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Abstract

We develope a theory of generalized function spaces LGY, and its
generalizations LG, > —1, which elements have orthonormal ex-
pansions with respect to the Laguerre orthonormal systems I, o, n €
Ny, a > —1. We define the (a, 8) - convolution product and find condi-
tions of solvability of a convolution equations in these spaces. Finally,
we give some applications of it in solving integral equations.
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1. Introduction

Zemanian introduced in ([10], Ch. 9) the A’ - types spaces of generalized
functions which elements have orthonormal series expansions with respect to
various orthonormal systems. The generalization of these Zemanian results
was given in [3] as (exp A’)— types spaces, which contain A’— type spaces
as proper subspaces '

The expansion of generalized functions with respect to the Laguerre
orthonormal system has been studied by Zayed [9], Duran [1] and Pilipovié

[4], (5.

65
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In [6] we have studied the expansion of elements of generalized function
spaces LGy and LG, with respect to the Laguerre orthonormal system and
we present a numerical method for solving convolution equations. Using this
numerical approach we found a new sufficient conditions for the existence
of solutions of convolution equations which are supplement to Vladimirov’s

results ([8], Ch. 2, § 13).

In [7] we introduced the so - called (a, ) - convolution for solving con-
volution equations of the form

I (a’;‘ﬁ) g= (.’L'a/2f) " (zﬁ/2g) - .’E(a+ﬁ+1)/2h,

f€ LGy, g € LGp, h € LG, 5,,,*is the ordinar convolution of tempered
distributions, based on the generalized Laguerre polynomials, a,3 > —1. We
gave examples of expansions of elements from LG, a > —1, into Laguerre
series and characterized the coefficients which appear in these expansions.

In this paper we give conditions for the solvability of (a, 8)— convolution
equations, a,8 > —1, in LG}, and LG, spaces. The spaces LG, are the
types of exponentional generalized function spaces (exp A’). First, we give
basic facts concerning the fundamental spaces which will be examined. We
deduce that the spaces LG, are equal to the spaces exp LG,. Secondly,
the convolution product is defined in LGY,. The Section 5 is concerned on
the mapping between LG!, spaces. In Section 6. we prove in a simple way
that (a,8)— convolution equation is solvable in LG, iff the first coefficient
in the Laguerre expansion of f is different from zero. In Section 7. we
give some comments on solvability of (a,()— convolution equations over
the spaces LGj. We consider (a,3)— fundamental solution of (e, 8)— con-
volution equation Section 8. In Section 9. we give a remark concerning the
approximate error estimate of (a, 3)— convolution equation. We give finally
some applications of these results, on solving Volterra’s integral equation of
the first kind, and we include some numerical method for solving integral
equations. In [6] is proposed an explicit method for finding solution through
the Laguerre polynomials, concerning the ordinar convolution equation:

frxg=h, f,he€ LGy g is unknown.

This equation can be treated analitically by using the Laplace transform
but this method is impractical from numerical point of view. We propose
an explicit method for finding solution trought the Laguerre polynomials.
The usefulness of this approach is selfevident in solving equations which can
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not be performed analitically. So, in Section 10. we present a new numerical
method by using (a, 8)— convolution form of integral equations. For this
we employ a system of algebraic equations as in [6].

2. Fundamental spaces

Throughout the paper we shall assume that oo > —1. Also, we shall use the
following notation: Ry = (0,0), Ry = [0,0), Z4 = R+ R4, Np =
N U {0}, N is the set of naturals.

Consider the Laguerre orthonormal system I, o n € Np, in L?(R}):
oa(@) = Tuaa®?L2(2)e™/2, = € Ry,

where
| 7n = (T(n +1)/T(n+ a + 1))'/2

and

L3(z) = i ("+a)(_z)m, n € No,

n—1m m!
m=0

are generalized Laguerre polynomials. The [, , are eigenfunctions for the
operator

Re = za/ze’:/zD:v"""le—zDa:_"‘/ze”/z, ie. Ro(lno)=—nlpq, n€ Ng.

LG, is the space of smooth functions ® € C*(R4) for which all the
norms ||®||x are finite:

@il = IREBlo = (| IRE®()d0)2, k€ No,
0
and for the operator R, the following holds:

(Rloc(@,ln,a) = (Qngln,a), k7n € NO;

RO is the identity operator and R5*+! = R,(RE). The L%(R,)— inner prod-
uct is denoted by

(#9)= [ e(pna =< 8, %>, & veli(Ry).
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It is proved in [4] that the space LGy, is in fact S, the space of tempered
distributions supported by R . As well in [4] is given the connection between
LG!, and LG} which follows from:

®eclG, iff &= 1:“/21/; for some 1 € LGy,

®, -0 in LGy, n— 00, iff & =2, v, € LGy, n€ N and
$,—0 in LGy, n— oo.

Thus, we have LG, = 2=*/2L G/, where the dual pairing between f € LG,
and ¢ € LG, is given by < f,p >=< 22/2f z=*/2p > |

Since we are interested in series expansions of elements on LG/, — spaces
we shall give the equivalent definition of them.

The space Lgq, k > 0, is defined as follows.

o0
Lo = { ®2 Y tnalna € LP(Ry); | 12]] Ika< 00 }

n=0

where

) 1/2

110 1o 1o0af+ Slonar* )
n=1
LGo = proj lim Lya  ([10]).
k—oo0

The dual

ko = { Y= bualnall| 9] lka < oo },kZO.

n=0

00 1/2
“ I Y l “k,a = ( |b0,01|2 + Z Ibn,alzn_zk ) .

n=1

LG, = ind lengo )

The strong and the weak convergence in LG!, are equivalent.

The criteria for the convergence of sequences is similar to the correspond-
ing one in LGy ([6]). ‘
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Denote by L.k o, k > 0, the space

- Leka = { 82 analne € LRy ||| @] [leka < 00 } :

n=0

where

o0 1/2
1@ Hleka = ( a0l + ) lan,ol ™" ) < o0.

n=1
When o = 0 this is the space Le ([6]).
These spaces have the properties:
a) Lek o, kK € Ry are Banach - spaces;
b) the inclusion mapping Leko — Let,ar kK > 1, is compact;
¢) LGeo = projlimg_oo Lek,as
LG, =ind klirgo Ll o

Here, LG;k,a are duals of LG e, o supplied 'by the dual norms.

oo oo 1/2
(d)L;k,a = { Z bn,aln,a; (IbO,a|2 + Z |bn,a|2k_2n) < 00 } = Lel/k,a,
n=1

n=0
k> 0; (for k=0, L, = L*(Ry)).
When a =0,

LG, = proj lim L., and LG.=ind lim L), and
k—o0 k—o0

ok = { an,oln,o; (|bo,0|2 + Z |bn,0|2k_2") < 0o } = Ly k-

n=0 n=1

The weak and the strong convergence in LG _(LG") are equivalent and
the sequence

o0 o0
fn= Z b nlm,o convergesto f= Z bnlm,o
m=0 m=0

iff for some k& > 0,

Z |bm n — b |26™?™ = 0, 7 — oo.

m=0
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3. Some isomorphism

The generalization of A'— type spaces, spaces of exp A'— type, were intro-
duced in [3]. We shall consider the special case of these spaces with the
generalized Laguerre orthonormal systems. We take A = LG, and we shall
find the connection between them and LG.,.

Define the space exp LG, as

o0 o
exp LG, = { d = Zan,alma; iff for every k> 0, Z lan,QIQkZ" < o0 } .

n=0 n=0
It means, for every k > 0 there exists y; such that |a, 4|, 7:k™™, n € No.

Similarly,

o 0] o
exp LG, = { f= an,alma; iff for some k > 0, Z Ibn,alzk_zn < 00 } ,

n=0 ' n=0
or there exists k > 0, and 7; such that |b, o < vxk™, n € No.
By the representation theorem from [3], we have

If f € exp LG', then there exists a sequence {f,}3, from L?(R}) and
k > 0 such that

n

(4) =Y %R"fn, (3i) sup || full2 < 0.

n=0 neNg

Conversely, if a sequence {f,} from L%(R.) satisfies (ii), with the series (i),
a unique element from exp LG!, is defined.

We have
Proposition 1. LG,y = exp LG,,.

This gives, particularly, LG, = exp LGp.

4. The convolution in LG,

The definition and the basic properties of (a, 3)— convolution for the spaces
LG, were given in [7]. Here, we shall give its LG, ,— form.
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Recall, for f € LG!,, g € LG,

(1) £ g = ool2f 4 oBlg,

and for f,g € LG we have:

(0,0) . u 4
frég= Jim {3 baolno* Y cnolno |

n=0 n=0
where (in the limit) expansions of f and g appear.

Let for a,8 > -1, f —a > —1,

(2) f = zbn,aln,a (S LG’eon g= Zzn,ﬁln,ﬁ € LG’eﬁ’

n=0 n=0

o0
h= ch,a+ﬁ+lln,a+ﬁ+l € LGeaypir-

n=0

Then, in the same way as for LG/, and LG}, ([4]) one can prove:

Proposition 2. The mapping from LG., into LG, defined by f — z®/2f
is continuous. '

The convolution f (afkﬁ) g is defined by
(a,8) . af? ad B8/2 ad
f*'= 1\}1_13100 z ZO bn,al'n.,a * z ZO zn,ﬁln,ﬁ .

Proposition 3.
(i) With the (a, 3)— convolution the space LG, is an algebra;
(ii) The explicit form of (a,8)— convolution product of f,g is given by

(3) f (a’;‘ﬁ) g= x(a+ﬁ+l)/2h

where f,g are from (2) and

h= Yo nl/(Mat B+n+2)( T (et p+ DI ++ 1)/

n=0 p+g=n
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.bpyaxq’ﬂ)ln|a+ﬂ+l *

(i) f * 'ﬂ) = (ﬂ' f- (follows from (ii)) .

We shall give the algebraic representation for (1,0)— convolution product
and (0, B) - one for later use. With the notation as in (2) we have that h in
(3) is equal to:

4 DU+ DE+2) D (p+ 1)'Pby1200)ln2 =Y cnaln2

n=0 pHg=n n=0

(5) Z n'/F(ﬂ +n+2)( Y (DB +q+1)/¢) /by 024 6)lnpr1 =

n=0 p+g=n

= Z cn,ﬁ+lln,;9+l .

n=0

5. The mapping between LG/ spaces

Proposition 4. If f € LG',, then the mapping: f — zf, from LG, onto
LG,_,, a>1 is the bijection.

Proof. The formula
(6) 2L = (n+o)(n+a+1)L22-2(n+a)(n+1)
L33+ (n+ 1)(n + 21053,
n € Ng, follows from zLg = (n + @)L2~! — (n+ 1)L27] ([2], (23), p. 190).
If g = zf, where

o0 o0
f= Ebn,alma, than ¢ = an,aﬂ:ln,a-
n=0 n=0

By using (6) we have

x> . o0
g= an,a { x{a—2)/2e—z/2(z2Lg) } — an’a { Z(Va—2)/2e—x/2[(n +a)-

n=0 n=0
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(n+ o+ DI = 2n + a)(n+ DIGT + (n+ D(n+ 2) L5},

and thus,

(M 9= bral(nt+a)(n+a+lnay—2n+a)(r+ Dingr,a2t

n=0
+(n+ 1)(n+ 2)lnt2,0-2} =

= a(a + 1)b0,a10,a + ((a + 1)(a + 2)bl,01—2 - 2ab0,a—2)ll,a + E[bn,a(n + a)-

n=2
(n+a+l)—2n(n—-14+a),_1a+n(n—1)bp_20]lna—2.

Since g € LGY,_,, it has the expansion g = Y > Zpna—2ln,a—2. From (7) we
have:
To,a—2 = bo o0+ 1),

T1,a—2 = —QQbo,a + bl,a(l + a)(2 + a),
2:2’&_2 = 2b0,a - 4(a + 1)b1,a + (2 + a)(3 + a)bz,a,

Tna—2 =bn_go(n—1)n—2b,_14(n—1+a)n+byo(n+a)(n+a+l).

If g =0then 2942 = T1,0-2 = -.. = Tna—2 = ... = 0 and since o > 1,
we get f = 0. It means that the mapping is the injection.

The surjection follows from the solvability of the above system of equa-
tions on b, o, n € Ng bacause a > 1.

For given g the coefficients of f are the following:
bO,ar = zO,a—Z/(a(a + 1)),
b1a = 1/((a+ 1)(a+ 2))(F1,0-2 + 220,02/ (@ + 1)),
bao = 1/((a+2)(a + 3)){z2,0-2 + 2/(a + 2)T1,0-2 + 4/(a + 2)T0 02
~220,a—2/(a(a + 1))}

So we have proved that the quoted mapping is the bijection. O

Procceding it by induction on k, we obtain:
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Proposition 5. If f € LG',, than the mapping: f — z*f, k€ Ry, a—
2k > -1, from LG, onto LG!,_,, is the bijection.

Examples. The following two examples give another proof, based on the
(1,0)-convolution, that the mapping f — zf is a bijection of LG} on LGj.

1°  Using (1,0)— convolution equation z'/2(z~1/2§) % ¢ = zh where
27126 = 352 1.4, ({7]), and g, h are from (2) we obtain

n=0
o0 00
(1,0)
E ln,l * E zn,Oln,O = zh,
n=0 n=0

where b = 3 >° | ¢n 2ln 2 and thus,

en2=1/((n+2)(n+1)) Y (p+1)/ 220
ptg=n

The solution of this system is:
To,0 = 260,2, T1,0 = 661,2 - 2\/560,2, T20 = (12 - 6\/5)61,2 + (4 - 2\/5)60,2,

and

zh = Z Ty olno = (2¢c02)lo0 + (6c1,2 — 2v/2¢0,2)h o+

+[(12 - 6v/2)er 2 + (4 — 2v/3)coallz0 + ...

29 Let g = (1/z)h, and

00 )
h = Ecn,oln,o 9= Ezn,Zlnﬂ-

n=0 n=0
Then k = zg and from the system from example 1°, we have

Znz = 1/((n +2)(n+1)) Y (+1)cq0.

ptg=n
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6. The solvability of (¢, 3) - convolution equations
in LG, '

In [7] we have shown trought the algebraic representation of (3) that the
necessary condition for the solvability of the convolution equation

(8) f (C!:;ﬁ) g= (za/2f) * (zﬂ/2g) — x(a+ﬂ+1)/2h,
where f € LG,, g € LG}, h € LG 4,,, is that the first coefficient in

Laguerre expansion of f is different from zero.

The (a, 8)— convolution form of (8) can be expressed as
FxG=H, F,G,H € LGy,

where F = z2/2f, G = £P/2g, H = g(a+F+1)/2p,
‘ In [6] we have proved that if F = ) ,° d,olno € LGy and dpg # 0,

[

then for any H € LG, there exists a solution of equation F xG = H which
belongs to LGL,. The function F = z%/2f can be treated in two different

ways:
If o
F=) bnalna € LG,

n=0
than - -
$a/2f = Ebn,axa/zln,a =F = Zdn,oln,o c LG;O'
n=0 n=0
The first coefficient is do :< F,lpo >=< Fe /2 >= do 0.

Since loo = e~%/2 and loo = To,aa:"ﬂe'% = To,a$a/2lo’0, the following
holds:

oo
< xa/2f, lo,o >=< f, xa/2loio >=< Z bn,aln,a, xa/zl()’o >=

n=0

oo .
=< Z bn,aln,a,lo,a/TO,a >= bO,a/TO,a-

n=0

So we obtain doo = b o/T0,a- It gives
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Proposition 6. The convolution equation
f (af) g= platB8+1)/2p

is solvable in LG4 for any h € LG, 5., iff in the Laguerre ezpansion of
f =300 bnaln the first coefficient by o # 0.

7. The solvability of («, 3)— convolution equations
in LGj

In this section we shall give the conditions for the solvability of (a,3)—
convolution equations which are analogous to the conditions of Vladimirov
([8], Ch. 2 § 13 ), given for the space of tempered distributions.

Consider LG} - from of (a, 3)— convolution equation

9) £ g = (29125 4 (2712g) = glo+B+V 2,
where f € LG, g € LG}, h € LG, 5., and z°/2f,gP/2g, 5@ +B+1)/2p ¢
LGy, * is the ordinar (tempered) convolution.

Proposition 7. If f = z72/? Eﬁ:o a6, then for any h € LG, s
‘there ezists a solution of (a, 8)— convolution equation in LGy iff P(—iz) =

k
n=0 4n

(iz)" £ 0in Zy.
Proof. When f = 2=2/23%_ 4,6 then (9) becomes

k
zané‘(n) * (zﬁ/zg) - z(a+ﬁ+1)/2h

n=0

where # is ordinar convolution in LG} and hz(*+8+1)/2 ¢ [G). From ([8],
Ch 2. § 13) follows that there exists the solution of this equation in LGj,.
From Proposition 5 we have that there exists g € LG); which satisfies (9).
a : .



(@, B) - convolution in spaces ... 77

Proposition 8. Let f € LGy. If f(z) = L(f(t))(2), z € Zy,L is the
Laplace transform, has nonnegative imaginary part, then for allh € LG’
there ezists a solution of

a+6+1

~a/2 gy (2F) o .
(10) (z=/%f) g = z@t0/2p 4y LGj.

Proof. The ordinar convolution form of (10) is
f % (2P/?g) = glotPtD/2p,
Since z{*+6+1)/2p ¢ LG}, then by following Vladimirov ([8], Ch. § 13),

or ([6], condition (B)), (10) is solvable in LG} iff f(z) has nonnegative
imaginary part. Thus, z%/2g € LGY. From Proposition 5 g € LGj. O

We shall give examples concerning these propositions.

Example 1°.
2,2
(*)gz z%/’h, h e LGS,

Let
f=2716= Z[An/((n +2)(n+ 1))z, An = Z(t + 1)1/2
n=0 1=0

([7]), then with the notation as in (2), the corresponding system of equations
zg = z%/?h is
I'(3)/T(6)(1/2)z0,z2 = co,5

1/T(T{(T(A)T(3))*[(14V2)/6+1/2]w02+(T(3)1(4))/2(1/2)z1,2)} = evs,
2/T(8){(1/2T(3)T(5))/*[(1 + v2 + v3)/12 4+ 1/6(1 + V2) + 1/2]z0 2+
+T(4)[(1 4+ V2)/6 + 1/2]z15 + (1/2T(3)T(5)/%(1/2)z25} = ca5-

Example 2°.

FUP g =2, helG, felG), ge LG,

Suppose f = z1/26 = 3% J4(—1)"1,1 ([7]). Then we obtain

4/T(5)(T(2)I(3))*z0,2 = co,
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1/T(6){T(3)[(~4)zo2 + (T(2)T(4))/ %421 2} = 1,4,
2/T(TH{(T(4)1(3))/2)!*4z0oz + (T(3)['(4))) /4y o+
HT(2)I(4))/1) 24255} = ca 4.

Appropriate versions of Proposition 7, 8 hold for (0,8)— convolution
equations.
We shall give two examples concerning this case.

0,
Example 3°. Consider the equation P(§) ¢ *ﬁ) g = B2} g b are as in

(2). Suppose

2
P(6) = Zané(") = aob + a18’ + ax6”.

From [7] )
5() = 3 b1, 8(2) = 3 (0 + 1/2)lno(),
§(2) = 3 ((n — 1)/2+ n+ 1/4)hno(2),
and

P(6) = i{ag +a1(n+1/2)+ ax((n—1)/2+ n+ 1/2)}H, o(z).

n=0
Then the algebraic system (5) gives
(1/T(B + 2))(T(B+ 1))/* (a0 + a1 /2 + az/4)z0,8 = cop41-

(1/T(B+ 3)){(a0 + a1/2 + az/4)(T(B + 2))"/*z1 g+

+(ao + 3/2a1 + 5/4a2)(T(B + 1)) /*z0,6} = €1,41,

(1/T(B + 4)){(a0 + a1/2 + a2/4)(T(B + 3)/2) 225 + (a0 + 3/2a1+
+5/4a3 + (T(8 + 2))%21 5 + (a0 + 5/2a1 + 11/4ay)-
{(D(B + 1))/*z0,6} = €1,841-
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Remark. If ap,a3 = 0, a; = 1in f and (8 = 1) we obtain the solution
of ordinar differential equation (z'/2g)’ = zh, where g € LGh, h € LGS.

0,1
Convolution form of this equation is 6’ ( * ) g = zh, and coeflicients of the
solution in our notation are:

Zo,1 = 8\/60012, r1,1 = 20\/6/(1,0(C112 - 3/5(1160’2),

z21 = 48V'15/a1{cz,2 — 1/6a1/agc1 2 + 1/10af/aoco,2 + 1/60a1c02},

8. On the (o, 3)— fundamental solution

The (@, )— fundamental solution of («,3)— convolution equation

(a.5)
*

[ 4 [ 4 /
(11) [ % g=(z*/2f) * (2P/%g) = 2PV Ph b€ LGl 404,

denoted by G, is the solution of

=

By the associativity of convolution in LGy, (11) implies

(8,0} (0,a+8+1)
g * *

(a:ﬁﬂg) -G+ z(a+ﬁ+1)/2h’ ie. §=G h where

(0,0+8+1)
*

g=zP?(G+ z(;r+ﬁ+l)/2h) =z PG k).

As an example we shall construct the fundamental solution and the
solution of (1,2)— convolution equation. Let f = } 72 cbniln1, G =
E;w:o yn,Ozn,O-

We shall solve the equation

£ 6 =6 = o(z716).

Since z716 = Y2 An/((n + 2)(n + 1))l 2 by (4) we have

n=0

1/2bo1%0,0 = 1/2
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1/6{V2b1,1900 + boa%10} = 1/2+ 1/6(1 + V2)
1/12{v/3b3,150,0 + V2b1,191,0 + b0.192,0}
=1/2+1/6(1 + V2) + 1/12(1 + V2 + V3).

Thus, we have the coefficients of G :
Yo0 = box, Y10 =—V2b11 —3/yoo(1 +1/3(1+V2)),
2,0 = 1/b01{9 + 3V2 + V3 — V/2b3 1601 + 2b3 , — 3v2/y0,0.
(1+41/3(1+V2))},...
For the solution f (142) g = z%h we need to find z?h forgiven b = 3°°  cpalng €

LG',. First put hy = zh = 3.2 dy 2l 2. The coefficients of h; we seek from
Example 12, Section 5.

o0 00
hh=xz Z Cnalng = Z dnaln2 = (2c04)lo2 + (6c1,4 — 2v2¢0,4) o+

n=0 n=0
+[(12 - 6v2)e1,4 + (4 — 2V3)co)laz + .-

Applying Example 1° once again we obtain:

[eo]

h2 = Zzh = Z(zh) = Z Sn,OIO,O, or

n=0

o0
ho==z E dnaln2 = (2do,2)lo,0 + (6d1,2 — 2v/2do 2)h o+

n=0
+[(12 - 6\/i)dlﬂ + (4 - 2\/§)d0,2]12,0 + ...

and
z2h = (460’4)10,0 + {3661,4 - 16\/560,4}11’0 + {3661’4(2 - \/§)+
+¢0.4(32 — 24v2 — 4V3)}Hap + ...

By using the approximation formula for ordinar convolution given in [6],
we obtain

o0 o0 o0
(zg)=Gx*hy = E Yn,oln,0 * E Snolno = Z( Z Yp,05¢,0—

n=0 n=0 m=0 p+q=m
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Z Yp,084,0)lm0 - ( we take Z =0)

p+g=m-—1 p+g=-1

Y0,050,0 = 20,0
0,091,0 + (¥1,0 — ¥0,0)50,0 = 21,0,

Y0,052,0 + (¥1,0 — ¥0,0)51,0 + (¥2,0 — ¥1,0)50,0 = 22,0,

From Example 2° in Section 5. we obtain the coefficients of g from
g = E:,O:O Zn,Ol'n,,O :

Zn2 =1/((n+1)(n+2)) Z(p+l 2 200
ptg=n

Remark. Consider the (0,4)-convolution form of

zg =G (044) h.

Equation (5) for § = 4 gives the system of equations:
1/T(6)(I'(5))"*y0,0¢0,4 = Po,s.
1/T(T){(T(6)) 31,004 + (T(5))/*yo0e1,4} = P15,
1/T@){(I(7)/2)"*y2,0004 + (T(6))/*y1,0¢0,4+

+(F(5))1/2y0,002,4} = P25

It yields

o0
zg = z5/2 an,51n,5, i.e.

n=0

9= 3?3/221%517;5

n=0
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9. Remark on the error estimate of (o, 5)— convo-
lution

Denote by subindex (-)n the N— th partial summ of Laguerre’s expansion
of some generalized function. Then, gy = z78/2(Gy * 2(@tF+1)/2h ), g =
z~B/2(G % g(etF+1)/2pY and if g, h and G are functions, we have

25 gn — g| < |G 5@/ )| +1G ~ G| % [s /2y, 2 > 0.
Let hz(*+t8+1)/2 ¢ [P(R,), G € LI(R.), where p, q € [1,00) and satisfy
1/p+1/g2 1.
f1/r=1/p+1/q—1,then g € L"(R4) and

( / " (@5 gn(z) - 9@ )" < ( / " |G ()| dz) 2.
( /Ow(lzw’“)”nmv — h|Pda)? + ( /000 IG(2) - Gw(z)|1dz)!/s

( / (|22 |y Pz ).
0

Let p = ¢ = 2. Then r = oo and

sup{s® gy — g, © € Ry} < ( / IG(z)Pd)V/2.
( / (| @B+ — h])2dz)/? <
4]

<( /Ooo G(2) - Gn(z)[*dz)¥( /0 (a2 iy )2,

10. On Volterra’s type integral equations

We give an application of (¢, 3)— convolution equation in solving Volterra’s
integral equation of the first kind. We shall consider separately, (a,0) and
(0, B) convolution form of Volterra’s integral equation, and we give two al-
gorithms for their solving.
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10.1 Solving Volterra’s equation by (a,0)— convolution

Volterra’s integral equation of the first kind
(12) Ag(t) + / e(t)g(z — t)dt = g(@t1)/2p,
0

where ¢ € LY(Ry) N LA(R,), X # — [[° o(t)e*tdt, z € Z, U R, where

R+ is the completition of the real line, h € LG/, ,,, can be solved by using
the following (a,0)— convolution form

(13) (Az~/2§ 4 z=2/2) (,0) g = glo+b+1)/2p

Under the above assumptions on A there exists a solution of (12) for any
h € LG,

Algorithm 1
When a =1, 8 = 0in (13), we have

:c1/2(/\:c“1/2¢5 + x—1/2cp) *g=zh.

Since

2§ = i {1 and :c_l/ E 1/(n+ 1)(2 a;)ln,1, (I7]) , where

n=0 n=0

p= E anolno and g,k are from (2), f = E[/\+(l/(n+ 1))(2 a;)ln -

n=0 n=0

Then the algebraic form (4) becomes
(1/2)(A + ao)To,0 = co,2,
(1/6){z1,0(A + a0) + V2(A + (1/2)(a0 + a1))70,0} = c1,2,

(1/12){z2,0(A + a0) + V2(A + (1/2)(a0 + a1))z1,0 + V3(A + (1/3)(ao+
+a1 + a3))zo0} = €2,2-
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10.2 (0, 3)— convolution form of Volterra’s equation

The (0, 8)— convolution form of Volterra’s integral equation of the first kind

(14) AzPl?g 4+ / o(z — t)g(t)tP2dt = £F+V2h . g5
0

where
A2 [ et o€ IRy UL (RY), 2 € 21U Ry,
Ry

g€ LGy, he LGy,

is

(15) (A6 + @) x (2°/%g) = £P+1/2p,

Under the given condition on A this equation is solvable for any h €

LGy

Algorithm II
If 3 =1, we have

(16) (A6 + @) * (z'/%g) = zh, g€ LG, he LG,
6= E l‘n.,07 Y = Z an,Oln,O)
n=0 n=0

g, h are given in (2). Then (16) becomes system (4), i.e.
(1/2)(A + ao,0)%0,1 = co,2,

(1/6){v2(2 + ao00)z11 + (A + a10)zo,1} = €12,
(1/12{v3() + a0,0)2,1 + V2(A + a1,0)21,1 + (A + a2,0)20,1} = €22,

At the end we give one more application of the (a,3)— convolution.
Consider the integral equation

(a7) rg(e)+2 [ oo~ 1 g( = Ot = ah, B> -1,
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where ¢ € L}(R4)NL%(Ry), h € L*(R,). This equation can not be solved
by Laplace transformation.

(1, 8)— convolution form of (17)
ZV2f 4 oBl2g = g1 2 (Ag~1/26 4 ¢V 12) 5 2P2g = ZB+D/2
where ¢ € LG, h € LG’ﬁ 42> transforms it in solvable equation if A #
fR+ p(t)et*tdt, z € Z, where

[e 0] n

f=2 D+ /(4 1)) el

n=0
Putting (2) we obtain

[= o] [o.9)

Z Cn,ﬁ+21n,ﬁ+2 = Z(n'/(I‘(,H +n+ 3)))

n=0 n=0

(> (TCB+g+1)/a)p+ 1)) bpazep)lnpras

pte=n
where b1 = A+ (1/(p+ 1)) XF_ i

Its developing form is
(L/T(B + 3))(A + ao)zo,5 = 0,542,

(1/T(8 + 9){(T(B +2))/*(A + ao)zrs + (20(8 + 1)) (A+
+1/2(ao + a1))zo,8} = €1,8+2,
(2/T(B-+ 5)){((T(B + 3))/2)/* (X + a0)a,5 + (2T(B + 2))/*(A + 1/2(a0+
+a1))z1,6 + (3T(8 + 1))/2(A + 1/3(a0 + a1 + a3))z0,8} = €2,8+42-
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REZIME

(a, 8) - KONVOLUCIJA U PROSTORIMA SA LAGEROVOM
EKSPANZIJOM I NJENE PRIMENE

Razvijamo teoriju prostora uopstenih funkcija LG, i njihove generalizacije
LG.,,a > —1, &iji elementi imaju ortonormalne razvoje u odnosu na Lagerov
ortonormalni sistem ¢n, o, n € Np, o > —1.

Definisemo («, 3) - konvolucioni proizvod i nalazimo uslove resivosti kon-
volucionih jednaéina u tim prostorima. Konaéno, dobijamo primenu toga u

reSavanju integralnih jednacina.
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