Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 23, 2 (1993), 101 - 111 Review of Research Faculty of Science Mathematics Series

SET-VALUED ISOMETRIES ON THE REAL LINE

Jacek Chmieliński

Institute of Mathematics, Pedagogical University in Cracow Podchorażych 2, PL-30-084 Kraków, Poland

Abstract

Set-valued functions, defined on IR and having closed intervals on IR as values are considered. Due to the Hausdorff metric defined on the set of closed intervals, a set-valued isometry is defined. A complete characterisation of such real, set-valued isometries is given.

AMS Mathematics Subject Classification (1991): 26E25, 39B22, 54C60, 54C65

Key words and phrases: Set - valued functions, selections.

1.

Let (X,d) be a metric space and Y be a metric vector space. Denote by n(Y) the family of all nonempty subsets of Y and by cc(Y) the family of all convex and compact elements of n(Y). Any function mapping X into n(Y) is called a *set-valued* (or *multivalued*) function. In this paper we restrict ourselves to considering set-valued functions having values in cc(Y). The Hausdorff metric d_H in cc(Y) is defined by:

$$d_H(A,B) := \inf \{r \geq 0: A \subset B + rS, B \subset A + rS\}$$

for $A, B \in cc(y)$, where S denotes a unit ball in Y. Now, we define a set-valued isometry as a function $F: X \to cc(Y)$ satisfying the condition

(1)
$$d_H(F(x), F(y)) = d(x, y) \text{ for } x, y \in X.$$

In the present paper we deal with set-valued isometries on the real line only; so, from now on, we assume that $X = Y = \mathbb{R}$. The family $cc(\mathbb{R})$ coincide with the set of all compact intervals on \mathbb{R} . Each set-valued function $F: \mathbb{R} \to cc(\mathbb{R})$ has the form:

(2)
$$F(x) = [f(x), g(x)] \text{ for } x \in \mathbb{R}$$
 with functions $f, g : \mathbb{R} \to \mathbb{R}$ such that $f(x) \leq g(x)$ for $x \in \mathbb{R}$.

Let us start with the following, trivial to obtain,

Lemma 1. Let $A = [a_1, a_2]$, $B = [b_1, b_2]$ with $a_1, a_2, b_1, b_2 \in \mathbb{R}$ such that $a_1 \leq a_2$ and $b_1 \leq b_2$. Then

$$d_H(A, B) = \max\{|a_1 - b_1|, |a_2 - b_2|\}.$$

According to the above lemma a function $F: \mathbb{R} \to cc(\mathbb{R})$ having form (2) is an isometry if and only if

(3)
$$\max\{|f(x)-f(y)|,|g(x)-g(y)|\}=|x-y| \text{ for } x,y\in\mathbb{R}.$$

Functional equation (3), with unknown functions $f, g : \mathbb{R} \to \mathbb{R}$ such that $f \leq g$, will be the subject matter of our considerations.

2.

It is obvious that (3) implies inequalities

$$(4) |f(x) - f(y)| \le |x - y| \text{for } x, y \in \mathbb{R}$$

 \mathbf{a} nd

(5)
$$|g(x) - g(y)| \le |x - y| \quad \text{for } x, y \in \mathbb{R}.$$

Therefore, both f and g are continuous. Functions f and g satisfy (3) if and only if any translations $f + c_1$ and $g + c_2$ ($c_1, c_2 \in \mathbb{R}$) do. Hence we can assume, without loss of generality, that f(0) = 0.

Proposition 1. Let functions $f, g : \mathbb{R} \to \mathbb{R}$ such that $f(x) \leq g(x)$ for $x \in \mathbb{R}$ satisfy (3) and, additionally, f(0) = 0, $g(0) = a \geq 0$. Then at least one of the following conditions holds:

1)
$$f(x) = x$$
 for all $x \in \mathbb{R}$,

2)
$$f(x) = -x$$
 for all $x \in \mathbb{R}$,

3)
$$g(x) = x + a$$
 for all $x \in \mathbb{R}$,

4)
$$g(x) = -x + a$$
 for all $x \in \mathbb{R}$.

Proof. Step 1. For $(x_0, y_0) \in \mathbb{R}^2$ denote by $C(x_0, y_0)$ the set

$$C(x_0, y_0) := \{(x, y) \in \mathbb{R}^2 : |y - y_0| \le |x - x_0|\}.$$

Putting in (4), (5) x_0 and x in places of x and y, respectively, we obtain the following implications:

(6) if
$$f(x_0) = y_0$$
 then $(x, f(x)) \in C(x_0, y_0)$ for $x \in \mathbb{R}$

and

(7) if
$$g(x_0) = y_0$$
 then $(x, g(x)) \in C(x_0, y_0)$ for $x \in \mathbb{R}$.

It means that the graphs of f and g are always included in the cone $C(x_0, y_0)$ determined by a given point (x_0, y_0) belonging, respectively, to the graph of f or g. In particular, since f(0) = 0 and g(0) = a, we have

(8)
$$\operatorname{graph} f \subset C(0,0)$$
 and $\operatorname{graph} g \subset C(0,a)$.

Step 2. Fix $x_0 \in \mathbb{R}$. For all x lying between x_0 and 0 we have

(i) if
$$f(x_0) = x_0$$
 then $f(x) = x$,

(ii) if
$$f(x_0) = -x_0$$
 then $f(x) = -x$,

(iii) if
$$g(x_0) = x_0 + a$$
 then $g(x) = x + a$,

(iv) if
$$g(x_0) = -x_0 + a$$
 then $g(x) = -x + a$.

Indeed, if, for example, $f(x_0) = x_0$ then, by (6) and (8):

$$(x, f(x)) \in C(0,0) \cap C(x_0, x_0).$$

The intersection of C(0,0) and $C(x_0,x_0)$, over an interval connecting 0 with x_0 , coincide with the part of the line y=x. Therefore, f(x)=x for x lying between 0 and x_0 . The proofs of (ii) – (iv) are similar. Step 3. There is

(i)
$$f(x) = x$$
 for all $x \ge 0$, or $f(x) = -x$ for all $x \ge 0$, or $g(x) = x + a$ for all $x \ge 0$, or $g(x) = -x + a$ for all $x \ge 0$

and

$$\begin{array}{lll} \text{(ii)} & f(x) = x \;\; \text{for all}\; x < 0, & \text{or} \quad f(x) = -x \;\; \text{for all}\; x < 0, \\ \text{or} & g(x) = x + a \;\; \text{for all}\; x < 0, & \text{or} \quad g(x) = -x + a \;\; \text{for all}\; x < 0. \end{array}$$

Let us prove that (i) holds. Putting in (3) 0 in place of y we obtain

(9)
$$\max\{|f(x)|, |g(x) - a|\} = |x| \text{ for } x \in \mathbb{R}.$$

Now, consider two cases:

 $1^{\circ} |f(x)| = x$ for all $x \ge 0$. By continuity of f there is either f(x) = x for $x \ge 0$, or f(x) = -x for $x \ge 0$.

2° There exists an $x_0 > 0$ such that $|f(x_0)| \neq x_0$. Therefore, by (6), $|f(x)| \neq x$ for all $x \geq x_0$ and so, by (9), we have |g(x) - a| = x for $x \geq x_0$. Continuity of g implies that either g(x) = x + a for $x \geq x_0$ or g(x) = -x + a for $x \geq x_0$. This, together with points (iii) and (iv) from Step 2, yields

$$g(x) = x + a$$
 for $x \ge 0$ or $g(x) = -x + a$ for $x \ge 0$.

The proof of (ii) is analogous.

Step 4. For arbitrary $x_0 \in \mathbb{R}$ one of the following equalities is true:

$$f(x_0) = -f(-x_0) = x_0$$
 or $f(x_0) = -f(-x_0) = -x_0$ or $g(x_0) - a = -g(-x_0) + a = x_0$ or $g(x_0) - a = -g(-x_0) + a = -x_0$.

To prove this, put, first, in (3) x_0 and $-x_0$ in place of x and y, respectively. Thus we have

$$|f(x_0) - f(-x_0)| = 2|x_0|$$
 or $|g(x_0) - g(-x_0)| = 2|x_0|$.

1° Suppose that $|f(x_0) - f(-x_0)| = 2|x_0|$. In view of (8), it is possible only if $f(x_0) = x_0$ and $f(-x_0) = -x_0$ or if $f(x_0) = -x_0$ and $f(-x_0) = x_0$.

2° Similarly, in the case $|g(x_0) - g(-x_0)| = 2|x_0|$, (8) implies that either $g(x_0) = x_0 + a$ and $g(-x_0) = -x_0 + a$ or $g(x_0) = -x_0 + a$ and $g(-x_0) = x_0 + a$. Step 5. We prove that:

- (i) if there exists an $x_0 < 0$ such that $|f(x_0)| < |x_0|$ then either g(x) = x + a for $x \in \mathbb{R}$ or g(x) = -x + a for $x \in \mathbb{R}$;
- (ii) if there exists an $x_0 < 0$ such that $|g(x_0) a| < |x_0|$ then either f(x) = x for $x \in \mathbb{R}$ or f(x) = -x for $x \in \mathbb{R}$.

To prove these statements, suppose that there exists $x_0 < 0$ such that $|f(x_0)| < |x_0|$. By (6) one has |f(x)| < |x| for all $x \le x_0$ and so, according to Step 4 and the continuity of g, we have either g(x) - a = -g(-x) + a = x for $x \le x_0$ or g(x) - a = -g(-x) + a = -x for $x \le x_0$. Using the points (iii),(iv) occurring in Step 2 we can replace "for $x \le x_0$ " by "for $x \le 0$ " and then, by symmetry, we have simply

$$g(x) = x + a$$
 for $x \in \mathbb{R}$ or $g(x) = -x + a$ for $x \in \mathbb{R}$.

That is why (i) holds. Similarly, supposing that $|g(x_0) - a| < |x_0|$ for an $x_0 < 0$ we have, by (6), that |g(x) - a| < |x| for $x \le x_0$ and, according to Step 4 and the continuity of f, we obtain that either f(x) = -f(-x) = x for $x \le x_0$ or f(x) = -f(-x) = -x for $x \le x_0$. Using properties (i), (ii) proved in Step 2 we get

$$f(x) = x$$
 for $x \in \mathbb{R}$ or $f(x) = -x$ for $x \in \mathbb{R}$

so (ii) is proved as well.

Step 6. Now, we are going to finish the proof of the proposition. According to Step 3, we have four cases to consider.

Case 1°. f(x) = x for $x \ge 0$. Then the following subcases are possible:

• f(x) = x for x < 0 so, f(x) = x for all $x \in \mathbb{R}$.

- f(x) = -x for x < 0. Then for any $x \in \mathbb{R} \setminus \{0\}$ there is $f(x) \neq -f(-x)$. Therefore, according to Step 4 and the continuity of g, we have either g(x) = x + a for $x \in \mathbb{R}$ or g(x) = -x + a for $x \in \mathbb{R}$.
- There exists $x_0 < 0$ such that $|f(x_0)| < |x_0|$. Then Step 5 provides that either g(x) = x + a for $x \in \mathbb{R}$ or g(x) = -x + a for $x \in \mathbb{R}$.

Case 2° . f(x) = -x for $x \geq 0$. In this case, proceeding similarly as above one obtains that either f(x) = x for $x \in \mathbb{R}$ or g(x) = x + a for $x \in \mathbb{R}$ or g(x) = -x + a for $x \in \mathbb{R}$.

Case 3°. g(x) = x + a for $x \ge 0$. We have to consider three subcases:

- g(x) = x + a for x < 0 so, g(x) = x + a for all $x \in \mathbb{R}$.
- g(x) = -x + a for x < 0. Therefore, for each $x \in \mathbb{R} \setminus \{0\}$, there is $g(x) a \neq -g(-x) + a$ and, in view of Step 4 and the continuity of f, we obtain either f(x) = x for $x \in \mathbb{R}$ or f(x) = -x for $x \in \mathbb{R}$.
- There exists an $x_0 < 0$ such that $|g(x_0)| < |x_0|$. According to Step 5 either f(x) = x for $x \in \mathbb{R}$ or f(x) = -x for $x \in \mathbb{R}$.

Case 4° . g(x) = -x + a for $x \ge 0$. In this case, proceeding similarly as in Case 3° , we are able to prove that either g(x) = -x + a for $x \in \mathbb{R}$ or f(x) = x for $x \in \mathbb{R}$ or f(x) = -x for $x \in \mathbb{R}$. This finishes the proof of the proposition. \square

Now, we shall admit unbounded intervals as values of a considered setvalued function F. Denote by $ccl(\mathbb{R})$ the family of all nonempty, convex, closed subsets of \mathbb{R} i.e., the family of all closed (but not necessarily bounded) intervals on \mathbb{R} . In $ccl(\mathbb{R})$ one can introduce "almost" the same Hausdorff metric, say d'_H , defined at the beginning of this paper. Namely, for $A, B \in ccl(\mathbb{R})$ we put

$$d'_H(A,B) := \inf \{ r \ge 0 : A \subset B + rI \text{ and } B \subset A + rI \}$$

where I = [-1, 1]. In the present case infinite distance is possible. The following is a generalization of Lemma 1.

Lemma 2. For any $A, B \in ccl(\mathbb{R})$, accepting that $(+\infty) - (+\infty) = (-\infty) - (-\infty) = 0$, we have

(10)
$$d'_H(A,B) = \max\{|\inf A - \inf B|, |\sup A - \sup B|\}.$$

Proof. 1. In the case $A, B \in cc(\mathbb{R})$ we can apply Lemma 1, because in this case $d'_H(A, B) = d_H(A, B)$.

- 2. If exactly one interval, say A, belongs to $cc(\mathbb{R})$ then $d'_H(A, B) = \infty$ and simultaneously either $|\inf A \inf B| = \infty$ or $|\sup A \sup B| = \infty$.
- 3. Up to symmetry, the following cases remain:
 - $\bullet \ \ A=(-\infty,a], B=(-\infty,b];$
 - $A = (-\infty, a], B = [b, +\infty);$
 - $A=(-\infty,a], B=(-\infty,+\infty);$
 - $A = B = (-\infty, +\infty)$.

It is simple to check that in each case (10) holds. \square Any set-valued function $F: \mathbb{R} \to ccl(\mathbb{R})$ must have a form:

(11)
$$F(x) = \overline{(f(x), g(x))} \text{ for } x \in \mathbb{R}$$
 where $f: \mathbb{R} \to \mathbb{R} \cup \{-\infty\}, g: \mathbb{R} \to \mathbb{R} \cup \{+\infty\} \text{ and } f \leq g.$

Set-valued function $F: \mathbb{R} \to ccl(\mathbb{R})$ is called an isometry iff

(12)
$$d'_H(F(x), F(y)) = |x - y| \text{ for } x, y \in \mathbb{R}.$$

Proposition 2. Let $F : \mathbb{R} \to ccl(\mathbb{R})$ have form (11) and satisfy (12). Then

- 1) If there exists an $x_0 \in \mathbb{R}$ such that $f(x_0) = -\infty$ then $f(x) = -\infty$ for all $x \in \mathbb{R}$ and (with some $c \in \mathbb{R}$) either g(x) = x + c for $x \in \mathbb{R}$ or g(x) = -x + c for $x \in \mathbb{R}$.
- 2) If there exists an $x_0 \in \mathbb{R}$ such that $g(x_0) = +\infty$ then $g(x) = +\infty$ for all $x \in \mathbb{R}$ and (with some $c \in \mathbb{R}$) either f(x) = x + c for $x \in \mathbb{R}$ or f(x) = -x + c for $x \in \mathbb{R}$.

Proof. For $x \in \mathbb{R}$ we have $\inf F(x) = f(x)$ and $\sup F(x) = g(x)$. Assume that $f(x_0) = -\infty$ and suppose that there exists an $x_1 \in \mathbb{R}$ such that $f(x_1) > -\infty$. Therefore, by Lemma 2, $d'_H(F(x_0), F(x_1)) = +\infty$, i.e., F does not satisfy (12). Thus we have $f(x) = -\infty$ for all $x \in \mathbb{R}$ and $|\inf F(x) - \inf F(y)| = 0$ for all $x, y \in \mathbb{R}$. This implies |g(x) - g(y)| = |x - y| for $x, y \in \mathbb{R}$, and, finally,

$$g(x) = x + c$$
 for $x \in \mathbb{R}$ or $g(x) = -x + c$ for $x \in \mathbb{R}$.

The proof of point 2) is similar. \square

Corollary 1. If $F : \mathbb{R} \to ccl(\mathbb{R})$ has form (11) and satisfies (12) then either $F(x) \in cc(\mathbb{R})$ for all $x \in \mathbb{R}$ or F has one of the following forms (with an arbitrary $c \in \mathbb{R}$):

1)
$$F(x) = (-\infty, x + c]$$
 for $x \in \mathbb{R}$,

2)
$$F(x) = (-\infty, -x + c]$$
 for $x \in \mathbb{R}$,

3)
$$F(x) = [x + c, +\infty)$$
 for $x \in \mathbb{R}$,

4)
$$F(x) = [-x + c, +\infty)$$
 for $x \in \mathbb{R}$.

Now, we are going to formulate the main theorem which gives us a complete characterization of the set-valued isometries on the real line.

Theorem 1. Let a set-valued function $F : \mathbb{R} \to ccl(\mathbb{R})$ have form (11). Then F is an isometry (i.e. (12) holds) if and only if, for some constant $c \in \mathbb{R}$, there is either

$$f^{\circ}\left[egin{array}{c} f(x)=x+c,\;x\in{
m I\!R}\ or\ f(x)=-x+c,\;x\in{
m I\!R} \end{array}
ight] \quad and \quad \left[egin{array}{c} |g(x)-g(y)|\leq |x-y|,\;x,y\in{
m I\!R}\ or\ g(x)=+\infty,\;x\in{
m I\!R} \end{array}
ight]$$

or

$$\mathcal{Z}^{\circ} \left[\begin{array}{c} g(x) = x + c, \ x \in \mathbb{R} \\ or \\ g(x) = -x + c, x \in \mathbb{R} \end{array} \right] \quad and \quad \left[\begin{array}{c} |f(x) - f(y)| \leq |x - y|, \ x, y \in \mathbb{R} \\ or \\ f(x) = -\infty, \ x \in \mathbb{R} \end{array} \right].$$

Proof. To prove the necessity it sufficies to apply Proposition 1 (without the assumption f(0) = 0) and Proposition 2 with Corollary 1. The sufficiency is obvious. \Box

Corollary 2. If $F : \mathbb{R} \to ccl(\mathbb{R})$ has form (11), satisfies (12) and there exists $x_0 \in \mathbb{R}$ such that $F(x_0) = \{y_0\}$ (one point) then F is a single-valued either for all $x \geq x_0$ or for all $x \leq x_0$.

either for $x \leq x_0$ or for $x \geq x_0$.

Proof. 1. Assume that f(x) = x + c for $x \in \mathbb{R}$. $F(x_0)$ is a single point so, $g(x_0) = f(x_0) = x_0 + c$. By (7) graph $g \in C(x_0, x_0 + c)$ which yields, in particular, $g(x) \le x + c$ for $x \ge x_0$. But as $g(x) \ge f(x) = x + c$ for $x \in \mathbb{R}$, we have f(x) = g(x) for $x \ge x_0$.

2. If f(x) = -x + c for $x \in \mathbb{R}$ then $f(x_0) = g(x_0)$ implies that graph $g \in C(x_0, -x_0 + c)$ so, in particular, $g(x) \le -x + c$ for $x \le x_0$. As $g(x) \ge f(x) = -x + c$ for $x \in \mathbb{R}$, we have f(x) = g(x) for $x \le x_0$. Similarly, in the case 3. where g(x) = x + c for $x \in \mathbb{R}$ and in the case 4. where g(x) = -x + c for $x \in \mathbb{R}$, one obtains that f(x) = g(x), respectively,

3.

In many papers dealing with the set-valued functions some properties, which generalize corresponding properties of single-valued functions, are considered. In those papers the problem of the existence of suitable selections, appears very often. For example in [2] the existence of additive selections for additive set-valued functions is investigated; in [1] the authors deal with additive selections of subadditive set-valued functions. Additive selections of superadditive set-valued functions are considered in [3] and quadratic selections for subquadratic set-valued functions in [4]. In our considerations concerning set-valued isometries we can ask about the existence of isometric, single-valued, selections. Generally, for mappings $F: X \to cc(Y)$ as at the very beginning of the paper, this question seems to be interesting. However, the answer is unknown to the author. In the case $F: \mathbb{R} \to ccl(\mathbb{R})$ a positive answer is just a simple consequence of Theorem 1. Indeed, we have

Theorem 2. Let $F: \mathbb{R} \to ccl(\mathbb{R})$ be a set-valued isometry. Then, there exists a selection $i: \mathbb{R} \to \mathbb{R}$ (i.e., $i(x) \in F(x)$ for all $x \in \mathbb{R}$) which is an isometry. Moreover, if there exists an $x_0 \in \mathbb{R}$ such that $F(x_0)$ coincide with a single point then such an isometric selection is unique.

Proof. Suppose that F has form (11). By Theorem 1 either f or g is an isometry and a selection of F as well. As each isometry $i: \mathbb{R} \to \mathbb{R}$ must have a form i(x) = x + c for $x \in \mathbb{R}$ or i(x) = -x + c for $x \in \mathbb{R}$ in the case $f(x_0) = g(x_0)$, according to Corollary 2, an isometric selection is unique. \Box

4.

Finally, we give an example showing that a set-valued isometry neither has to be sub-... nor super-additive. Recall that the Mazur-Ulam theorem states that a surjective isometry $I: X \to Y$, with I(0) = 0, is additive.

Example 1. Let F(x) := [f(x), g(x)] for $x \in \mathbb{R}$; where

$$f(x) = x$$
 for $x \in \mathbb{R}$

and

$$g(x) = \begin{cases} -x - 2 & \text{for } x < -4, \\ 2 & \text{for } -4 \le x < -1, \\ -x + 1 & \text{for } -1 \le x < 0, \\ x + 1 & \text{for } x \ge 0. \end{cases}$$

We have |f(x) - f(y)| = |x - y| for $x, y \in \mathbb{R}$ and it is easy to check that $|g(x) - g(y)| \le |x - y|$ for $x, y \in \mathbb{R}$. It means that F is a set-valued isometry. However,

$$F(0) + F(-1) = [-1,3] \supset [-1,2] = F(-1),$$

$$F(-3) + F(-4) = [-7,4] \subset [-7,5] = F(-7).$$

Thus F is neither sub-... nor super-additive.

Acknowledgement. This paper was written during my stay at the Silesian University in Katowice. I would like to thank Professor Roman Ger for suggesting the problem and helpful comments.

References

- [1] Gajda, Z. and Ger, R., Subadditive multifunctions and Hyers-Ulam stability, General Inequalities 5 (Proc. Fifth Intern. Conf. on General Inequalities. Oberwolfach, 1986). (International Series of Numerical Mathematics, vol. 80). Birkhäuser, Basel Boston, 1987, 281–291.
- [2] Nikodem, K., Additive selections of additive set-valued functions, Univ. u Novom Sadu Zb. Rad. Prirod. - Mat. Fak. Ser. Mat. 18,1(1988), 143– 148.

- [3] Smajdor, A., Additive selections of superadditive set-valued functions, Aequationes Math., 39(1990), 121-128.
- [4] Smajdor, W., Subadditive and subquadratic set-valued functions, (Prace naukowe Uniw. /Sl. nr. 889). Uniw. /Sl., Katowice, 1987.

REZIME

IZOMETRIJE SKUPOVNIH VREDNOSTI NA REALNOJ LINIJI

Proučavane su funkcije sa vrednostima u skupu zatvorenih intervala definisane na R. Koristeći Hausdorfovu metriku na skupu zatvorenih intervala definisana je izometrija skupovnih vrednosti i data je njena karakterizacija.

Received by the editors May 22, 1991