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Abstract

We prove, in this work, that there exists an improved constant cp,
for any p > 1, such that if d(X, %) < ¢p, then X has the fixed point
property.
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1. Introduction

Let X be a Banach space, and K be a nonempty weakly compact convex
subset of X. We will say that K has the fixed point property ( in short f. p.
p.) if every T : K — K nonexpansive (i. e. ||Tz — Ty|| < ||z — y|| for every
z,y € K) has a fixed point, i. e. there exists z € K such that T'(z) = =.
We will say that X has f. p. p. if every weakly compact convex subset of
X has f. p. p.

The fixed point property, as stated above, originated in four papers which
appeared in 1965. Mainly, the presence of a geometric property, called "nor-
mal structure”, implies the f. p. p. [10]. A number of abstract results were
discovered, along with important discoveries related both to the structure of
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the fixed point sets and to techniques for approximating fixed points. The
first negative result to the existence part of the theory goes to Alspach [2],
who discovered an example of a weakly compact convex subset K of L! and
an isometry T : K — K which fails to have a fixed point. This example
showed that some assumption in addition to weak compactness is needed
and at the same time it set the stage for Maurey’s surprising discovery [12]
(see also [8], [11]). For more on f. p. p., one can consult [1}, {5].

2. Notations, definitions and basic facts

Let K be a nonempty weakly compact convex subset of a Banach space X.
Suppose that T : K — K is nonexpansive. By Zorn’s lemma, K contains
a closed nonempty convex subset Ko which is minimal for 7. This means
TKy C Ko and no strictly smaller closed nonempty convex subset of Kj is
invariant under T'. A classical argument shows that any closed nonempty
convex subset of K, invariant under 7', contains an approximate fixed point
sequence (a. f. p. s.) (z,), . e. imy o0 ||Zn — Tzp||x = 0.

The following Lemma [4], [7] proved to be fundamental for the study of
the f. p. p.

Lemma 1. Suppose Ky is a minimal weakly compact convez set for T and
() is an a. f. p. s. for T. Then for all z € Ko, we have

Jim lzn — z|| = diam(Kp).

Since we will be using Maurey’s technique in proving our main result,
let us recall some basic definitions and facts.

Definition 1. Let X be a Banach space and let U be a free ultrafilter over
N. The ultraproduct X of X is the quotient space of

lo(X) = {(zn);2, € X for all n€ N and ||(z,)|lo = sup ||za]| < 00},

by
N = {(zn) € loo(X) lim,_u||z,|| = 0}.
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For (z,) € loo(X), we will denote (z,) + A by (z,)u € X. Clearly we
have
l(zn)ull x = timn_ulla]l-
It is also clear that X is isometric to a subspace of .f( by the mapping
z > (z,z,...). Hence, we will see X as a subspace of X and therefore we

will write £, §, # for the general elements of X and z, vy, z for the general

elements of X. 3 _
Let K and T be as described before. Define K and T by

K=1{%c¢ X there exists a representative (zn) of & with z,, € K for n > 1},
and T(%) = (T(z))y for any # € K.

Then K is a bounded closed convex subset of X and T(K) C K. Remark
that A is not minimal for 7. Indeed, let (z,) C K be an a. f. p. s. Then
T(%) = & where & = (z,)y € K. Recall that if # = (z,)y with z, € K and
T(%) = %, then there exists a subsequence (,) of (z,,) which is an a. f. p.

s. for T. Qn 1;he~ other hand, let Ky be a minimal set for 7 and % be a fixed
point for T in K. Then for any z € Ky we have from Lemma 1

|z — z|| g = diam(Kp).
The next Lemma was proved by Maurey [12].

Lemma 2. Suppose T and § are two fized points of T in K. Then for every
r € (0,1), there exists a fized point Z of T so that

12 = 2| =rl|2 - §ll and ||§ - 2|l = (1-r)lIZ - 3.

3. Main result

Let p € (1,00) and consider the function defined on [0, 1] by

o l+(1-ap
‘Pp(z) - TP + (1 _ z)p'
Then sup,¢o,1) ¥p(%) = ¥p(zp) Where z,, is the only root of

(1= 21— app~ = a? ' = 0



60 M. A. Khamsi

in [0,1}. It can be easily proved that
limpooop(zp) = 1, limpoopp(2p) = 2.
Also one can check that z, < ——.
. P o
Recall the Banach-Mazur distance between two isomorphic Banach spaces
X and Y, denoted d(X,Y), to be the infimum of ||U||||U"!|| taken over all

bicontinuous linear operators U from X onto Y.
We now state and prove the main result of this work.

Main Theorem. Let X be a Banach space such that

1
, d(X, 1) < ¢p = @p(z,)7
for some p > 1. Then X has f. p. p.

Proof. It is enough to prove that X = (I,,|-]) has f. p. p. where |- | is an
equivalent norm to || - ||, satisfying

il < 1-1<dll -l

with d < ¢p.

Assume to the contrary that X fails to have f. p. p. Then there exist K a
nonempty weakly compact convex subset and T : K — K be a nonexpansive
map with no fixed point. Without any loss of generality, we can assume that
K is minimal for 7" and diam(K) = 1. Classical arguments imply that K
contains an a. f. p. s. (2,) which can be assumed to be converging weakly
to 0. Passing to subsequences, we may suppose that there exist coordinate
projections P, on X ( with respect to the canonical Schauder basis of I, )
such-that

(1) F,NF,, =0 for n#m,
(2) limp—oolZn — Pr,(2,)] = 0,

(3) limpool2n — a;n+1| =1.
The subsets (F,) can be chosen to be succesive intervals and (3) holds by
using Lemma 1. Put u, = Pg,(z,) for all n € N. Then for z € I, we have

() N2lE + 1z = wn = wngalif = llz — wallp + ll2 = wnsa |}

Let X be an ultraproduct of X and K, T be as defined in the prev1ous
section. Set Z = (zn )y and § = (zn41)u. Then

£ =(un)u and §= (Unt1)u- o
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The relation (*) translates in X as
() W3R + 112 -2 = 9lf = |2 - 2[5 + 112 - 97

for every 7 € X. Let 7 € (0,1) and 3 be a fixed point of 7" given by Lemma
2 such that

|Z—%|=r and |Z—-g|=1—r.
Then

. . 1. . . 1 - . 1
l2 =&~ gl > 15— 5 — g > (- 1z- 3P 2 (1.

Hence,

1 . 1 5 - I . .
L+ (1= P < Bl + 5= Gl < 15— 5P + (7517 = "+ (1—r).
Then,

2P < dP(rP + (1 —1)") - (1-1)P,
and since |Z| > ||2||, = 1, we get @,(r) < dP. Since r was arbitrary in (0, 1),
we deduce that

sup @p(r) = pp(2p) < d°
r€(0,1)

which contradicts our assumption on d. The proof of the main theorem is
therefore complete.

Remarks.

1. It is known [3] that if d(X,,) < 211", then X has the normal structure
property and therefore via Kirk’s theorem [10] has f. p. p. If d(X,{,) =

25 then Bynum (3] has proved that X has f. p. p. He also gave an
example of such situation where X fails to have normal structure. For

- In(2 . .
P> @, one has to use Lin’s result [11] to get that if d(X,[,) <

5@, then X has f. p. p. It is worth to mention that

LY,

™

Cp > €2 =
4 \/E
for every p > 1 and ¢ > @3—’
Therefore we get through the main theorem an improvement to all the
well known results.
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2. It is a surprising fact that the constants ¢, do not decrease as p goes

to co. To the contrary, for p > 2 the constants c, increase to 2. Which
by itself projects new light on the stability of the fixed point property
(for the I, spaces).

3. For p = 2 the main theorem reduces to the main result of [6].
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REZIME

O STABILNOSTI OSOBINE NEPOKRETNE TACKE U I,
PROSTORIMA

U radu je dokazano postojanje konstante c,, za p > 1, tako da ako je
d(X,l,) < ¢p, tada X ima osobinu nepokretne tacke.
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