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Abstract

The concept of *-semi-inner product algebras of type(p) is intro-
duced and some properties and results of such algebras are studied.
Interesting results about generalized adjoints of bounded linear oper-
ators on semi-inner product spaces of type (p) are obtained.
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1. Introduction

Using the concept of semi-inner product space due to Lumer [9], Husain
and Malviya [4] introduced the concept of a semi-inner product algebra and
extended many results of Ambrose to this class of algebras.

Nath [11] generalized the concept of semi-inner product space to, what
he called, generalized semi-inner product space. But he used the same name
for another concept in [12]. To avoid this confusion, Abo Hadi [1] called
the concept of Nath [11] a semi-inner product space of type(p) and proved,
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among other results, an analogue of the Riesz Representation Theorem. In
the present paper, we shall use this concept to introduce a class of algebras
called *-semi-inner product algebras of type(p); they generalize the semi-
inner product algebras due to Husain and Malviya [4]. We extend many
results of [4] to this new class of algebras. We shall also obtain some in-
teresting results about generalized adjoints of bounded linear operators on
semi-inner product spaces of type(p). The concept of a generalized adjoint
of a bounded linear operator on a semi-inner product space was considered

in [13].

2. Preliminaries

We shall recall some definitions and results from [12].

Definition 2.1. Let E be a vector space. Let [.,.] be a functional on E x E
defined by
[,.]: EXE — K

<z,y>— |[z,y]

and satisfying the following conditions:

(2.1) [z +y,2] = [z,2] + [y, 2], z,y,2 € E.
(2.2) [Az,y] = Alz,y], A€ K

(2.3) [[z,z]| > 0 for z # 0. A
(2.4) iz, v]l < (2,27 [v,9]7 , 1 < p < 0.

Then we say that [.,.] is a semi-inner product of type(p). A vector space
E, together with a semi-inner product of type(p) defined on it , is called a
semi-inner product space of type(p).

Remark 2.2. For p = 2, it becomes a semi-inner product space due to
Lumer [9]. A semi-inner product space £ of type(p) is said to be continuous
if [y,z+ Ay) — [y,2] forall A—0,z,y€ E.

Theorem 2.3. A semi-inner product space of type(p) becomes a normed

1 . .
space under ||z|] = [z,2]P and a normed space can be made into a semi-
inner product space of type(p).
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3. *-Semi-inner Product Algebras of Type(p)

In this section, we shall introduce the concept of *-semi-inner product
algebra of type(p) and study some of the properties of such algebras.

Definition 3.1. (a) A vector space A is called a semi-inner product algebra
of type(p) if

(SP1) A is a Banach algebra, and

(SP;) A is a semi-inner product space of type(p) with the same norm

as that in the Banach algebra.

(b) A semi-inner product algebra A of type(p) is called a *-semi-inner
product algebra of type(p) if corresponding to any =z € A, there is an
element z* € A (called adjoint) satisfying either

(3.1) [zy, 2] = [y, 2"2] = [z, 2y"],
(3:2) (2, zy] = [2"2, 9] = [29", z].

The following example is adapted from [14]. See also [4].

Example 3.2. Let G be a compact topological group and let L,(G),(1 <
p < ), be the space of measurable functions whose pth power is integrable
with respect to the Haar measure of G. Then, L,(G) is a Banach algebra

if
(f+9)z = f(z)+9g(z)
(f9)z = f(z)g()
(Af)z = Af(z)

and  |Ifll, = (J; |fIPda).
Define  [f,9] = [, f(@)lg(z)[P~ (sgn g(z))de, f,g € Ly(G)

Then, L,(g) becomes a semi-inner product algebra of type(p). Asin [4],
we define

[(z) = (=), f€ Ly(G),
Then, L,(G) becomes an *-semi-inner product algebra of type(p).

The proof of the following proposition is similar to that of Lemma 3 in
[4] and hence, omitted.
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Proposition 3.3. Let A be a *-semi-inner product algebra of type(p). If
€€ A, then zA={0} isequivalentto Az = {0}.

This leads us to the following definition.

Definition 3.4. Let A be a *-semi-inner product algebra of type(p) and
© € A. A is called proper if A = {0} = z =0 (equivalently, Az =
{0}==2z=0)

Proposition 3.5. Let A be a proper *-semi-inner product algebra of type(p)
and z,y€ A. Then (a) z2** =z, and (b) (zy)* = y*z*.

Proof. (a) We know that

[z,29] = [72, 4],

Replacing z by z*, we get

[™2,y] = [z, "y].
Also, we know that

[z2,9] = [2,2"y].
So, [z**z,y] = [z2,y] for all y.

Hence [(z** — z*)z,y] =0 for all y.
Put y = (2 —z)z. Then we get

l[(z** —z)z|]|F =0 for all z.

From this it follows that z** = z, because A is proper.
(b) Similarly, we get (zy)* = y*z*.

Now we obtain a characterization of proper *

type(p).

-semi-inner algebras of

Theorem 3.6. Let A be a *-semi-inner product algebra of type(p). Then
A is proper if and only if every element of A has a unique adjoint.

Proof. Suppose A is proper. Let z € A. Let z]and z} be the adjoints
of z. Then,

[2,zy] = [z*12,4] = [z52,y] for all y,z € A.
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So, [(z} — z5)z,y] =0 forall y,z € A.
Put y = (x] —z3)z. Then we get

[|(x] —z3)z||P =0 forall z € A.

Now, it follows that 2] = z3 because A is proper. The converse follows as
in ([4], Theorem 3.1).

Proposition 3.7. Let A be a proper *-semi-inner product algebra of type(p)
and z € A,z #£0. Then zz*#0,z*z #0andz* £0.

Proof. Suppose zz* = 0. Then,

|lyz|f = [yz,yz] = [yzz*,y] =0 forall y.

This implies that yz = 0 for all y. Hence Az = {0}. Since A is
proper, we get ¢ = 0. But this contradicts that z # 0. Similarly, we can
prove the other two results.

Notation 3.8. We write F,. to mean the orthogonal complement of a
set . i.e.

E,,={z€ E:[y,z] =0, y€ E}.

The proof of the following proposition is similar to that of Lemma 3.3
in [4].

Proposition 3.9. Let A be a (complete) continuous proper *-semi-inner

product algebra of type(p) satisfying the inequality
llz + yl? + u®llz — yll* < 2lj|* +2[l9lP, 0<p<1

forall z,yc€ A. Then zAC R= 2z € R.

Proposition 3.10. Every two-side ideal in a (complete) continuous proper
*_semi-inner product algebra A of type(p) which satisfies

|z + yli? + p?lle — yll* < 2l|=|® + 2lyl% 2,9 € 4, 0<p<1,

is selfadjoint.
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Proof. Let I be a two-side ideal in A. Let z; € I and 24 € I,..
Now

llz122||7 = [z122, 2122] = [g]z122,22] = 0.

The rest of the proof is as in Lemma 3.4 of [4].
The following results follow as in [4].

Proposition 3.11. If R is a right ideal in a proper *-semi-inner product
algebra of type(p), then the right ideal generated by R™ is R, where R® stands
for the set of elements of the form zyz2...z5, 1,22...,2, € R.

Proposition 3.12. Let A be a continuous proper *-semi-inner product
algebra of type(p) satisfying the inequality

llz + 9lI* + pllz ~ 9lI* < 2(|=l1* + 2/l9]I?,

0 < p< 1, z,y € A. Then the set D of all the elements of the form
T1Yy1 + - .-+ Tpy, s dense in A.

Proposition 3.13. Let A be as in Proposition 3.12 and I a right deal in
A. Then, L(I)={z;zI =(0)} is the orthogonal complement of I'* in A.

Theorem 3.14. Let A be as in Proposition 3.12. Also, let A be a strictly
convex space in which the weak convergence in the second component s finer
than the norm topology. Further assume that [z,y] = [y*,z*] holds for

x€Aandy € D (D as defined in Proposition 3.12). Then ||z|] = ||z*||

and the map z — =* 1is continuous.

4. Existence of Idempotents

In this section we shall study the existence of idempotents in *-semi-innner
product algebras of type(p) and prove that a *-semi-inner product algebra
of type(p), under certain restrictions, contains a maximal family of doubly
orthogonal primitive self-adjoint idempotents.

Definition 4.1. An elemente in a *-semi-inner product algebra of type(p)

is called an idempotent if 0+# e = ¢2. The element e is called self-adjoint

if e=¢e*.
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Henceforth, we assume that a *-semi-inner product algebra of type(p) sat-
isfies [z,y] = [y*,2*] and

(ez + By)* = az* + By*, o, € K.

Proposition 4.2. Let A be a proper *-semi-inner product algebra of type(p).
Let z be a self-adjoint element of A whose norm as a left multiplication op-
erator is 1. Then the sequence z?" converges to a non - zero self-adjoint
idempotent.

Proof. Following Loomis [8], page 101, we proceed as follows:
Let |||y||| be the operator norm of y defined by

lilyllt = sup(llyzli / {l2]1)-

Since

fyzll < iyl |12l
we have |||y]|| < ||yl||- Since z is a self-adjoint element such that |||z||| =
1, [{[z™l[ = 1 and hence ||z"|| < 1 for all n. If m > n and if they are both
even, then

-1
[z™,27] < |[z™, 27| < [2™,2™]F [z, 2" 7, 1<p< oo
< fle™| llz7|P~1 = [la™"a|| |lz™||P~

— =7

= Lemal e < [l [P

Hence
2™, 2z"] < [lle™ 1] [l=™fF = [z™, 2"].
So
[z™,2"] < [z",2"].
Next

z™ ™ = ™| = ||z ;nz 2 |P.
b
Put 2r = m — n. Then

|l=" 2™+ ||

[z™,2™] = |lz" 2"+ |P = [|lzntrl|P

llz"*7||P <

<l lIP =™ |IP = [+, 2™*"] = [2*72™ 7, 2" = [#™, 7).
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Hence,
[z™,2™] < [z™,z"].
Thus
1< [z™, 2™ <[z, 2"] < [2™,2"] < ... < [z2,z2]

and [z™,2"] has alimit L > 1 as m,n — oo through even integres.
Hence, we have

lim ||z™ — 2™|? = lim[z™, 2", 2™ — 2] =
= lim[z™,z™ — z"] — lim[z", 2™ — 2™] =
= lim[z*™ — 2™, 2" — lim[z*™ — 2*",2*"] =
= lim[z™, z™] — lim[z", 2™] — lim[z™, 2™] + lim[z", z"]
which tends to zero as m,n — o0.. And z" converges to a self adjoint

element e with ||e|| > 1, since z2" converges both to e and to €2, it follows
that e is idempotent.

Corollary 4.3. Any left (or right) ideal I in a proper *-semi-inner product
algebra of type(p) contains a non-zero self-adjoint idempotent.

Definition 4.4. (a) The idempotents e and f of an *-semi-inner product
algebra A of type(p) are called doubly orthogonal if [e,f] = 0 and ef =
fe=0.

(b) An idempotent is said to be primitive if it can not be expressed as the
sum of doubly orthogonal idempotents.

The following results follow as in [2] and [4].

Proposition 4.5. Let A be a proper *-semi-inner product algebra of type(p).
Let e be an idempotent in A and R = eA the right ideal in A. If R =
Ri+...+ R,, each R; being a right ideal and if e=¢e;+...+e,,€; € R;,
then the e; is a self -adjoint idempotent.

Proof. Similar to that in [2].

Proposition 4.6. Let A, e and R be as in Proposition 4.5. If e can be
expressed as a finite sum of doubly orthogonal self adjoint idempotent, say,
e=¢e+...+e,, andifwedefine R; by R, = e;A, then R is the direct
sum of right ideals R;.
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Proof. Similar to that in [2].

Theorem 4.7. Let A, e and R be as in Proposition 4.5. Then R is minimal
if and only if e is primitive.

Proof. Similar to that in [4], page 103.

Theorem 4.8. Let A and e be as in Proposition 4.5. Then e is the sum of
a finite number of doubly orthogonal primitive self-adjoint idempotents.

Proof. Following Ambrose [2], we can write e = e;+...+e, where e;,e,...,¢€
are self-adjoint idempotents. Now,

n

“e”p:[€1+€2...+6n,€1+62+,,,+en]:

= [e1,e1] + [e2,e2] + ...+ [en,€n] =

= [leall” + eall” + - .. + llenl[” 2 n,

since

lledl I = [es, €] = [}, €] < [leFl lleallP™" < [fes|P*!

or

“61“ >Li=1,2,...,n

This shows that the process of splitting e must terminate at some finite
stage. ’

Theorem 4.9. Let A be a proper *-semi-inner product algebra of type(p).
Then A contains a mazximal family of doubly orthogonal primitive self-adjoint
idempotents.

Proof. By Corollary 4.3, A contains self-adjoint idempotents. By Theorem
4.8, A contains a finite family of doubly orthogonal primitive self-adjoint
idempotents. Hence, by Zorn’s Lemma, A contains a maximal family of
doubly orthogonal primitive self-adjoint idempotents.
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5. Bounded Linear Operators and Generalized Ad-
joint Operators

In this section we shall consider a concept called the generalized adjoint of
a bounded linear operator on a semi-inner product space of type(p) and
obtain some interesting results.

The concept of the generalised adjoint of a bounded linear operator was
considered in [13].

Notation 5.1. Let E be a (complete) continuous semi-inner product space
of type(p), satisfying the inequality

o+ o]) + p?|lu — oll* < 2]ul” +2]]0]?, 0 < p < 1.

Let T be a bounded linear operator on E. Define g,(z) = [Tz,y]. Then
gy is a continuous linear functional. Hence (by the analogue of the Riesz
representation theorem), there exists a unique vector T*y such that

[Tz,y] = gy(z) = [z, T7y), =€ E
We call T* the generalised adjoint of T'.
Remark 5.2. T* is not linear.
Theorem 5.3.

(1) TIl = TP
(i) ||IT*T||P=t = \T|P

Proof.
O UTyllP = [Ty, Ty
= [y, T"Ty]
< Ayl 1T Ty P!
< gl TP Tyl
Hence,

(5.1) 1Tyl < [yl {IT*][7~" for ally
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= [Tl < TP

Next,
Tyll” = [Ty, T"y]
= [TT"y,y]
< ITTyll Iyl
< TNl gl
T ylP~ < T gl
Y < Y s
Hence,
(5.2) (7=t < |IT|]

From (5.1) and (5.2) we get
171 = |||~

(a2) |77 sup{||T*T(z)]|, [|=]l < 1}
T supd| Tzl []=]] < 1}

T T}

IA A

Hence,
TP~ < it e

Using (i) we get
(5-3) 7|~ < ITIP

Now,

ITH = sup{||T=[{%; ||lz|| < 1}
sup{[Tz,Tz]; ||=|| < 1}
sup{[z,T*Tz]; |||l < 1}
sup{||e|| |T"T=|["~; ||z]) < 1}
sup{[|T*Tz|["~";||2]| < 1},

fl

IAINA

Hence, .
(5.4) |1 < fIT* 7))~
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From (5.3) , (5.4) we get

I\TIP = 1T TP~

Let A be a (complete) continuous and proper *-semi-inner product
algebra of type(p) satisfying the inequality

[l + ol + p?|ju = ol|* < 2[|ull? + 2[00 < p < 1.
If B(A) stands for the space of bounded linear operators on A, we define
AL(A) = A{T: € B(A) : Try = zy}
Lemma 5.4. Tpx =T

Proof.
[zy,2] = [Tzy, 2] = [y, T, 2]

[y,2%2] = [y, 17 2]
[y, 1;2] = [y, T; 2]

= T} = T*z by the Riesz representation theorem (uniqueness).

Theorem 5.5.

(n =T
(2) (ToTy)" =T7T;

Proof. Follows easily using Lemma 5.4.
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REZIME
* - POLU - SKALARNI PROIZVOD NA ALGEBRAMA TIPA(p)

U radu se uvodi * - polu - skalarni proizvod na algebrama tipa(p) i ispituju
neke njegove osobine.
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