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Abstract

The space of test functions of the space §'M«) of tempered ultra-
disributions of Beurling type ([4]) is determined by several equivalent
families of norms. Two representation theorems of the space §'(M«)
are proved. The operations of differentiation, ultradifferentiation and
multiplication on &M=} are investigated and the space of multipliers
of the space §'M«) is determined.
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1. Introduction

In the paper we determine S(M=) | the space of test functions of the space
§'Ma) of tempered ultradisributions of Beurling type ([4]), by several equiva-
lent families of norms, give two representation theorems of the space &’ (M)
investigate the operations of differentiation, ultradifferentiation and mul-
tiplication on 8'™<) and determine the space of multipliers of the space
§'M=) From the results of the paper and [4] it follows that $"(Ma) is a
natural generalization of the space of Schwartz tempered distributions and
of the space X!, s > 1/2 (see [6]). In fact, in the special case when (M) is
Gevrey’s sequence (a*®) we have §'(Ma)= X!
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88 D. Kovaéevié

Notation

The sets of non-negative integers, real and complex numbers are denoted
by N, R and C. The usual norm on the space L? = LP(R), p € [1,00], is
denoted by || - ||,.

We denote

(2)? = (14+2%"%, fe N,z € R and D= 22 =T

—=, 1
1 0z’

The letter C (without super- or subscript) will always denote a positive
constant, not necessarily the same at each occurrence.

”A — B” denotes that the inclusion mapping of the space A into the
space B is continuous and that A is dense in B.

The sequence of Hermite functions (A,) is given by

hn(z) = Gl Vi exp(z2/2) (exp(~z?))™,. n € N, z € R.

Y/ 2nn!

The Fourier transform is defined by
Fo(€) :/ e~ y(z)dz, E€R, p € L .
R

By (M,) we denote a sequence of positive numbers which satisfies some
of the following conditions (see [3])
(M.1) (logarithmic convexity)

MZ < Mooy Moy, o € N\{0};
(M.2)’ (stability under differential operators)
Moy1 < AH*M,, a € N, for some A, H > 0;
(M.2) (stability under ultradifferential operators)

M, < AH® Oznﬁig M, _gMpg, a,f € N, for some A, H > 0;

(M.3)’ (non-quasi-analyticity )
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and
(M.3) (strong non-quasi-analyticity)

N M,

Ma < AﬂT) ﬂ € N\{O}

a=0+1

We will always assume (M.1), (M.3)’ and My = 1. In some assertions we
will suppose (M.2)’, (M.2) and (M.3), as well. Throughout the paper the
letters A and H will always denote the constants mentioned in (M.2)’ and
(M.2).

The so-called associated function for the sequence (M) is defined by
M(p) = sup logﬁ p>0.
o My’
For the definitions and properties of the spaces D' = D'(R), &' = §'(R),

= &'(R), p'(Ma) 'D’(M")(R) and £/Me) = 5’(M°)(R) we refer to [5]
and [3].

2. Space S(Me)

Let m > 0 and p € [1,00) be given.

Definition 2.1. SM"‘ and SMem respectively are the spaces of all the
smooth functions ¢ which satisfy

1/p
O p() = ( > [l ()5 a) | dz) <o

BEN

and

_ 8,,(a)
Orm,00(P) af;lgN M ; II (2} ||oo

respectivély, equipped with the topology induced i)y the norms oy, p and oy, oo
respectively.

SM) = lim proj,,_,o, Sy'*™.
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We will prove (see Theorem 2.2.) that if (M.2)’ holds then

SMa) = lim proj,, o, SM=™ r € [1,00].

Note, the space S¥*™ is a special case of the space 7 (m, F) ([8]). Using
the analogous idea as in [8] one can prove that S;"*™ is a Banach space and
especially, that Séu @™ is a Hilbert space where the scalar product is defined
by

mo+B \ 2 — m
=Y [ (2)2 4 ()P () da, 6,1 € SH.
R MaMﬁ
a,feN

The space SM=) is not trivial because under the assumptions (M.1)
and (M.3)’, the space D(Ma) is not trivial (see [3]) and DMa) ¢ §(Ma),
Moreover, S(Mo\ DMa) £ @ If p € DMa), p > 0, suppp C [-1,1], p(z) =
1 for z € [-1/2,1/2] and (z;) is a sequence of real numbers such that
|z; | +2 < |zj41 |, 7 € N, the function

o~ Pz —zj)
1 ¢ r)= —_— s T € R,
1) @=3 05
belongs to S(M=) but it does not belong to D(Ma),

Since the inclusion mappings i : SMa™ — SMam (0 <« m < 7, are
continuous it follows from above that SMa) is (FG)-space ([1]). Moreover,
it is proved, in [4], that SMa) is an (FS)-space ([1]), which implies that
SM<) is a bornological, Fréchet, Montel and Schwartz space.

Theorem 2.2.

1. The family of norms {Om co,m > 0} is equivalent t0 {sy o0, m > 0},
where

Sm,co(p) = sup
a,ﬂEN

2. If (M.2)’ holds and r,p € [1,00], the families of norms {oy p, m > 0}
and {sm,m > 0} are equivalent to {oy,, m > 0} and {spmr,m > 0}
-respectively, where

mo+p o
smp(P) = Z MM ”zﬂ‘P( )”p-
a,BeN atp

+8
128 (|| oo.
s
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3. If (M.2)’ holds the family of norms {s,, o, m > 0} is equivalent to
{sm, m > 0}, where

m<
sm(p) = sup —— [l exp(M(m-))]|co-
aeN M,

4. If (M.2) holds the family of norms {s,, 2, m > 0} is equivalent to any
of the families of norms {8s,6 > 0} and {52, m > 0}, where

95(p) = Y lanlexp(2M(5V2RF 1), an €C, £ Y anhn,

neN neN

gm,Z(‘P) = Z

a,0eN

motB
1z )}
M, Mg :

o

Proof. Let us prove the first part of the theorem. Obviously for each smooth
function ¢ and m > 0, $p,00(®) < Om,00(p). Since for each L > 0

kL
(2) : %—éﬂask—»oo

which follows from (M.3)’ (see [3, (4.5)]), and
(2)? < 28/*maz(1,|2|P), z € R, B €N,

for each m > 0 there exists C such that for each smooth function ¢ and
a,feEN

meth 8. (

@) 8 (@) B (a) <
a1 @ D loe < 32 maale o 126 le) <
< maz(C3— Il “"Iloo,————(2M"") 27 6@)|oo) <

(Qm)a-{-ﬁ B .«
< e e— = .

Therefore for each m > 0 there exists C such that for each smooth function
®, o-'m,oo(ﬂo) < Csm,oo(‘P)-



92 D. Kovacéevié

Let us prove that {s,, ,,m > 0} and {s,, ,, m > 0} are equivalent families
of norms. The proof of the equivalence of {0,,,,m > 0} and {0, ,,m > 0}
is analogous. Let t € (1,00) and vy = [1/t] + 1. Applying (M.2)’ we get that
for each m > 0 there exists C such that for each smooth function ¢

met8
3 Sm < sup |zPp()(z)| +
(3) () ;MaMﬁ (MSPII ¢\*)(z)]

+ sup |2# ()] lz™"|dz | <
©=l>1 lz|>1

< Z M, ”zﬁ (a)“ +C ZM_M__”IIG-H (a)“

< Com(1+H7),00(9)-
The inequality
|28 p()(2)| < ﬂ/ |tﬁ<p(°')(t)|dt+/ [Pt (t)|dt, z €R @,f €N,
R R

which holds for each smooth function ¢, and condition (M.2)" imply that
for each m > 0 there exists C such that for each smooth function ¢

(4) Smoo((P)<sup M (ﬂ/ [tP o) ()] dt +

n f P (0)d) <
R

IA

+8 ’ at+1, a+f+1
/ 0 plo)(p)|ap + M Tm / |t%<"+l)(t>|dt)
B8 AR : R

<c 2m
=ty UMM, Moy Mg

< Csom(1+m),1(9)-
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Let t € (1,00), ¢ = t/(t — 1) and v = [1/¢] + 1. The Hélder inequality,
(2) and (M.2)’ imply that for each m > 0 there exists C such that for each
smooth function ¢

a+-0
5) smi@) =Y g ([ 1 @ds +
, Z;MGMﬁ G
+ / |zf’<,o(“>(z)|dz) <
lz|>1

- 1/t

mot8
< C / (©)(z)|tdz +

M, ( ( - ot )l_

1/t 1/q
+ (/ |:cﬁ+'7<p(°‘)(:c)|‘dz) (/ |x|—'yqdz) ) <
|z|>1 |z|>1 -

<ey

a
avﬁ

\g

8
7, (19 + 12476 <

s¢ (Z S el + Z ﬂ—M—uz"“ (‘*’nt) <

.

< CSm(1+H"r),t(‘P)-

The equivalence of {6, m > 0} and {6, m > 0} follows from (3),
(4) and (5).

Let us now prove the third part of the theorem. The condition (M.2y
implies that for each ¢ € $M=) and m > 0 there exists C such that for each
a,3 €N and for |z| >k > 1

mo+h m®(mH )P+
B (a) P (A Sl S () <
T [0 < ¢ T 09t
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1
S F MoMyn |71 (z)] <

Eoal e

Therefore for fixed (Ma) and me
erefore for fixed p € § an m>0,1ijf3

(s

formly in a, 8 € N to zero as |z| tend to infinity. The definition of the space

o+p
S(Ma) implies that if m and (a4 f3) tends to infinity, then 17; 7 |28 o) ()|
’ B

Izﬁc,o(")(z)l converges uni-

. 4
converges to zero uniformly in z € R. Hence, for given ¢ € SMa) andm > 0
there are ag, 8y € N and zp € R such that

mot+B meo+Bo

B, () — P (a0) —
sup lz7¢"*||o = lzo" ' (zo)| =
0 MoMpg Mg, My, °
mae+s mots
— B (a) — B (@) —
= su z = || sup (sup T o =
up s 1976 lloo = Il sup (sup 1 [P |
ma+,@ me

+8
— B () — B (@) —
= su su T oo = Sup sup T co) =

me '
= sup (T [lpl®) exp(M(m-))]co).
aeN o

The proof of the fourth part of the theorem is given in [4]. O

Theorem 2.3. If (M.2)7is fulfilled then
pMa) o, gMa) o, glMa)  gpg §Ma) oy G

Proof. Let ¢ € DMa) and suppp C [—k,ic], k > 1. The condition (M.3)’
implies that for each m > 0 there exists C such that

me+P mk)Pme m*
sup T )l = sup G o, < Csup T

a,B oo o, o
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It follows that the inclusion mapping i : DMa) —, §(Ma) i5 continuous.
moth
Mo Mj
uniformly in &,3 € N as |z| tends to infinity (see the proof of Theorem
2.2.), the sequence (¢;);, where ¢;(z) = p(z/j) p(z) and p is a function -
defined by (1) converges to ¢ in the space S(M=)_ It follows that D(Ma) jg
dense in SM=)_ O

Let

Since for fixed ¢ € SMa) and m > 0, |2°0(*) ()| converges

Pz, D)= Y a,,(-1)"D"z",
wreN

where a,, are complex numbers which satisfy that there exist L > 0
and C such that

(6) ‘a’lhlll S CW, B,V € N7

Theorem 2.4.

1. If (M.2) is fulfilled
(1) (=1)!D¥:8Ma) _, gWMa) | 5, (—1)"D¥¢p, v €N,
and
(8) P*(z,D): 8Ma) . S »— P*(z,D)p,
are continuous linear mappings.

2. If (M.2) is fulfilled
(9) P*z,D): SMa) _, §Ma) (o, P*(g, D)y,
is a continuous linear mapping.

3. The family of translation operators

S0 S 1) g~ B), (b < ho,

where hg > 0, is uniformly continuous.
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Proof. Let us prove that (8) is a continuous mapping. Applying (6), (M.2)’,
(M.1), and (M.3)’, we get that for ¢ € SMa) and o, € N

12°(P*(2, D)¢)Vleo <

min{a+v,0)
a+v) LvtH _
< E E B\(K) it N(a+r—k)

min(a+v,0)
a+v B HYHPuLY Bk \(vtamk
<ec Y (Y ( k )(k)k!mll(fc“ﬁ p)lrehl ) <

e z xnin(ail/,ﬁ)( a+v ) ( g ) 1 ((1+4L)(1 + H)(1 + HF))?* k! .

k 4ty M,

(L4 4L)(1 + HO)(1 4 B)ytvratp-2h

u+pB—-k (v+a—k) <
Mu+a-—k Mu.+ﬁ—k ”(23 ‘P) “00 —

< Coup (AT4D)OH Ho)(14 HF))P+

27)®) co-
u e "))

This implies the continuity of (8).

Let us prove that (9) is a continuous mapping. Applying respectively
(M.2), (M.1) and (M.3)’ we get that for each m > 0 there exists C such that
for each ¢ € SMa)

mot+B
sup
a,8 MaMp

12 (P*(2, D)) loo <

min(a+v,0) ' va I utB B+
<esp 0 (0T )(8) R
k k . Mu+aMll+ﬁ
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(PR, <

min(a+v,3)

1 a+ J¢;
<Csup > ) W( ku)(k)'

ENSmL(1 4+ H))?* (8mL(1 + H))tftutv—2k
MkMk Mu+a—kMu+[3—k

Iz~ *)ltah)|, <

©)

min(a+v,3)

1 (16mL(1 + H))tFtutv—2k » )
<C SHP o ||(zu+ﬁ (P)(u+a— )”OO <
u,%E:N Ig BakOtity Myyo—kMuyp—k

(16mL(1 + H)) (a)
< Camp T (6l

This implies the continuity of (9).

Let us now prove the fourth part of the theorem. If m > 0, ¢ € S(Ma)

and |h| < hg, we have

maetB8
Sub Mg”(x)ﬁ(Th‘P)(a)”oo <

o, o

a+i atf
<sup 22 sup (o — Y@ ()] < sup PO

Kz)P o' ||oo. O
a8 MaMp zcR a8 MaMp Iz

3. The space of tempered ultradistributions S'(Me)

Definition 3.1. The space S'Me) of tempered ultradistributions of Beurling
type is the strong dual of S(M=),
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A non-trivial example of an element of the space S'Ma) is defined by

(f,9) = /R fodz, o€ M),

where f is an ultradifferentiable function of class (M,) (see [3]) and that
there exist L > 0 and C such that

LB
If(z)] <C) —2P, zeR.
(z) ;Mﬁ

8'(Ma) is 3 separable, complete and Montel space (see [4]).

Note,
S’ §'Ma) and £'Me) o, §Ma) o, p/(Ma)

follows from Theorem 2.3..

Theorem 3.2. Let f € 8" M=) and r € (1,00].

1. There ezxists a sequence of functions (Fy g)q geN from L7 such that in
the space S'(Me)

(10) £ = 3 (@) Fap)@),
a,f

and that for some m > 0

1/r
MaMj
(Z/ | Fus a:)|) < o0, 1€ (1,00),

M .
sup (S Fap(@)]) < oo, = co.
a,0
:z:ER.

(11) <

\

2. If for a sequence (Fyg)a,peN from L" holds (11), then the sum on the
right hand side of (10) converges in S'(Mo).
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3. If fe 8'Ma) gnd q, = (f,hn), n € N, then

f= anhy,

neN

in S'™Ma) gnd for some § > 0

(12) Z lan|? exp(—2M(8v/2n + 1)) < oo.

neN

4. Let (an)n be a sequence of complex numbers. The series ZnEN anhy,
converges in S'Ma) if and only if (12) holds for some 6§ > 0. If f is
the sum of the series then a, = (f,hyp), n € N.

Note, the weak and the strong sequential convergence are equivalent in
SI(MQ)'
Proof. The proof of the theorem is analogous to the proof of [6, Theorem
" 5.2)]. Let p = r/(r—1). Note, p € [1,00). Since §"™a) is a strict (FS)-space,
we have '

!
§M) =ind Tim® (s}em),

m-—+0oQ

in the sense of strong topologies, where S,],w @™ is the closure of S(M=) in the
space S,I,w @™ with the topology induced by the space S,],w am,

If f € §'Ma) there exists m > 0 such that f has a continuous, linear

extension on S,],W @™ The Hahn-Banach theorem implies that f has a con-

. . . M. . ,
tinuous, linear extension on S, *"™ with the same dual norm. We denote

this extension again by f. Let T;,(m) be the space of sequences (%,8)s seN
from L"(R) equipped with the norm .

mo+p

1/p
o,0 ) = o rd .
(Yl (X;; [ g ves ) <oo

The mapping
i SMam™ L To(m) i ((=1)%(2)P0), 5

is an isometry of SM=™ onto G,(m) = i(S,],"I"m) C Tp(m). We define a

continuous linear functional f on Gy(m) by

(Fr ($a8)ag) = (fri ™ ((Ya8)a8))> (Bo8)c,8 € Gp(m).
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Again by the Hahn-Banach theorem we extended f linearly and continuously
on T,(m) with the same dual norm, and denote this extension by F.

It is known (see [8, p.29, Hilfsatz 2.]) that the fact F € (T,(m))’ implies
the existence of a sequence (Fy )y seN from L7 such that F has a form

(F(Sap)as) = 3 [ FaplaVbasl@lde, (oplas) € To(m)
a,p
and that the norm of F is given by

( MM .
» /Rl———"Fa,ﬂ(x)r)”T <ooif 1€ (1, 00),
B

ma+/6
11 = MM,
. B : :
sup mﬂFa,g(w)l < oo if r ="oo.
a’ﬁ
zeR

Thus ||F|| = ||f|| < oo and for each ¢ € SM2) we have

(fr0) = (£, (D)@ N)ae) = (F, (1))’ ag) =

= YV [ Pap@efd@)ds = T (@) Fap)®s ),
o, R a,f

which implies the first part of the theorem.

2
Let us now prove the third part of the theorem. For each ¢ L > brhn
an element of S(Ma) we have

(Z anhna (P> = Za'n(hna ‘P) = Z(fa hn>bn = (f,anhn> = (fa 90>'

It is easy to check, applying Theorem 2.2. part 4, that > exp(—M(§v/2n + 1))k,
is an element of S(M=) | Tt follows

Z lan|? exp(—2M(6+/2n + 1)) =
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=Y I(f,exp(~M(6v2n + D)k < [(f, Y exp(~M(8v2r+ 1))hy)[* < oo.

Let cp’L:2 3, bnhy, be an element of the space S(M=) and let § > 0 be such
that Y_. |bs|? exp(2M(6+/2n + 1)) < oo (see Theorem 2.2.). The fourth part
of the theorem follows from the estimations

(D bt @2 = 13 anbal? <

<) lanlexp(—2M(6v2n + 1)) D |ba|? exp(2M (6v/20 + 1)) < 00. O

An immediate consequence of the above theorem is that the linear hull
of {hy,, n € N} is a dense subspace of S"(Ma).

Theorem 3.3.

1. Suppose (M.2)’. The operators
(13) D*: §'Ma) __, §!Ma) 4, e N,

(14) P(z,D): §' — §'Ma)

defined as the adjoints of (7), (8) respectively, are continuous and for
each f € §'Ma) we have

(15) P(z,D)f = Z a,, =*D"f,

uveN
where the series on the right ﬁand side converge absolutely in §'(Ma)
2. Suppose (M.2). The operator
P(z,D): S'Ma) __, S'(M"),

defined as the_ adjoint of (9) is continuous and for each f € S'Me) | we
have (15).
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Proof. The continuity of all the mentioned mappings follows from Theorem
2.4..

Suppose (M.2)’ resp. (M.2). Let f € &' resp. f € §(M=). Since for each
€ SMe)

(fs D auu(-1)"D'a*e) = (Y au,z"D"f, )

u,v<n pwv<n

converges to

(f’ P*(:Z:’D)(P) = < Z a,u’,,x“D”f, (P)a

uy<n

as n — 00, we have (15). O

4. The space (95‘1}4") of multipliers of S'(M<)

Definition 4.1. (9](‘],}4") is the space of all p € £Ma) sych that for all 1 €
SMa) the pointwiese product -1 belongs to S\Me) | wich topology is induced
by the family of seminorms

ma+ﬁ
- B ohen)(@) (Ma) .
Pym () i‘f}; MaMﬁll(w) (Ye) Moo, ¥ €S, m>0

The inclusion mappings
SsMa) _, o) _, 5'(Ma)

are continuous. Moreover, SM=) is dense in O](w o),

Theorem 4.2. Let ¢ ¢ £Ma),

1. The condition
(a) for all y € §Ma)| the pointwiese product ) € SMa), -

implies . -
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(b) for every m > 0 there ezist C and £ > 0, such that
(16) sup ™ @) < €T (e, o €
o Ma — ﬁ Mﬁ ? ?
2. If (M.2) is fulfilled all above conditions are equivalent.

Proof. If (1a) is and (1b) is not fulfilled then for some m > 0 there exists a
sequence (z;); such that {z;| tends to infinity as j — oo and

(17) sup—lcp(o‘) (z;)| > M ZM z;)?

Without the loss of generality we may suppose that |z;|+2 < |z;+1], 7 € N.
Consider the function ¢ € S(Ma) defined by (1). The conditions (M.1) and
(M.3) imply

o o o (%)
m o _ m a P (O) a—k _
sup ) e = T S () 1 e ien =

m® p(O o ]
up 3| 29 ()($J)|>MZM (@) >

(2 ¥ =
> M; Z ! (%)ﬁ_J = m_ﬁ(951>ﬁ >1
T sy Me-iMi 7 Mo

Hence, sup, ﬂ—il(qbcp)"(xjﬂ does not converge to zero as |z;| — oo,
which is a contradiction (see the proof of Theorem 2.2.).

Let (1b) and (M.2) be fulfilled and let- ¢ € SMa) . We will prove that
o € SMa) The conditions (1b) and (M.2) imply that for each m > 0
there exist C and £ > 1 such that ‘

Sup

o+ otf
TR Sl e M < S () g et

o,f k<o
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i (Qm)a+ﬁ(zg)7}[ﬁ+'v

< Csup 2P|,
g Z R Vi 7l [
4me(1+ H))>+P N
< Csup PO INTE oy @),

B Mo Mg
The next theorem follows from the proof of Theorem 4.2..

Theorem 4.3.

1. The mappings
O — SMa)| g1y o, 9 € SMa),
are continuous.
2. Suppose (M.2). The pointwiese multiplication
Ma
sMe) x Offf) — s, (1, 0) > Yo,
is a separately continuous mapping.

3. SMa) in 1. and 2. may be replaced by S'M),

D. Kovaéevié

<

Theorem 4.4. If ¢ € £Ma) and for all f € 8'Ma) the product ¢f belongs

to 8'Ma) | then ¢ belongs to (’)}(‘y"').

Proof. Our assumption implies that for every ¢ € §(Ma) the mapping

f (8], 0)
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is continuous linear functional on §'Ma)_ Since §'(Ma) is a reflexive space,
there is 9 € S(Ma) such that for each f € §'(Ma),

(f,¢) = (f,¥)-
In particular, for each p € D{Ma) we have

<¢p"P) = <p7’¢)),
which implies that

(p,dp) = (p, V).

Hence for all ¢ € §M=) we have ¢pp = 9 € SMa)_ Tt follows ¢ € (’)g]}l"). a
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REZIME

NEKE OPERACIJE U PROSTORU S§'M=) TEMPERIRANIH
ULTRADISTRIBUCIJA

Prostor S(Ma) test funkcija prostora 8§'Ma) temperiranih ultradistribucija
Beurlingovog tipa ( [4]) je odredjen sa nekoliko ekvivalentnih familija normi,
date su dve teoreme o reprezentaciji elemenata prostora §'Ma) | Ispitivane
su operacije diferenciranja, ultradiferenciranja i mnozenja na S’ (Ma) j odred-
jen je prostor multiplikatora prostora S'(Ma),
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