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Abstract

In this paper, we obtain some pinching theorems for compact totally
real minimal submanifolds in HP™(1).
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1. Introduction

Let M be an n-dimensional compact minimal submanifold in a sphere S"*?
and ¢ be the second fundamental form of M.J. Simons [12] and Chern-Do-
Carmo-Kobayashi [2] proved that: if || < n/(2 — 1/p), then M is either
totally geodesic or a Veronese surface in $4(1). In [9], we improved the above
pinching constant to n(3n — 2)/(5n — 4). Recently, Xu-Chen [15] improved
the above pinching constant to 2n/3.

Let M be an n-dimensional compact totally real minimal submanifold of
a complex projective space C' P"*(c) and o be the second fundamental form of
M. Chen-Ogiue (1], Naitoh-Takeuchi [7] and Yau [16] proved that: if {o]?> <
n(n+ 1)c/4(2n— 1), then M is either totally geodesic or a finite Riemannian
covering of the unique flat torus minimally embedded in C P?(c). In [8], we
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improved above pinching constant to n(n + 1)(3n — 2)c/4(5n — 4). Recently,
Xia [14] improved the above pinching constant to (n + 1)c/6.

Let M be an n-dimensional compact totally real minimal submanifold
of a quaternion projective space H P™(1) and o be the second fundamental
form of M. In this paper, by use of the similar way of Xu-Chen [15] and Xia
[14] we establish some pinching theorems for n-dimensional compact totally
real minimal submanifold of H P™(1). In fact, we have

Theorem 1. Let M be an n-dimensional compact totally real minimal sub-
manifold in HP™(1) and o be the second fundamental form of M. If |o|? <
(n+1)/6, then M is either totally geodesic or a finite Riemannian covering of
the unique flat torus embedded in H P2(1) with parallel second fundamental
form.

Theorem 2. Let M be an n-dimensional compact totally real minimal sub-
manifold in HP™(1). If |¢]|? < n/6, then either M is totally geodesic or the
immersion of M into HP™(1) is one of the following immersions:

Pt RP%(1/12) — HP*(1); s = o,
where m : §%(1/12) — RP%(1/12) is the covering map.

Let &(u) = |6(u,u))? for v € UM. In {3}, Coulton-Gauchman obtained
the following result (c.f. [5, 6]).

Theorem 3. Let M be an n-dimensional compact totally real minimal sub-
manifold in HP™(1). If § < 1/12 for all w € UM, if and only if one of the
following conditions is satisfied:

(¢) 6(u) = 0 and M is totally geodesic in HP™(1).

(1) 6 = 1/12 and the immersion of M into HP™(1) is one of the fol-
lowing tmmersions: ¥ : RP*(1/2) — HPY1); ¢, : CP*(1/3) —
HP7(1); s : HPY(1/3) — HPY(1); 14 : CayP?*(1/3) — HP?*(1)
¥s : S2(1/12) — HPY(1);

For the definition of %;(: = 1,...,5), one can consult [3,p. 298].

In this paper, we will give a simple proof of above Coulton-Gauchman’s
result and prove the following:
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Theorem 4. Let M be a n-dimensional compact totally real minimal sub-
manifold in H P™(1). Assume that n is odd. If §(u) < 1/4(3 — 2/n) for all
u € UM, then M is totally geodesic.

Author has done this works during his stay in mathematics institute of
Novi Sad university under the guidance of Prof. dr. Mileva Prvanovi¢. He
expresses his thanks to Prof. dr. Neda Bokan for her encouragements and
useful comments.

2. Prelimilaries

Let M be an n-dimensional compact Riemannian manifold. We denote by
UM the unit tangent bundle over M and by UM, its fiber over p € M. If dp,
dv and dv, denote the canonical measures on M, UM and U M, respectively,
then for any continuous function f: UM — R, we have

- fdv = /AJ[[IMP fdvyldp.

Now, we suppose that M is isometrically immersed in an m-dimensional
Riemannian manifold M. We denote by <, > the metric of M and metric of
M. If o domorphism associated to a normal vestor £, we define

L:T,M - T,M and T M xT,;M — R

by the expressions

Lv = Z As(veei and T(&,n) = traceA¢ Ay,

i=1

where Tle is the normal space to M at p and ey, ..., ¢, is an orthonormal
basis of T, M. M is called a curvature-invariant submanifold of M (see [11}),
if R(X,Y)Z € TyM forall X,Y,Z € T,M, R being the curvature operator
of M.

Lemma 1. [11] Let M be an n-dimensional compact minimal curvature-
invariant submanifold in a m-dimensional Riernannian manifold M. Then

n +

(21) 0=—

/ (Vo) (v,v,v)|*dv + (n + 4) / |Aa(vvv)v|2dv
JUM UM
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—4/ < Lv, Ag(um)v > 61 — 2/ T(o(v,v),0(v,v))dv
UM UM

+ / > [R(ei, v,0(0,€0), 001 1)) + 2R(es, 0,0, Ay ey v)]do.
UM =1

2
2.2 / < L, Agpy v > dr, = / Lo|*dv
(2.2) on, (v,) e UMPI v|*dv,

Jorany pe M.

By [3], the curvature operator of quaternion projective space I P*+7(1)
is

23) B(X,Y)Z = i[A(Y, 2)X — A(X. )Y — 21(X, Y)Z],
where

. : 3
MY, 2)X =<Y,Z> X+ < LY, Z> JiX,

=1

3
N(X,Y)Z =) <JX)Y>JiZ, J}=-Id (i=1,2,3),

=1
Jidy = =Joh = Js, Jody = —J3J2 = Sy, J3Jy = —J1d3 = Js.

We say that M is a totally real submanifold of H P™(1), [4],if ©(T, M) LT, M
for any p € M and any © € V,, where V, is the fiber of V' = [J4, J2, J3] over

p (see [4]).
Let T{(X,Y,Z) =< o(X,Y),J;Z >, (i=1,2,3). We have

Lemma 2. ([13] or [3]) Ti(X,Y, Z) is symmetric in all three arguments for
each 1 = 1,2,3.

3. Maximal directions

Let M be an n-dimensional compact curvature-invariant minimal submani-
fold in M. Define § = [(w,v) | w,v € UM,,p € M] and a function f on S
by

(3.1) [(u,v) = |o(u,u) — o(v,v)|
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For any p € M, we can take (4,%) € UM, x UM, with < 4,5 >= 0,

such that f(u,v) = MAX(y v)elUMpxUM, f (1, v) (see [14, p.144]). We shall
call such a pair (%, %) a mazimal direction at p.

Lemma 3. [14] Letp € M and assume that max,, v)EUMpxU My f(u,v) #0.
Take an orthonormal basis ey, ...,e,, of T,M such that (e1,e,) is a mazimal
direction at p, ey, ..., e, diagonalizes A¢, £ = [o(e1,€1)—0 (e, en)|/|o(er,e1)—
0(en,en)| and that Ay =:< o(e1,€1),& >> Ay =:< o(eg, e9), & >> ... >
An =< o(ey,e,),€E > . Then, at the point p, it holds

n
(32)2 < 0(617 61) - U(en,en)a Vza(eia €5 €1, 61) - V2U(ei7€i7€n7 en) >
=1

> |o(er,e1) — o(en, en)] Z[R(ehel, oler,e;),&) — (f’wen’a(ez’en) £)

+(A1 - Ai)}z(e‘i,elaelaei) - (’\n - ’\i)R(ei,en’eTL7ei)]
3

—Ela(el, €1)— a(en,en)|2 . |cr|2.

Proof of Theorem 1. Let L be a function on M defined by

=) = (v ) EUMaXU Moo f(w,v)-
Following an idea in [10] we prove that L is a constant function on M by
using the maximal principle. It suffices to show that L is subharmonic in
the generalized sense. Fix p € M, let (e1,e,) be a maximal direction at p
and ey, ...,e, be an orthonormal basis of T, M as stated in Lemmma 3. From
(2.3) and Lemma 2, we have

(3‘3) l0(€17 61) - U(ena en)l Z[R(eia €1, 0(617 Ei), 5)
=1
—R(C,’, cn,a(e,', en):&) + (’\l - Ai)R(ei’ €1,€1, 6,’) - (An - ’\i)R(eiae'rH €n, 6.,')]
n 3
1 n
=3 YY) <oler,en) = ofen,en), Jrei > o (Ar=An)lo(er, 1) —o(en, €a)]

=1 k=1

n+1
= lo(er,e1) — a(en,en)|2.
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In an open neighborhood U, of p within the cut-locus of p we shall
denote by Ey(z) (resp. En(z)) the tangent vectors to M obtained by parallel
transport of e; = E1(p) (resp. e, = Ep(p)) along the unique geodesic joining
z to p. Define g,(z) = |o(E\(x), E1(2)) — o(En(2), En(2)))?. Then

TL

(B4 5800 = DIV erer,er) = (To)(essen en)

i=1
+ < o(er,e1) — o(en, en), (V20 ) eir e, €1, €1) — (V20 (€4, €0y ey n) > .

If o(e1,e1) — a(en, en)| = 0, then Ag,(p) > 0 by (3.4). If |o(er,e1) —
o(en,en)| # 0, then, by (3.3), (3.4), Lemma 3 and hypothesis on |o|?, we

have
n+1

4

1 3
2295(p) 2 |o(er, e1) = o(en, en)]X( - 5lel) > 0.

For the Laplacian of continuous functions, we have the generalized defi-
nition

1
AL = alim —((/ L/ 1) — L(p)),
r=orT B(r,p) B(pr)

where a is positive constant and B(p,r) denotes the geodesic ball of radius
r with center p. With this definition L is subharmonic on M if and only if
AL(p) > 0 at each point p € M. Since g,(p) = L(p) and g, < L on U,
AL(p) > Agp(p) > 0. Thus, L is subharmonic and hence L = b =constant
on M. When b = 0, M is totally geodesic. When b # 0, it is easy to see that
|o|? = (n 4+ 1)/6 on M and that for any p € M, by the fact that equality
holds in (3.2), the orthonormal bases ey, ...,e, of T, M further satisfies (c.f.

[14])

(3.5) a(er,e;) = o(en,e;) = o(e;,e;) =0, 2<4,j<n-1,

1
(3.6) jole,en)f? = lo(en,en)? = Joler, en) = “ 22,
(3.7) o(er,e1) = —o(en,en).

Marking the similar discussion as proof of Theorem 1 of [14], we can
conclude that M has parallel second fundamental form by use of (2.3) and
(3.5)-(3.7). Theorem 1 now follows from the classification of n-dimensional
totally real minimal submanifolds in H P™(1) with parallel second.funda-
mental from by K.Tsukada in [13].
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Proof of Theorem 2. As in the proof of Theorem 1. we show that the function
L(p) = maX(y,v)cUM,xU M, f(%,v) is subharmonic in the generalized sense.
For any p € M, let ey, ...,e, be an orthonormal basis of T,M as in Lemma
3 such that (e, e,) is a maximal direction at p. Then

(3.8) lo(er,€1) — o(en,en)l Y [R(ei, e1,0(e1. €3, €)

=1

—R(eiaenaa(eiaen)a f) + (/\1 - /\i)R(eiaehelaei) - (/\11, - /\i)R(eiyen’en’ei)]

n 3
1 n
=1 E _;_ < a(er,e1)—a(en,€n), Jrei > +Z(/\1—/\n)|0(€1,€1)—0(€n,€n)|

=1 k=1

n
2 Zla(ela 61) - U(enaen)lz'

Let g, be the function defined as in the proof of Theorem 1. Then
from (3.8), Lemma 3 and |of* < n/6, we have Ag,(p) > 0. By the same
arguments as in the proof of Theorem 1, we know that L is subharmonic
(and so L =constant on M) and that either |o|?> = 0 or |0|? = n/6. When
|o|? = n/6, the orthonormal basis ey, ..., e, of T, M satisfies

(3.9) o(er,e;) = o(e,,e) =o(ei,ej) =0, 2<i,7<n-—1,
(3.10) lo(er,en)l? = lo(en, en)]? = lo(er,en)l” = oo,
(3.11) o(er,e1) = —0(en,€n).

(3.12) <o(X,Y),;.Z >=0, .

fori=1,2,3and X,Y,Z€T,M, pe M.

We can conclude that M has the parallel second fundamental form in the
similar discussion as proof of Theorem 1 (cf. [14]). All totally real minimal
submanifolds in H P™(1) with parallel second fundamental form were clas-
sified by K.Tsukada [13]. There are two possible types of such immersions,
which are denoted as (R - R)-type and (R - C)- type (Proposition 3.2, [13]).
It follows from (3.12) that our immersion is not of (R - C)-type. On the other
hand, we can deduce by using a similar argument as in [2,p.70] that n = 2,
it is easy to see from (3.9)-(3.11) that M is /1/12—isotropic. Theorem 2
follows from the classification of (R - R)-type totally real isotropic minimal
surfaces with parallel second fundamental form in H P™(1) by K.Tsukada
in [13].
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Proof of Theorem 3. Let p € M and ey, ...,e, be an orthonormal basis of
T, M, from (2.3), we have

(3.13) Z[R(e;, v,0(v,€;),0(v,v)) + 2R(e;, v, v, Ag(v,es) V)]

=1

n 3
1 1 1
=3 < Lv,v > —ila(v,v)I2 + ZZZ < a(v,v), Jre; >2 .
=1 k=1

From (2.2) and Holder’s inequality,

2 / 2 / 2 1
Lvl“dv, < Lv|dv, |12
n | 2 U p' l P—[ U p' ' p]

(3.14) . [/ IAU(v,v)devp]lﬂ, or
UM,

2 .
3.15 / Ag(v)?)?dvy, > / < L, Agpy y? > du,.
(3.15) UM,,I (v vy 2 -~ (v,v) »

Substituting (3.13) and (3.15) into (2.1), we obtain

4
(316) 0= "= [ (Vo) 0,000+ (n40) [ gl
UM UM

—4/ < Lv, Ag(uwyv > dv — 2/ T(o(v,v),0(v,v))dv
UM UM

n 3
1 1
+ /UM[% < Lv,v > —5|or(v,v)|2 + ZZZ < o(v,v), Jre; >2]dv

1i=1 k=1

> 20 [ (o) G [ o0l
3 Jum 4 Jum

—-n/ IA,,(v,U)vlzdv—2/ T(o(v,v),0(v,v))dv.
UM UM

For any v € UM, we can put o(v,v) = |o(v,v)|¢ for some unit vector £
normal to M. Since |o(v,v)|? < 1/12 for any v € UM, we have by Schwartz’s

inequality
(3.17) |A¢ul? < (maximum eigenvalue of A¢)? < 1/12
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for any u € UM. Hence

n
(3.18) Zla(v, v))? — nlAc,(,,’v)vl2 - 2T(o(v,v),0(v,v))

— 2P - ’

= |o(v,0)["(5 ~ nldev|* - 2 ZI: < Agei, Age; >) > 0,
where ey, ..., €, is a locally orthonormal basis of TM. It follows from (3.16)
and (3.18) that M has parallel second fundamental form,
(3.19) <o(X,Y),JkZ >=0,

for £k = 1,2,3 and any X,Y,Z € TM, and equalities hold in (3.15) and
(3.18). Hence, we have

n+2

. 1 .
(3'20) IAo:r(‘z.r,u)vl2 = '1_2_'0'(”71))'27 Lv= Aa(u,u)v-

From (3.19), we know that M is of type (R - R) ([13]). Now given p € M,
let w be the 1-form on UM, defined by
wy(e) =< a(v,v),a(v,€) > |a(v,v)|?

forall ve UM,, e € T,UM,. Integrating on UM,, the codifferential of w,
we have (also see [14])

(3.21) (m+ 6)/ lo(v, v)|[*dv, = 4/ IA(,(,,,,,)vlzdvpﬁ-
UM, UM,

+2/ < Lv,v > |o(v,v)*dv,:
UM,
Substituting (3.20) into (3.21), we find
(3.22) / lo (v, 0)[2(1/12 = |o(v, v)*)dv = 0.
UM

Since |o(v,v)|? < 1/12 for any v € UM, we derive from (3.22) that either
|o(v,v)] = 0 (i.e., M is totally geodesic) or |o|2 = 1/12. When |o|? = 1/12,
we conclude from the classifications of isotropic (R - R)-type totally real min-
imal submanifolds with parallel second fundamental from in H P™(1) ({13])
that the immersion of M into H P™(1) is one of the following immersions:
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Y1 : RP%(1/2) — HPY(1); 1, - CP*(1/3) - HP(1); 95 : HP?*1/3) —
HP3(1); g : CayP?*(1/3) — HP¥(1); s : 5%(1/12) — H P*(1); This
complete the proof of Theorem 3.

Proof of Theorem 4. Let v € UM, and o(v,v) = |o(v,v)|¢. Take an or-
thonormal basis ey, ...,e, of T, M such that A¢e; = Mje;, ¢ =1,...,n. Then

n

(3.23) Y A=

=1

Denote by K = max; A?. Since n is odd, it follows from [6,p.256] that

= " 9 n—1
(324) ; < A{E’,,Aget >= ;A, < (’I’l - I)K < m
Using the same arguments as in the proof of Theorem 3 and the hypoth-
esis: |o(v,v)|* < 1/4(3 — 2/n), we conclude that M is (R - R)-type totally
real minimal submanifolds with parallel second fundamental form and either
lo(v,v)2 = 0 or |o(v,v)|> = 1/4(3 — 2/n) on UM. Using the classifications
of the isotropic (R - R)-type totally real minimal submanifolds with parallel
second fundamental form in a quaternion projective H P™(1) by K.Tsukada
([13]), we know that the case |o|> = 1/4(3 — 2/n) can not occur. Thus M is
totally geodesic. This complete the proof of Theorem 4.
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REZIME

O TOTALNO REALNOJ MINIMALNOJ
PODMNOGOSTRUKOSTI U HP™(1)

U ovom radu su dokazane neke grani¢ne teoreme za kompaktne totalno
realne minimalne podmnogostrukosti u H P™(1).
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