Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 23, 2 (1993), 155 - 161 Review of Research Faculty of Science Mathematics Series

ORTHOGONAL DECOMPOSITION OF THE INSTANTANEOUS TRANSFORMATION OF THE GAUSSIAN PROCESS

Zoran A. Ivković

Faculty of Mathematics, University of Beograd Studentski trg 16a, Yugoslavia

Abstract

Let $\{\xi(t), 0 \le t \le 1\}$ be the mean square continuous Gaussian process. Consider the second order process $\{X(t), 0 \le t \le 1\}$ defined by $X(t) = f(\xi(t), t)$ where f is a given non-random function. In the paper the orthogonal decomposition of $\{X(t)\}$ in terms of the orthogonal decomposition of $\{\xi(t)\}$ is determined. The case of Loeve-Karhunen decomposition is also considered.

AMS Mathematics Subject Classification (1991): 60G15, 60G12. Key words and phrases: Hermite polynomials of Gaussian variables, orthogonal decopmosition of a second order process, Loeve-Karhunen decomposition.

1. Some properties of Hermite polynomials

Consider the Hermite polynomial of degree p of the real Gaussian variables $\xi_1, \, \xi_2, \, \ldots, \, E\xi_k = 0$:

$$(1) H_p(\xi_1,\ldots,\xi_p).$$

Some ξ_k in (1) may be equal. Denote by $b_{ij} = E\xi_i\xi_j$. The explicit expression of (1) is

$$\xi_1 \dots \xi_p - \sum b_{i_1 j_1} \xi_{k_1} \dots \xi_{k_p-2} + \sum b_{i_1 j_1} b_{i_2 j_2} \xi_{k_1} \dots \xi_{k_p-4} \dots,$$

156 Z.A. Ivković

where the first sum is over all the combinations (i_1, j_1) of $\{1, \ldots, p\}$, the second sum is over the disjoint pairs of combinations $(i_1, j_1), (i_2, j_2)$, and so on. For instance

$$H_2(\xi_1, \xi_2) = \xi_1 \xi_2 - b_{12}, \ H_3(\xi_1, \xi_2, \xi_3) = \xi_1 \xi_2 \xi_3 - b_{23} \xi_1 - b_{13} \xi_2 - b_{12} \xi_3.$$

Also,

$$H_p(\xi) = H_p(\underbrace{\xi, \dots, \xi}_{n \text{ times}}) =$$

(2)
$$= \xi^p + \sum_{k=1}^{\lfloor p/2 \rfloor} (-1)^k (2k-1)!! \binom{p}{2k} b^k \xi^{p-2k}, \ b = E\xi^2.$$

For more details on Hermite polynomials see, for example, [1].

Proposition 1. If random vectors $(\xi_1, \ldots, \xi_k), (\eta_1, \ldots, \eta_l), \ldots, (\xi_1, \ldots, \xi_m), k+l+\ldots+m=p$ are independent, then the following factorization is valid

(3)
$$H_p(\xi_1, \dots, \xi_k, \eta_1, \dots, \eta_l, \dots, \xi_1, \dots, \xi_m) =$$

$$= H_k(\xi_1, \dots, \xi_k) H_l(\eta_1, \dots, \eta_l) \dots H_m(\xi_1, \dots, \xi_m).$$

Proof. It is sufficient to prove that for the two independent vectros (ξ_1, \ldots, ξ_m) and (η_1, \ldots, η_n) it holds that

$$H_{m+n}(\xi_1,\ldots,\xi_m,\eta_1,\ldots,\eta_n) = H_m(\xi_1,\ldots,\xi_m)H_n(\eta_1,\ldots,\eta_n)$$

The right hand side above is

$$(\xi_1 \ldots \xi_m - \sum_{(i,j)} b_{ij} \xi_{k_1} \ldots \xi_{k_m-2} + \ldots) (\eta_1 \ldots \eta_n - \sum_{(i,j)} c_{ij} \eta_{k_1} \ldots \eta_{k_n-2} + \ldots) =$$

$$=\xi_1\ldots\xi_m\eta_1\ldots\eta_n-(\sum_{(i,j)}b_{ij}\xi_{k_1}\ldots\xi_{k_m-2}\eta_1\ldots\eta_n+\sum_{(i,j)}c_{ij}\eta_{k_1}\ldots\eta_{k_n-2}\xi_1\ldots\xi_m)+\ldots$$

The expression in the last parenthesis can be put in the form

$$\sum_{(i,j)} a_{ij} \xi_k \dots \xi_{k'} \eta_l \dots \eta_{l'},$$

where $a_{ij} = b_{ij}$ if $i, j \in \{k_1, \dots, k_m\}$, $a_{ij} = c_{ij}$ if $i, j \in \{l_1, \dots, l_n\}$ and $a_{ij} = 0$ otherwise, because of the independence of (ξ_1, \dots, ξ_m) and (η_1, \dots, η_n) .

It means that this expression is the second term in the Hermite polynomial $H_{m+n}(\xi_1, \ldots, \xi_m, \eta_1, \ldots, \eta_n)$. We shall proceed in the same manner with the following terms of the prod

uct
$$H_m(\xi_1,\ldots,\xi_m)H_n(\eta_1,\ldots,\eta_n)$$
. \square

Proposition 2.

(4)
$$H_{p}(\xi_{1} + \ldots + \xi_{n}) = \sum_{\substack{k_{1} + \ldots + k_{n} = p \\ k_{i} \in \{0, \ldots, p\}}} \frac{p!}{k_{1}! \ldots k_{n}!} H_{p}(\underbrace{\xi_{1}, \ldots, \xi_{1}}_{k_{1} times}, \ldots, \underbrace{\xi_{n}, \ldots, \xi_{n}}_{k_{n} times}).$$

Proof. Actually on the right hand side in (4) we have the sum of $H_p(\xi_{i_1}, \ldots, \xi_{i_p})$ over all the variations (i_1, \ldots, i_p) with a repetition of elements $\{1, \ldots, p\}$ p at a time. We find, by a more tedious than difficult examination, that each summand on the right hand side is equal to one summand in the explicit expression of $H_p(\xi_1 + \ldots + \xi_n)$, and inversely. After that we obtain (4), since the Hermite polynomial is a symmetric function. \square Remark that using (3) in the case of independent ξ_1, \ldots, ξ_n , we have:

(5)
$$H_p(\xi_1 + \ldots + \xi_n) = \sum \frac{p!}{k_1! \ldots k_n!} H_{k_1}(\xi_1) \ldots H_{K_n}(\xi_n).$$

One can prove (5) in another way:

It is evident that

$$H_p(\xi_1 + \xi_2) = \sum_{i_1=0}^p \binom{p}{i_1} H_{i_1}(\xi_1) H_{p-i_1}(\xi_2).$$

Then, we obtain

$$H_p(\xi_1 + \ldots + \xi_n) = \sum_{i_1=0}^p \binom{p}{i_1} H_{i_1}(\xi_1) H_{p-i_1}(\xi_2 + \ldots + \xi_n) =$$

$$=\sum_{i_1=0}^{p} \binom{p}{i_1} H_{i_1}(\xi_1) \sum_{i_2=0}^{p-i} \binom{p-i_1}{i_2} H_{i_2}(\xi_2) H_{p-i_1-i_2}(\xi_3+\ldots+\xi_n) = \ldots$$

$$= \dots \sum_{i_1=0}^{p} \sum_{i_2=0}^{p-i_1} \dots \sum_{i_n=0}^{p-(i_1+\dots+i_{n-1})} \frac{p!}{i_1!\dots i_n!} H_{i_1}(\xi_1) \dots H_{i_n}(\xi_n).$$

The last expression is the same as (5).

2. Orthogonal decomposition

Consider the mean square continuous real Gaussian process $\{\xi(t), 0 \leq t \leq 1\}$. Let \mathcal{H} be the linear closure of $\{\xi(t), 0 \leq t \leq 1\}$ and let $\{\eta_1, \eta_2 \ldots\}$ be an orthonormal base in the separable Hilbert space \mathcal{H} .

Then we have

(6)
$$\xi(t) = \sum_{n=1}^{\infty} \varphi_n(t) \eta_n, \ \varphi_n(t) = \langle \xi(t), \eta_n \rangle = E\xi(t) \eta_n,$$

uniformly in t.

Among the orthogonal decompositions of the form (6), the so-called Loeve-Karhunen decomposition is of special interest. In this case it holds that $(\varphi_i, \varphi_j) = \int_0^1 \varphi_i(t) \varphi_j(t) dt$, $i \neq j$.

Then, we have

(7)
$$\eta_n = \int_0^1 \xi(t) \varphi_n(t) dt$$

with the probability one (see, for instance, [2]).

Now, let $f(x,t), -\infty < x < \infty$, $0 \le t \le 1$ be a continuous function. Consider the process $\{X(t), 0 \le t \le 1\}$ defined by $X(t) = f(\xi(t), t)$ as the instantaneous transformation of $\{\xi(t)\}$. Suppose that EX(t) = 0, $EX^2(t) < \infty$ for each t.

In this section we shall find the orthogonal decomposition of $\{X(t)\}$ in terms of the orthogonal decomposition of $\{\xi(t)\}$. We shall start from the fact that $\{H_p(\xi(t)), p=1,2,\ldots\}$ is the complete orthogonal base in the space of all the random variables $Y(t), EY(t)=0, EY^2(t)<\infty$, measurable with respect to $\xi(t)$. So we have the orthogonal decomposition

(8)
$$X(t) = \sum_{p=1}^{\infty} a_p(t) H_p(\xi(t)), \\ a_p(t) = EX(t) H_p(\xi(t)) = \langle X(t), H_p(\xi(t)) \rangle.$$

Remark that for the evaluation of $a_p(t)$, it is sufficient to find

$$EX(t)\xi^{k}(t) = \frac{1}{\sqrt{2\phi b(t)}} \int_{-\infty}^{\infty} f(x,t)x^{k} \exp\{-\frac{x^{2}}{2b(t)}\}dx,$$
 $k = 1, 2, \dots, (b(t) = E\xi^{2}(t)).$

From (6) we have

$$H_p(\xi(t)) = H_p(\lim_{n \to \infty} \sum_{k=1}^n \varphi_k(t) \eta_k) = \lim_{n \to \infty} H_p(\sum_{k=1}^n \varphi_k(t) \eta_k).$$

Keeping in mind that $H_p(a_1\xi_1, \ldots a_p\xi_p) = a_1 \ldots a_p H_p(\xi_1, \ldots, \xi_p)$, it follows from (4)

$$H_p(\sum_{k=1}^n \varphi_k(t)\eta_k) =$$

$$\sum_{\substack{k_1+\ldots+k_n=p\\k_i\in\{0,\ldots,p\}.}}\frac{p!}{k_1!\ldots k_n!}\varphi_1^{k_1}(t)\ldots\varphi_n^{k_n}(t)H_p(\underbrace{\eta_1,\ldots,\eta_1}_{k_1\,\text{times}},\ldots,\underbrace{\eta_n,\ldots,\eta_n}_{k_n\,\text{times}}).$$

Since the Gaussian variables η_1, η_2, \ldots are independent and (3) holds, we obtain

(9)
$$H_p(\sum_{1}^n \varphi_k(t)\eta_k) = \sum_{1}^n \frac{p!}{k_1! \dots k_n!} \varphi_1^{k_1}(t) \dots \varphi_n^{k_n}(t) H_{k_1}(\eta_1) \dots H_{k_n}(\eta_n).$$

Any two random variables $H_{k_1}(\eta_1) \dots H_{k_n}(\eta_n)$ and $H_{k'_i}(\eta_1) \dots H_{k'_n}(\eta_n)$ in (9) differ for at least one $k_i \neq k'_i$. It means that these variables are orthogonal.

It is possible to put (9) in the following form: $H_p(\sum_{1}^n \varphi_k(t)\eta_k) = \sum_{j=1}^n D_j$, where

$$D_{j} = \sum_{(j)} \frac{p!}{k_{1}! \dots k_{j}!} \varphi_{1}^{k_{1}}(t) \dots \varphi_{j}^{k_{j}}(t) H_{k_{1}}(t) \dots H_{k_{j}}(t).$$

The summation $\sum_{(j)}$ is over all (k_1,\ldots,k_i) such that $k_1+\ldots+k_j=p,$ $k_i\in\{0,\ldots,p\}$ and $k_j\neq 0$. Thus

$$H_p(\xi(t)) = \lim_{n \to \infty} \sum_{j=1}^n D_j = \sum_{j=1}^{\infty} D_j.$$

We have finally

Proposition 3. The process $\{X(t), 0 \le t \le 1\}$ has the following orthogonal decomposition

(10)
$$X(t) = \sum_{p=1}^{\infty} a_p(t) \sum_{j=1}^{\infty} (\sum_{(j)} \frac{p!}{k_1! \dots k_j!} \varphi_1^{k_1}(t) \dots \varphi_j^{k_j}(t) H_{k_1}(\eta_1 \dots H_{k_j}(\eta_j)).$$

In the case of the Loeve-Karhunen decomposition one can find an expression analogous to (7). Namely, there is

Proposition 4. If $\eta = \int_0^1 \xi(t)\varphi(t)dt$, then

$$H_q(\eta) = \int_0^1 \ldots \int_0^1 H_q(\xi(u_1),\ldots,\xi(u_q)) arphi(u_1) \ldots arphi(u_q) du_1 \ldots du_q.$$

Proof. With some vague but short notations

$$H_q(\zeta(u_1),\ldots,\zeta(u_q)) = \sum b(u,v)\ldots b(u',v')\zeta(w)\ldots\zeta(w'),$$

$$\zeta(u) = \varphi(u)\zeta(u), b(u,v) = E\zeta(u)\zeta(v).$$

We have

$$\int_0^1 \ldots \int_0^1 H_q(\zeta(u_1), \ldots, \zeta(u_q)) du_1 \ldots du_q =$$

$$= \sum E[(\int \zeta(u) du)(\int \zeta(v) dv)] \ldots E[(\int \zeta(u') du')(\int \zeta(v') dv')]$$

$$(\int \zeta(w) dw) \ldots (\int \zeta(w') dw') =$$

$$= \sum E(\eta^2) \ldots E(\eta^2) \eta \ldots \eta = H_q(\eta). \quad \Box$$

We obtained for the orthogonal random variables $H_{k_1}(\eta_1) \dots H_{k_j}(\eta_j)$ in (10) that

$$egin{aligned} H_{k_1}(\eta_1)\dots H_{k_j}(\eta_j) = \ &= (\int_0^1\dots \int_0^1 H_{k_1}(\xi(u_1),\dots \xi(u_{k_1}))arphi_1(u_1)\dots arphi_1(u_k)du_1\dots du_{k_1})\dots \ &\dots (\int_0^1\dots \int_0^1 H_{k_j}(\xi(v),\dots ,\xi(v_{k_j}))arphi_j(v_1)\dots arphi_j(v_{k_j})dv_1\dots dv_{k_j}). \end{aligned}$$

References

- [1] Ivković, Z., Lozanov, Z., On Hermite Polynomials of Gaussian Processes, Univ. u Novom Sadu Zb. Rad. Prirod. Mat. Fak. Ser. Mat., 12 (1982), 105-117.
- [2] Rosenblatt Murray, Random Processes, Oxford University Press, N.Y. 1962.

REZIME

ORTOGONALNO RAZLAGANJE TRENUTNE TRANSFORMACIJE GAUSOVOG PROCESA

Neka je $\{\xi(t),\ 0\leq t\leq 1\}$ srednje kvadratno neprekidan Gausov proces. Posmatrajmo proces drugog reda $\{X(t),\ 0\leq t\leq 1\}$ definisan sa $X(t)=f(\xi(t),t)$ gde je f data neslučajna funkcija. U radu se odredjuje ortogonalno razlaganje za $\{X(t)\}$ u terminima ortogonalnog razlaganja za $\{\xi(t)\}$. Takodje se razmatra slučaj Loev-Karunenovog razlaganja.

Received by the editors March 22, 1987