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Abstract

Let T'(z) = }_7(G), where 7(G) denotes of direct factors of an
Abelian group G. It is know that T'(z) = 3, ., t(n), where t(n) is a
multiplicative function such that 3o | t(n)n=* = (?(s)(%(2s)¢?(3s) . ..
(Re 5 > 1), and ((s) as usual denotes the Riemann zata-function. The
aim of thi note is to investigate some asymptotic formulas for the sum-
matory functions of t*(n).
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Let T(z) = Y 7(G) , where 7(G) denotes the number of direct factors
of an Abelian group G, and summation is extended over all Abelian groups
whose orders do not exceed z. It is known (see E. Cohen [1] or E. Kritzel
[6]) that

T(z)=") _1(n),

n<z
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where #(n) is a multiplicative function such that

o0

(1) D #(n)n* = (*(s)¢A(25)C%(35) ... (Re s > 1),

n=1

and ((s) as usual denotes the Riemann zeta-function. If a(n) denotes the
number of non-isomorphic Abelian groups with n elements, then it is well-
known (see Ch. 14 of A. Ivi¢ [3] or Ch. 7 of E. Kratzel [7]) that

o0

(2) D a(n)n™* = (()¢(2)((3s) - .. (Re s > 1).

n=1

Historically, the summatory function of a(n) was first investigated by Erdos-
Szekeres [2] in 1935, and from that time much research was done on this
subject (see [3] or [7] for some of the references). One has a(p®) = P(a) for
any prime p and integer a > 1, where P(«) is the number of (unresticted)
partitions of a. From (1) and (2) it follows that

Dot = (Y a(n)n™*)? (Re s> 1),

hence for any integer n > 1

(3) in) = Y a(d)a(3).

d|n
Thus for any prime p and integer a > 1
a—1
(1) Hp®) = 2P(a) + 3 P()P(a — j).
1=1
In particular, since P(1) =1, P(2) =2, P(3) = 3, P(4) = 5, we have
(5) t(p) = 2, t(p”) = 5, t(p°) = 10, t(p") = 20,

and in view of a(n) <. n¢ ( € denotes arbitrarily small positive constants,
not necessarily the same ones at each occurrence) (3) yields

(6) t(n) <, nt.
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Here, as usual, the symbol f(z) < g(z) (same as f(z) = O(g(z)) ) means
that |f(z)| < Cg(z) for some C > 0, z > zo if g(z) > 0. The symbol
f(z) < g(z) means that the constant C' may depend on e.

The function

A(z) := T(z)—z Res H((ks)xs
=1 =S o

=Y almatn) - Y (D;log + Ey)aV,

mn<z 7=1

where D;, E; are suitable constants which may be explicitly evaluated, and
| Delta;(z) may be thought of as the error term in the asymptotic formula
for T(z). E. Kritzel [6] proved that

Ay (z) < 25/1ogh z,

and this result was improved by Menzer-Seibold [8] to

4
Aq(z) <, £0/109+¢ T 59 =0.412844 ..

Averages of Aj(z) were considered by the author {5], who proved

X
(7) / Ay(z)dz <, X7/6%¢
1

and

b's
(8) / Al(z)de = UX3 log? X), / A¥z)dz < X8/5Fe,
1

where as usual f(z) = Q(g(z)) means that lim,;_,o f(2)/g(z) = 0 does
not hold. The bound in (7) makes it clear why it is appropriate to have
summation from j = 1 to j = 5 in the definition of A;(z). The - result in
(8) makes the conjecture

Al(.’E) <, zl/4+c

plausible, although if true, this bound will be very hard to prove.

The aim of this note is to investigate some asymptotic formulas for the
summatory functions of t*(n). Let Pi(y) denote a generic polynomial of
degree k in y whose coefficients may be explicitly evaluated. Then we have
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Theorem 1. For any given ¢ > (

(9) Y #*(n) = zPs(logz) + O(z'*log® 1),
(10) ;;t(n?) = zPy(logz) + O (z'/20+¢),
(11) gt?’(n) = zP;(logz) + O(z5/5+),
(12) §t4(n) = zplg(logz)+0(z77/1°°).

n<z

Proof. By using the multiplicativity of t(n), (5) and (6), we have, for

Re s > 1,

Y A =TI+ 2@

n=1 P 1=1
(13)

= H(l +4p° + 25p7 % +100p~ > +..)
P
= (4(s) H(1 —4p T+ 6p7 % —4pT3 L p ) (1 44pT  4+25p F +100p3 .. )
P

= () [T+ 15575 + 0 Cip™7%) = ¢H(s)¢™(25) A(s),
4 7j=3

where the C;’s are suitable constants, and A(s) represents a Dirichlet series
which converges absolutely for Re s > 1/3. In a similar way it may be seen
that

o

(14) > #(n*)n* = (°(s)B(s),
n=1

(15) Y Bmm = (3(s)C(s),
n=1

(16) Zt“(n)n‘s = ("%(s)D(s),

where B(s),C(s), D(s) represent Dirichlet series all of which converge abso-
lutely for Re s > 1/2.
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To prove (9) we use the representation (13) and the truncated Perron’s
inversion formula for Dirichlet series (see the Appendix of [3]). Thus for
z¢ K< T < = we have

1 [ltetiT

Y ) = — CH(s)CMP(28)A(s)z®s ds + O (2T 1)

27 ;
n<sz 14e—1T

= ng(logx) + Il + 12 + 13 + OE(I1+CT_1)

by the residue theorem, where we set

1 1/244T
L = — 64(5)615(23)14(5)1133-1&3,
21 JyjoiT .
1 I+e2T
I = — C*(s)CM%(25) A(s)z°s  ds,
21 JyjoqaT
1 1/2—T
I3 = — C*(5)C15(25) A(s)z®s ™ ds.
2w Jipeir

By using the estimate (all the necessary results on ((s) are to be found in

[3])

(o +it) < (1O~ 4 1) log |1 (1/2<0<2)

we obtain

1+e °do _ log!®T
<

L+ 13« / IC(o + iT)|*log"® T (212723 g1+,
1/2 T T

From the weak estimate
T o1
/ |<(5 +it)|*dt < Tlog*T
1
and integration by parts it follows that
L < z1/? log?®T.

Hence

> *(n) = zPs(logz) + O (z'TT™") + O(z' *10g® T)

n<z
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and (9) follows with T = z'/2*¢. It may be remarked that the log-power in
(9) may be improved by using the bound ¢(1+ it) < log?/®|t|, which is the
sharpest one of its kind.

The remaining asymptotic formulas in Theorem 1 are proved analo-
gously, if one notes that by Theorem 8.4 of [3]

r 11 -\ 5 14¢
(17) IC(55 + )Pdt < T,
L N20
T 5
(19) [ 166 +inpa <. T,
1
T
(19) / [¢(a0 + it)|'0dt <. T'*¢, oy = 0.769229... .
1

Namely the product representations in (14)-(16) are dominated by (*(s),
¢8(s), ¢'8(s), respectively. Therefore for the summatory functions of ¢(n?),
t*(n) and t*(n) we use again Perron’s formula and shift the segment of
integration to Re s = 11/20, 5/8, oy respectively, in view of (17)-(19).
Hence we obtain (10)-(12), the last formula because oo < 77/100. In the
same way we obtain the asymptotic formula

3 th(n) = o Pye_y(log ) + O k(z*+)

n<x

for any integer k > 1, where ¢x(< 1) is a suitable constant. However, this
constant clearly depends on results on power moments of {(s), and for this
reason its explicit form for general £ would be complicated.

We also note that the product representation (13) gives us reason to
believe that very likely a sharper asymptotic formula than (9) holds for
the summatory function of t?(n). Namely, the factor (1%(2s) hints at the
existence of a second main term and it makes sence to define

Ay(z):= Y t3(n) = > Res (*(s)(**(25)A(s)z*s™"
7=1

n<z s=1/;

= Z t*(n) — zPs(log z) — z'/? Pr4(log )

n<z

and to expect that
(20) Az(z) = o(z'/?) (z — o0).
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The function Ay(z) is the analogue of the function Ay(z) in the problem of
2 n<s H(n). I conjecture that for some A >0 and B >0

X
(21) / AX(z)ds ~ AX"logh X (X — o)
1

and that even more than (20) is true, namely
(22) Ay(z) <, /3.

Both (21) and (22) appear very hard to prove. However, in the mean square
sense (20) is certainly true. This, and even more, is contained in

Theorem 2. We have

(23) / " Al(z)dz = (X,

X
(24) / Az)de < X2/,
1

Moreover, if ((3/4 + it) < |t|° holds, then

X
(25) / AX(z)ds < X4+,
1

Proof. The significance of (25) is that it shows, at least conditionally, that
the true order of the mean square integral of Ay(z) is X7/4+°() as X — oo,
and hence supports the conjectural bound (22).

The Q -result (23) follows from Theorem 3 of [4]. In our case this result
may be applied with

gy =ay=az=a4=1, a5 =2, r=14,
r—1 3 3<
= = — Arfy = —
I % t.. +a) 8 “TT3%

Thus we have A = 0, and (23) follows.

DN | =

We pass now to the proof of the upper bounds in (24) and (25). We may
proceed analogously as in the proof of Theorem 2 of [5] or note that, by the
Perron inversion formula,

A — _}__ chieo 4 15 A S —ld
2(z) = i ) CH(8)((28)A(s)z’s™ ds

o0
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for some ¢ < 1/2, but sufficiently close to 1/2. Thus (*(s)(15(2s)A(s) is the
Mellin transform of Aj(1/z), and by Parseval’s identity for Mellin trans-
forms we obtain from the above relation

1
I ]C (e + it)¢"°(2¢ + 2it) A(c + it) (e + it)~1|%dt = / AX( ) Ze=ldy
(26) - / AX(z)s~*da.
0
From (26) it follows that if, for some 3/8 < oy < 1/2and § > 0,
2T
(27) / 1¢(a1 + 1)|3[¢ (201 + 2it)]P0dt < T?7°
T
holds, then
(28) / Ai(z)dx < X'H21,

Suppose first o3 = 2. Then if ((2 + it) < |t|° (this conjecture follows
e.g. from the Lindeldf hypothesis, which in turn follows from the Riemann
hypothesis), we have that the left-hand side of (27) is

2T 3 2T 5
<1 [ eGP < T [0+ il < T,
T : T
where we used (18) and the functional equation

C(s) = X(£)C(1 = 5),  x(s) = Jt1"/%.

Hence if instead of 09 = % we take oy = %+(1, then because of the functional
equation and properties of power moments of {(s) we shall obtain (27). This
proves (25).

To prove (24) note that

2T
/ C(o1 + it)BIC (207 + 2it)[Pdt
T

2T
< T8 / (1 = oy + it)BIC (201 + 2it)[*dt
T

2T
< T max_|((1= o1 + it)|*[¢(201 + 2it)[*° / (1 =y +it)|*dt.
T<t<2T T
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The last integral above is trivialy < T'log? T if ¢ < 1/2. From the bounds

<o <1),

DN | =

(o + it) < =) Jog (

2
(o +it) < 1207 log (5? <og<1)

with ¢ < 1/3 and d < 1/6, we infer with o7 = 12/25 that the integral in
(27) is
< T5—801+c+4c01+30d(1—20’1) <<T2—6

for sufficiently small ¢ and suitable § = §(c, d,€) > 0, since
4
5 — 801 + 4coq + 30d(1 — 20,) < 5 — 801 + 391 +5(1—-20,)=2

for oy = % Thus (27) holds with ¢y = % and (24) is proved. By more
careful considerations the exponent in (24) could be somewhat reduced, but
the existing methods and known results on power moments of ((s) do not

seem sufficiently strong to yield an unconditional proof of (25).
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REZIME

O MULTIPLIKATIVNIM FUNKCIJAMA POVEZANIM SA
BROJEM DIREKTNIH FAKTORA KONACNE ABELOVE GRUPE

Neka je T(z) = > 7(G), gde 7((7) oznacava broj direktnih faktora Abelove
grupe (7 i sumiranje je izvrseno nad svim Abelovim grupama ¢&iji redovi ne
prelaze z. Poznato je da je (videti E. Cohen [1] ili E. Krétzel [6]) tako da je

T(z) = 3 t(n),

n<z

gde je t(n) multiplikativna funkcija takva da je

3 t(n)n=7 = (3(s)C3(26)C%(3s) ... (Res > 1).

n=1

Cilj rada je ispitivanje nekih asimptotskih formula za sumacione funkcije
t*(n).
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