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Abstract

Set-valued functions, defined on IR and having closed intervals on
IR as values are considered. Due to the Hausdorff metric defined on
the set of closed intervals, a set-valued isometry is defined. A complete
characterisation of such real, set-valued isometries is given.
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1.

Let (X,d) be a metric space and Y be a metric vector space. Denote by
n(Y) the family of all nonempty subsets of Y and by cc(Y') the family of all
convex and compact elements of n(Y). Any function mapping X into n(Y’)
is called a set-valued (or multivalued) function. In this paper we restrict
ourselves to considering set-valued functions having values in cc(Y). The
Hausdorff metric dg in cc(Y) is defined by:

dg(A,B):=inf{r>0: ACB+rS, BCA+r5}

for A,B € cc(_z'/), where S denotes a unit ball in Y.
Now, we define a set-valued isometry as a function F : X — cc(Y') satisfying
the condition

(1) dy (F(z), F(y)) = d(z,y) forz,ye X.
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In the present paper we deal with set-valued isometries on the real line
only; so, from now on, we assume that X = Y = IR. The family cc(R)
coincide with the set of all compact intervals on IR. Each set-valued function
F : R — cc(R) has the form:

(2) F(z) = [f(z),9(z)] forz e R
with functions f,g : IR — R such that f(z) < g(=) for z € R.

Let us start with the following, trivial to obtain,

Lemma 1. Let A = [a1,a3], B = [by,b2] with ay,ay,by,by € R such that
a1 < ag and by < by. Then

du(A, B) = max{|e; — by|;|as — b2|}.

According to the above lemma a function F : R — cc¢(IR) having form (2)
is an isometry if and only if

(3) max {|f(z) - f(y)l,|9(z) —9(y)I} = |z —y| forz,y€R.

Functional equation (3), with unknown functions f,¢g : R. — IR such that
f < g, will be the subject matter of our considerations.

2.

It is obvious that (3) implies inequalities

(4) 1f(z) - f(y)| < |z —y| forz,yeR
and :
(5) lg(z) —g(y)| < |z —y| for z,y € R.

Therefore, both f and g are continuous. Functions f and g satisfy (3) if and
only if any translations f + ¢; and g + ¢2 (c1,¢2 € R) do. Hence we can
assume, without loss of generality, that f(0) = 0.

Proposition 1. Let functions f,g : R — R such that f(z) < g(z) for
z € R satisfy (3) and, additionally, f(0) = 0, g(0) = a > 0. Then at least
one of the following conditions holds:
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1) f(z)==z foralzcR,

2) f(z)=—z forallz € R,

3) g(z)=z+a foralzcR,
4{) g(x)=-z+a forallzcR.

Proof. Step 1. For (zo,y0) € R? denote by C(zg,¥o) the set

C(zo,0) := {(z,9) € R? : |y — yo| < |2 — 20| }.

C(xo, yo) C(x07 yo)

(20, yo)

Putting in (4), (5) zo and z in places of z and y, respectively, we obtain the
following implications:

(6) " if f(zo) = yo then (z,f(z)) € C(zo,70) for z € R
and
(7) if g(zo) = yo then (z,¢(z)) € C(zo,y0) for z € R.

It means that the graphs of f and g are always included in the cone C(zo, ¥o)
determined by a given point (zg, yo) belonging, respectively, to the graph of
f or g. In.particular, since f(0) = 0 and g(0) = a, we have

(8) graph f C C(0,0) and graphg C C(0,a).

Step 2. Fix zg € IR. For all z lying between z¢ and 0 we have

(1) if f(zo) = zo then f(z)= =z,



104 J. Chmielinski

(ii) if f(zo) = —zo then f(z)= —=z,
(iii) if g(zo) = o+ a then g(z)=z+ a,
(iv) if g(z0) = —z¢ +a then g(z)= —z +a.
Indeed, if, for example, f(zo) = zo then, by (6) and (8):
(z, f(z)) € C(0,0) N C(=o, zo)-

The intersection of C(0,0) and C(zg, z¢), over an interval connecting 0 with
Tg, coincide with the part of the line y = z. Therefore, f(z) = z for z lying
between 0 and zg. The proofs of (ii) — (iv) are similar.

Step 3. There is

(i) f(z) =z forall z > 0, or f(z)=—z forall z >0,
Y oor g(z)=z+a forallz>0, or g(z)=-—z+a forallz >0

and

f(z)==z forall z <0, or f(z)=—z forall z <0,

(i) or g(z)=z+4+a forallz<0, or g(z)=-z+a forall z <0.

Let us prove that (i) holds. Putting in (3) 0 in place of y we obtain

9) max {|f(2)], lg(z) — al} = |z| for = € R.

Now, consider two cases:

1° |f(z)| = z for all z > 0. By continuity of f there is either f(z) =z
for z > 0, or f(z) = —z for z > 0.

2° There exists an zo > 0 such that |f(zo)| # zo. Therefore, by (6),
|f(z)| # z for all £ > zo and so, by (9), we have |g(z) — a| = z for z > z,.
Continuity of g implies that either g(z) = z+aforz > zgor g(z) = —z+a
for z > zo. This, together with points (iii) and (iv) from Step 2, yields

g(z)=z+a forz>0 or g(z)=-z+a forz>0.

The proof of (ii) is analogous.
Step 4. For arbitrary zo € R one of the following equalities is true:
f(zo) = —f(—20) = Zo or  f(zo) = —f(—%0) = —z0

or g(zo)—a=—g(-zo)+a=1z¢ or ¢g(zo)—a=—g(=z9)+a=—z,.
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To prove this, put, first, in (3) zo and ~z¢ in place of = and y, respectively.
Thus we have

|f(z0) = f(==0)l = 2lz0| or [g(z0) — g(—20)| = 2|zol-

1° Suppose that |f(zo) — f(—zo)| = 2|zo|. In view of (8), it is possible
only if f(2o) = zo and f(—zg) = —zo or if f(zo) = —zo and f(—z¢) = 0.

2° Similarly, in the case |g(zo) — g(—zo)| = 2|zo|, (8) implies that either
g(z0) = zo+a and g(—2zo) = —zo+a or g(z9) = —zo+a and g(—2zo) = zo+a.
Step 5. We prove that:

(i) if there exists an zo < 0 such that |f(zo)| < |zo| then either g(z) =
z+aforz€eRorg(z)=—-z+aforzeR;

(ii) if there exists an zo < 0 such that |g(zo) — e| < |[zo| then either
f(z)=zforz € Ror f(z) = —z for z € R.

To prove these statements, suppose that there exists zp < 0 such that
| f(zo)| < |zo|- By (6) one has |f(z)| < |z| for all z < z¢ and so, according
to Step 4 and the continuity of g, we have either g(z)—a = ~g(—z)ta ==z
forz < rgor g(z) —a = —g(—z) + a = —z for £ < zy. Using the points
(iii),(iv) occuring in Step 2 we can replace “for z < zo” by “for £ < 0” and
then, by symmetry, we have simply

glzy=z+a forzeR or g(z)=-z+a forzeR.

That is why (i) holds. Similarly, supposing that |g(z¢) — a| < |zo| for an
zo < 0 we have, by (6), that |g(z) — a] < |z| for z < 2y and, according to
Step 4 and the continuity of f, we obtain that either f(z) = —f(—z) = =
for z < zg or f(z) = —f(—z) = —z for £ < zp. Using properties (i), (ii)
proved in Step 2 we get

f(z)=2z forzeR or f(z)=-z forzeR

so (ii) is proved as well.
Step 6. Now, we are going to finish the proof of the proposition. According
to Step 3, we have four cases to consider.

Case 1°. f(z) = z for z > 0. Then the following subcases are possible:

e f(z) =z for z < 0 so0, f(z) = « for all z € R.
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o f(z) = —zforz < 0. Then for any z € R\ {0} thereis f(z) # — f(~z).
Therefore, according to Step 4 and the continuity of g, we have either
g(z)=z+aforz € Ror g(z)= —z + a for z € R.

o There exists x¢g < 0 such that |f(zo)| < |zo]. Then Step 5 provides
that either g(z) =z +aforz € Ror g(z) = —z +afor z € R.

Case 2°. f(x) = —z for z > 0. In this case, proceeding similarly as
above one obtains that either f(z) =z forz € Rorg(z)=z+aforz ¢ R
or g(z) = —~z + a for z € R.

Case 3°. g(z) = z + a for £ > 0. We have to consider three subcases:

¢ g(z)=z+ aforz <0so0,g(z) =z +aforall z € R.

¢ g(z) = —z + a for z < 0. Therefore, for each z € R \ {0}, there is
g(z)—a # —g(—z)+ a and, in view of Step 4 and the continuity of f,
we obtain either f(z) =z for z € R or f(z) = —z forz € R.

o There exists an zg < 0 such that |g(zv)| < [zo|. According to Step 5
either f(z) =z forz € R or f(z) = —z for z € R.

Case 4°. g(z) = —z + a for z > 0. In this case, proceeding similarly as
in Case 3°, we are able to prove that either g(z) = —z + a for z € R or
f(z) =z for z € R or f(z) = —z for « € R. This finishes the proof of the
proposition. O

Now, we shall admit unbounded intervals as values of a considered set-
valued function F. Denote by ccl(IR) the family of all nonempty, convex,
closed subsets of R i.e., the family of all closed (but not necessarily bounded)
intervals on R. In ccl(IR) one can introduce “almost” the same Hausdorff
metric, say dfy, defined at the beginning of this paper. Namely, for A, B €
ccl(R) we put

dy(A,B) :=inf{r >0: ACB+rland BC A+ rl}
where I = {—1,1]. In the present case infinite distance is possible. The
following is a generalization of Lemma 1.
Lemma 2. For any A, B € ccl(R), accepting that (+00)—(+00) = (—00)—
(—00) = 0, we have

(10) dy (A, B) = max {|inf A — inf B|,|sup A — sup B|}.
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Proof. 1. In the case A, B € cc(IR) we can apply Lemma 1, because in this
case diy(A, B) = dg(A, B).

2. If exactly one interval, say A, belongs to cc(IR) then dj;(A, B) = 0o and
simultanously either |inf A — inf B| = 0o or |sup A — sup B| = 0.

3. Up to symmetry, the following cases remain:

o A= (-00,a],B = (—00,b];

¢ A= (—00,a],B =[b,+);

¢ A=(-o00,a],B = (—00,+00);
e A= B =(—00,+00).

It is simple to check that in each case (10) holds. O
Any set-valued function F : IR — cc/(IR) must have a form:

(11) F(z) = (f(z),9(z)) forzeR
where f: IR > RU{-o0}, g: IR > RU {+00} and f < g.

Set-valued function F : R — ccl(RR) is called an isometry iff

(12) 4y (F(2), F(¥) = |z —y] for s,y € R.
Proposition 2. Let F : IR — ccl(R) have form (11) and satisfy (12). Then

1) If there ezists an zo € IR such that f(zg) = —oco then f(x) = —oo for
all z € R and (with some ¢ € R) either g(z) = z+ ¢ forz € R or
g(z)= -z +c for z € R.

2) If there exists an xo € R such that g(zo) = +oo then g(z) = +oo for
all z € R and (with some ¢ € R) either f(z) =z + ¢ forz € R or
f(z)=—z+c forz e R.

Proof. For z € R we have inf F(z) = f(z) and sup F(z) = g(z). Assume
that f(zo) = —oo and suppose that there exists an z; € IR such that
f(z1) > —oo. Therefore, by Lemma 2, di( F(zo), F(z1)) = 400, i.e., F does
not satisfy (12). Thus we have f(z) = —oo for all z € R and |inf F(z) —
inf F(y)| = 0 for all z,y € R. This implies |g(z) — g(y)| = |z — y| for
z,y € R, and, finally,

gz)=z+c forzeR or g(z)=-z+c forzeclR.
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The proof of point 2) is similar. O

Corollary 1. If F : R — ccl(R) has form (11) and satisfies (12) then
either F(z) € cc(R) for all z € R or I has one of the following forms (with
an arbitrary c € R):

1) F(z)=(-00,z+¢] forz c R,
2) F(z)=(—o00,—z+¢] forz e R,
3) F(z) =[x +¢,+x) forz €R,

4) F(z)={—z+c¢,+0) forzeR.

Now, we are going to formulate the main theorem which gives us a complete
characterization of the set-valued isometries on the real line.

Theorem 1. Let a set-valued function F : R — ccl(R) have form (11).
Then F is an isometry (i.e. (12) holds) if and only if, for some constant
¢ € R, there is either

f(z)=z+c, z€R lg(z) —g()| < |z -y, z,y € R
1° or and or
Lf(z):—z-l—c,zElR g(z) =400, z € R
or
[ g(z)=z+c, z€R |f(z) - fw <]z —yl, z,ye R
20 or and or
| g(z)=-z+c,ze R f(z) = -0, € R

Proof. To prove the necessity it sufficies to apply Proposition 1 (without the
assumption f(0) = 0) and Proposition 2 with Corollary 1. The sufficiency
is obvious. O

Corollary 2. If F : R — ccl(R) has form (11), satisfies (12) and there
exists zop € R such that F(zo) = {yo} (one point) then F is a single-valued
either for all x > xp or for all z < zq.
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Proof. 1. Assume that f(z) = z + ¢ for z € R. F(zo) is a single point so,
9(z0) = f(zo) = zo + ¢. By (7) graphg C C(zo,zo + ¢) which yields, in
particular, g(z) < z + ¢ for z > zo. But as g(z) > f(z) =z + cfor z € R,
we have f(z) = g(z) for = > z¢.

2. If f(z) = —z +c for z € R then f(zo) = g(z0) 1mphes that graphg C
C(z0, —To+ ¢) so, in particular, g(z) < —z+cforz < zo. As g(z) > f(:z:)
—z + c for z € R, we have f(z) = g(z) for z < x,.

Similarly, in the case 3. where g(z) = z + ¢ for z € R and in the case 4.
where g(z) = —z + ¢ for z € R, one obtains that f(x) = g(z), respectively,
either for z < zg or for x > z¢.0

3.

In many papers dealing with the set-valued functions some properties, which
generalize correspending properties of single-valued functions, are consid-
ered. In those papers the problem of the existence of suitable selections,
appears very often. For example in [2] the existence of additve selections
for additive set-valued functions is investigated; in [1] the authors deal with
additive selections of subadditive set-valued functions. Additive selections
of superadditive set-valued functions are considered in [3] and quadratic se-
lections for subquadratic set-valued functions in {4]. In our considerations
concerning set-valued isometries we can ask about the existence of isometric,
single-valued, selections. Generally, for mappings F : X — cc(Y) as at the
very beginning of the paper, this question seems to be interesting. However,
the answer is unknown to the author. In the case F' : R — ccl(IR) a positive
answer is just a simple consequence of Theorem 1. Indeed, we have

Theorem 2. Let F : R — ccl(R) be a set-valued isometry. Then, there
ezists a selectioni : R — R (i.e., i(z) € F(z) for all z € R) which is an
isometry. Moreover, if there ezists an o € R such that F(z¢) coincide with
a single point then such an isometric selection is unique.

Proof. Suppose that F' has form (11). By Theorem 1 either f or g is an
isometry and a selection of F' as well. As each isometry ¢ : R — IR must
have a form #(z) =z + c for z € R or i{(z) = —z + ¢ for z € R in the case
f(zo) = g(z0), according to Corollary 2, an isometric selection is unique. O
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4.

Finally, we give an example showing that a set-valued isometry neither has to
be sub-... nor super-additive. Recall that the Mazur-Ulam theorem states
that a surjective isometry I : X — Y, with 7(0) = 0, is additive.

Example 1. Let F(z):=[f(z),g(z)] for z € R; where

flzxy=z forzeR

and
—z—2 for z < —4,
2 for -4<z< -1,
—z+1 for -1<z<0,
z+1 for z>0.

9(z) =

We have |f(z) — f(y)] = |z — y| for z,y € R and it is easy to check that
lg(z)—g(y)| < |z —y| for z,y € R. It means that F is a set-valued isometry.
However,

F0)+ F(-1) = [-1,3] D [-1,2] = F(-1),
F(=3) + F(=4) = [-7,4] C [-7,5] = F(=7).

Thus F is neither sub-... nor super-additive.
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REZIME

IZOMETRIJE SKUPOVNIH VREDNOSTI NA REALNOJ LIN‘IJI

Proucavane su funkcije sa vrednostima u skupu zatvorenih intervala defin-
isane na R. Koriste¢i Hausdorfovu metriku na skupu zatvorenih intervala
definisana je izometrija skupovnih vrednosti i data je njena karakterizacija.
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