
(18) fa(k) = f(k+1) - fu(k - 1)
(19) fs(k) = filk = 1)+ fs(k = 1) + fo(k = 1) + fo(k — 1)
(20) fo(k) = fs(k = 1) = fu(k— 1)+ f(k + 1)
(21) fa(k) = fs(k = 1) + fu(k - 1)
(22)
(23)

fo(k)=2-fs(k - 1)+ f(k+ 1)
fii(k) =2- filk = 1)+ fa(k — 1) + fs(k — 1)+
+f7(k— 1)+ fo(k — 1)+ f(k)
(24) fis(k)y=2- fi(k=1)+2- falk - 1)+

+2- fs(k = 1) + fo(k — 1) + f(k)

f(k) =2 fi(k —2) + fis(k — 2)

Substituing (17) , (18) , (20) , (21) and (22) into (19),(20) and (21) the
system is transformed into:

(25) fa(k) =5 fa(k —2)+3- f(k)
(26) fu(k)=6- f3(k—2) — fu(k-2)+6- f(k)
(27) fis(k) =6+ fa(k —2) — fun(k —2)+8- f(k)

=6
(28) fk) =2 fu(k —2) + fis(k - 2)
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It follows from (26)

6 fa(k —2) = fu(k) + fu(k —2) - 6- f(k)

Applying this , we obtain from (27):

(29) fis(k) = fui(k) =3+ fu(k —2) + 2 f(k)

and from (25) (multiplying by 6 ):
(30) 5 fit(k—2)+4- fur(k)— fu(k+2)=12- f(k)—6- f(k+ 2_)
Putting (29) into (28) we obtain:
(31) 3 fualk—2) =3 fus(k—4)= f(k) =2+ f(k ~2)
From (31) , with (k 4 2) instead of k£ , we have:
(32) 3 fu(k) =3+ ik —2) = f(k+2) —2- f(k)
From (30), after multiplication by 3, we obtain:
(33) 15- fru(k=2)+12- fir(k) =3 fi(k+2) =
=36 f(k)— 18- f(k+2)
and taking k instead of (k — 2) we have:
(34) 15-fuulk—4)+ 12 fui(k—2) -3 fulk) =
=36 f(k—2)— 18- f(k)
If we subtract (34) from (33), taking into account (32) we obtain:
flk+4)=24-f(k+2)+57- f(k)~26- f(k—2)=0

So, the following statement is proved:

Theorem 2. Let forn > 1 , F(n) = f(2-n) . The number F(n) of
2-factors of Ps X Py, satisfies the recurrence relation:
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F(n)=24-F(n—1)=57- F(n—2)+ 26 - F(n — 3)
for n > 4, with the initial conditions: F(1) =3, F(2) = 54 , f(3) = 1140.
Remark. If we define F(0) = ;—g , then the recurrence relacion F(n) =

24-F(n—1)—57-F(n—2)426- F(n — 3) will be satisfied, for n > 3, with

the initial condition: F(0) =1 | F(1)=3,F(2) = 54.

- Theorem 3.

F(n) = %.Qn*l +ﬂ§;_\/§2.(11+6.\/§)n+M.(H_G.\/ﬁ)n’
39

forn>1.

Proof.

The roots of the characteristic equation
2 —24-22 4 57-2-26=0

are: 2, =2, £2=1146-v3, 23 =11-6-/3 .
So, the general solution of the recurrence relation Fi(n) = 24 - F(n — 1) —
57-F(n—2)+26- F(n—3)is :

Fn)=A-2"+B-(11+6V3)"+C-(11-6-v3)" .

The constants A, B, are determined ﬁsing the initial conditions:
A=1  p=2(6v8 o~ _ 2(4V9)
=6 > P~ 739 = 739 :

Hence follows the above statement.

b
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REZIME

PREBROJAVANJE 2-FAKTORA GRAFA FPs x P,

U radu je izvedena rekurentna relacija za broj 2-faktora Dekartovog proizvoda
grafa P; x P, . Resavanjem ove rekurentne relacije dobijena je eksplicitna
formula za broj 2-faktora f(n) grafa Ps; x P,.
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