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Abstract

The weak contractor directions and weak directional contractions
for nonlinear set - valued operators are defined and used for obtaining
very general solvability theorem for a class of nonlinear set - valued
operator equations. The given theorems improve and generalize some
impotrant results in [1 - 5].
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1. Introduction

The theory of Altman’s contractor directions [1] and [2] provides extremely
useful and important tools for obtaining solvability theorems of nonlinear
operators with closed ranges. As a further development of the general theory
of contractor directions, Altman [3] introduced two new concepts: weak con-
tractor directions and weak directional contractions and obtained a general
solvability theorem which generalizes some of the known in literature.
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40 .+ X.P. Ding

In [5], we introduced the concepts of weak contractor directions and
weak directional contractions for nonlinear set-valued operators with closed
ranges and obtained general solvability theorems for nonlinear set-valued
operator equations which generalize the corresponding results in [1], {2] and
[3].

In this paper, we shall define weak contractor directions and weak direc-
tional contractions for nonlinear set-valued operators and allow the contrac-
tor directions to have more general nonlinear majorant functions. Using the
concepts, we obtain very general solvability theorem for nonlinear set-valued
operator equations. As a conseguence, a solvability theorem can be obtained
for a class of nonlinear set-valued operators which are called weak directional

contractions. Qur theorems improve and generalize some important results
in [1], {2], (3], [4] and [5].

2. Preliminary definitions and lemmas

Let Y be a Banach space. CB(Y) denotes the family of all the non-empty
bounded closed subsets of Y. Fory € Y, A CY D(y,A) = inf{d(y,a): a €
A} and H(-,-) denote the Hausdorff metric on C B(Y) deduced by the norm
inY.

Let R be the set of all the positive real numbers. We denote by F the

set of all the functions ¢ : Ry — R such that ¢(t) < t for each ¢t > 0 and

lim sup ¢g(s) < t for every t > 0. Moreover, we denote by F* the set of all
s—tt
the functions f : Ry — R, which are upper semicontinuous and such that

f(t) < t for each t > 0. Obviously, the inclusion F* C F holds and the
inverse is not true (see [6]). '

Lemma 2.1. Let the function ¢ € F. Then, for any a,b € Ry ‘with 0 <
‘a < b < co, the number .

1
c:inf{l—%)-: a<t<b}
satisfies that 0 < ¢ < 1.

Proof. Clearly,
q(t)

sup{-T. a<t<b}>0.
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Now, we shall show that

sup{q(): a<t<b}<1
for any a,b € R4, 0 < a < b < oo. If it is not true, we may assume that
there exist a,b € R4 with 0 < @ < b < 0o such that
t
sup{q( ) a<t<b}=1.
Thus, we easily choose a decreasing sequence {t,} C [a,b] such that ¢(¢,)/t, >
1-1/(n+1),n=1,2,.... Let t, — t*. Then we have limsup ¢(s) > t*.

s—t*t
This is in contradiction with lim sup ¢(s) < t*. Hence, we have that
s—t*t

0<sup{ () a<t<bl<l1

for all ¢, € R4 with 0 < a < b < 00, and so

t
0<e = inf{l—#: 0<a<t<b}

= 1—sup{q() 0<a<t<b}<1l.O

In this paper, we assume throughout that the nonlinear majorant func-
tions of weak contractor directions and weak directional contractions belong
to F.

Definition 2.1. Let X be an abstract set and P : X — CB(Y) a set-
valued operator of X into CB(Y). Given a function ¢ € F. We define
sets ['5(P) C Y of weak contractor directions for P at z, as follows. An
element y € Y is a weak contractor direction, 1. e., y € I'} (P) if there exists
a positive ¢ = £(z,y) < 1 and an element T € X such that

(1) H(PZz, Pz + ey) < eq(max{||y|l, D(0, Pz), D(0, Pz)}),

where 0 is the zero element of Banach space Y. If q(t) = kt, with 0 < k < 1,
then % (P) is a set of contractor directions for P at z denoted by I' X(P),
which is also a generalization of the corresponding concepts in [1] and [2].
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Lemma 2.2. Let A,B € CB(Y) and a € A. Then for each real number
r > 1, there exists an element b € B such that

lla — bl} < rH(A, B).

Lemma 2.3. ({2]) Let a be an ordinal number of the first or second class
and let {t,}o<y<a be a well-ordered sequence of real numbers provided, for
ordinal numbers 3 of the second kind (= limit number), we have

tg = lim ¢,.
B =B ¥
Then, the following equality holds,
ta =10+ z (ty+1 — ty)

0<y<a

Lemma 2.4. ([1]) Let alpha be an ordinal number of the first or second
class and let {z.,}o<y<a be a well-ordered sequence of elements of metric
space X provided

zg = lim z.,.
B 1_43'7

Then,
d(zy,z0) < Z d(Zy41,24)-

0<y<a

Lemma 2.5. Let A, B€ CB(Y) andy €Y. Then,
H(A,B) < H(A,B - 9)+ [yl

Proof. This lemma easily follows rom the definition of a Hausdorff metric.
o

Lemma 2.6. Let a be an ordinal number of the second class and let { A, }o<y<a
be a well ordered sequence of elements of C B(Y') such that

lim H(Ay, Ad) = 0

where A, € CB(Y). Ify, € A,, ¥0 £ ¥ < a and ii_]ﬂlyﬂ = Yo, then
Yo € Aq- '

-
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Proof. For all 0 < v < a, we have that
D(ya; Aa) < |lyy — ¥all + H(A,, Ad).

Letting v — a, we obtain D(y,, A,) = 0. Since A, is closed, therefore
Yo € Aq. O '

3. Weak contractor directions

In order to prove a solvability theorem for nonlinear set-value operator P
with weak contractor directions, we shall begin with the following:

Theorem 3.1. Let X be an abstract set, Y a Banach space, P : X —
CB(Y') a nonlinear set-valued operator such that P(X) = |J,c x Pz is closed
~inY and {Pz: z € X} is closed in (CB(Y), H). If —Px C I'y(P) for all
z € X, that the set-valued operator equation

0¢ Pz

has a solution in X .

Proof. We can assume that there exists a constant k > 0 such that for all
zeX
(2) D(0, Pz) > k.

For, if this is not a case, then there exists a sequence {z,} C X such that
D(0, Pz,) — 0 as n — oo. It follows that there exists y, € Pz, C P(X),
n = 1,2,..., such that y, — 0 as n — oo. Since P(X) is closed in Y, we
have 0 € Pz. Hence, there exists an element z* € X such that 0 € Pz*, i.
e., the theorem holds. Now, we denote by A the set of all countable ordinal
numbers. That is A is the set f all the ordinal numbers less than Q, the
first uncountable ordinal. Now we can construct well ordered sequences of
nonnegative real numbers t,, v € A, elements y(t,) € Y and sets P(t,) €
{Pz: z € X} as follows. Let o = 0 and let z¢ be an arbitrary element of X,
and put P(tp) = Pzo. Let y(tp) be an arbitrary element of P(ty) Suppose
that ¢,, P(ty) and y(t,) € P(t,) have been constructed for all v < «, and
satisfy:

(3) (i) y(ty) € P(ty),
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(ii) for any ordinal numbers 4 < @, we have that

(4) Iyt < exp(—ct,)lu(to)l
where
(5) e=inf(1- 2. b <o <o,

with k& determinated by (2). It follows from Lemma 2.1 that 0 < ¢ < 1.
(iii) for the first ordinal numbers ¥ + 1 < a the following inequalities are
satisfied:

(6) H(P(ty41), P(ty)) < 20(to)lI(t41 — ) exp(—et,),
(M) lly(ty+1) — y(@)N < 2lly(2o)l|(Zy+1 — ty) exp(—cty),
and

(8) 0<tyys -ty <1,

(iv) for the second ordinal numbers 4 < a the following relations hold:

(9) ta = lim 1y, y(ta) = lim y(t,), P(ta) = lim P(t,).

Then, from (6), (8), (9), Lemma 2.3 and 2.4, it follows that for arbitrary
A < 4 < a we have

(10)H(P(ty), P(tx)) < Y H(P(tps1), P(tp))

ALB<y .
< 2lyto)ll Y exp(—ctg)(tps1 — tg)
ALBLy . .
(11) = 2{|y(to)ll Z exp(c(tp41 — tg))nonumber
ALB<y
exp(—ctg)(tg+1 — tp)
< 2lly(to)llexp(e) Y exp(—ctpyr)(tpr — to)
ALB<y
s+
< 2lly(to)ll exp(e) > / exp(—ct)dt
A<B<yte

= 2lly(to)]] exp(c) /t " exp(—ct)dt.
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Similarly, from (7), (8), (9), Lemma 2.3 and 2.4, we obtain that

(12) Io(t2) = w(6)1 < 2l exp(e) [ exp(-ctat

A

Now, assume that « is the first kind ordinal number. If 0 € P(ts,—;), then
the theorem holds from P(t,_1) € {Pz : = € X}. THus we may assume
that 0 ¢ P(t4—1), and let 2 € X such that P(t{,—1) = Pz. Then, by the
hypotheses of the theorem, there exist a positive & < 1 and an element & € X
such that for all —y € —Pz C I'}(P), (1) holds. Put 41 =€ <1, and

(13) to = toe-1 + Ea—1, P(ta) = Pz.
Then we obtain by using (1) and y(ta—1) € P(to—1) that

(14) H(P(ts), P(ta-1) — €y(ta-1))
< eg(max{||y(ta-1)ll, D(0, P(ta-1)), D(0, P(ta))})
< eg(max{{ly(ta-1)ll, D(0, P(ta))})-

Now, we shall show that D(0, P(t,)) < ||ly(ta=1)|l. HD(0, P(ts)) > |ly(ta=1)ll,
it follows from (14) and Lemma 2.5 that

D(0,P(ta)) < H(P(ty), P(ta—1) — Y(ta-1))

H(P(ts), P(ta-1) — €y(ta—1)) — (1 — €)l|y(ta-1)ll
(1= &)llyta)ll
eg(max{|ly(ta—1)l, D(0, P(ta-1)), D(0, P(ts))})
(1 —€)D(0, P(ta)) + ¢(D(0, P(ta)))

(1 —¢)D(0, P(ta)) + eD(0, P(ty)) = D(0, P(ty)).

AN IN + DA

This is contradiction. Hence, we have
(15) D(0, P(ta)) < lly(ta—1)Il-
From 0 < ¢ <1 and 0 < £ < 1 it follows that

1 et 1 ec
i 1 - — — 1.
mm{l_c, +1_c(2 6)}>

Let the real number b satisfy

et 1 ec

(5~ g)}-

1
1 .
(16) | <b<m1n{1_c,1+1_c
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By Lemma 2.2 and (15), we obtain that there exists an element y(t,) € P(t4)
such that

(17) ”y(ta) -(1- E)y(ta—l)“

bH(P(ty), P(ta—1) — €y(ta—1))
begq(max{|[ly(ta—1)l}, D(0, P(ta-1)), D(0, P(ta))})
beg({ly(ta-)ll)-

From (17), (16), (4) and (5), it follows that

(18) Myl < (1= elly(ta—a)ll + beq(ily(ta—1)I])

- a(lly(ta-1)I)
= (1= olly(ta-n)ll + be = PRyt

(1= )lly(ta—1)ll + be(1 = e)lly(ta~1)l]
(1= e(1 = b(1 = ))lly(ta—1)ll

6262 6363
(1= ce + = = Z) y(ta)l

exp(—ce)ly(ta—1)ll
exp(—ce) exp(—cto—1)||y(to)ll
exp(—cta)||y(to)ll-

Since y(t,) € P(t,), by virtue of Lemma 2.5, (14), (15), (5), (18) and (4),
we get

H(P(ta), P(ta-1))

IA IA A

IN

IA

IIAn A

H(P(ty), P(ta—1) — €y(ta—1)) + €lly(ta-1)|l
elly(ta—1)ll + eq(lly(ta-1)I)

(1+ (1 = e))elly(ta—n)ll

20ly(to)l(ta — ta—1) exp(—cta—1).

Furthermore, we obtain from (17), (16), (13) and (5)
l9(ta) = y(ta-Dll < elly(ta-1)ll + beq(lly(ta-1)l)

e(1+8(1 = )ly(ta—1)ll
2||ly(to)l|(ta — ta—1) exp(—cta—1).

IA A INA A

IN A

Thus, induction assumptions (34), (4a), (6a) - (8«) are satisfied for t,.

Now, suppose that « is an ordinal number of the second kind and put
to = lim,4t,. Let {¥,} be an increasing sequence converging to a. It
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follows from (10) and (12) that {P(t,,)} and {y(¢,, )} are Cauchy sequences,
and so are {P(t,)} and {y(t,)}. Let P(ty) = lim,_, P(ty) and y(t,) =
lim,_,qo y(ty). It follows from Lemma 2.6 that y(t,) € P(ty). Since y(¢,)
satisfy (4,), therefore y(t,) satisfies (44). This process will terminate if
t = 400, where « is of the second kind. In the case (4,) yields y(t5) = 0
and so 0 € P(ty) € {Pz: z € X}. The proof of theorem is completed. O

Corollary 3.1. Let X be an abstract set, Y a Banach space, P: X —Y a
nonlinear point-valued operator such that P(X) is closed in Y. If —Pxz € T}
for each z € X, then equation Pz = 0 has a solution in X.

Remark 3.1. Note that our definitions of nonlinear majorant functions and
the set of weak contractor directions are more general that those in [3], [5].
Thus Theorem 3.1 and Corollary 3.1 improve and generalize Theorem 1.1
of [3] and Theorem 3.1 and Corollary 3.1 of [5].

Theorem 3.2. Let X be an abstract set, Y a Banach space. The function
g€ Fand P: X — CB(Y) is such that P(X) = {J,cx Pz is closed in Y
and {Pz : z € X} is closed in (CB(Y),H). Ifforallz € X andy €Y,
there exist positive € = e(z,y) < 1 and T € X such that

(19)  H(PZ,Pc+ ey) < eq(max{llyll, D(u, Pz), D(u, P2)})
for any u € Y, then the nonlinear set-valued operator equation u € Pz has

a solution in X and P(X) =Y.

Proof. For an arbitrary given u € Y, put Pz = Pz — u. By (19)
H(Pz, Pz + ¢y) < eq(max{||y||, D(u, Pz), D(u, PZ)}).

Since I'y(P) = I'x(P) = Y, for all z € X, it follows that —Pz € I'%(P)
for all z € X. Clearly, Pr = Pz — u is closed in Y and {Pz: z € X} =
{Pz —u: z € X} also is closed in (CB(Y), H). Hence, by Theorem 3.1,
equation 0 € Pz has a solution in X, and consequently, equation u = Pz
has a solution in X. This completes the proof. O

Remark 3.2. Theorem 3.2 of [1] (see also Theorem 1.2 of [2]), Theorem
1.2 of [8] and Therem 3.2 of [5] are very special cases of Theorem 3.2.



48 X.P. Ding

4, Weak directional set-valued contractions

Definition 4.1. Let X ba a Banach space and a function ¢ € F. A mapping
T:D(T)— CB(Y) is called a weak directional set-valued contraction if for
each z € D(T) and y € X there exzits a positive ¢ = e(z,y) < 1 such that
z+ey € D(T) and

(20) H(T(z + £3),T2)
< eq(max{[lyll, D(y, & - Tz), D(y,z + ey — T(z + £3))}).

The following global solvability theorem holds for weak directional set-
valued contractions.

Theorem 4.1. Let T : D(T) — CB(Y) be a weak directional set-valued
contraction. If P = I — T (I is identity mapping) is such that the set
P(D(T)) = Uyep(r) Pz is closed in X and the set {Pz : z € D(T)} is
closed in (CB(X),H), then for each y € X, set-valued operator equation
y € Pz has a solution in D(T). Furthermore, we have X = P(D(T)).

Proof. Since P =1 — T, by (20), we have
H(P(z+ey),Pr+ey) = H(z+ey—T(z+ey),z—Tz+ey)
= H(T(z + ey), Tx)
eq(max{||yl|, D(y, Pz), D(y, P(z + €y))})-

‘Tt is easy to check that the hypotheses of Theorem 3.2 are satisfied and the
proof is completed. O

IA

Remark 4.1. Theorem 4.1 is the improvement and generalizdtion of The-
orem 2.1 of [3]. .
Corollary 4.1. Let X and g satisfy the hypotheses in Theorem 4.1. Suppose
that T : D(T) C X — CB(X) such that for each x € D(X) and y € X,
there ezist a positive € = e(z,y) < 1 such satisfying: = + ey € D(T) and

(21) H(T(z + ey), Tz) < eq(llylD)-

If P = I — T is such that P(D(T)) is closed in X and {Pz : z € X} is
closed in (CB(X), H). Then for y € X, equation y € Pz has a solution in
D(T) and so P(D(T)) = X. Specially, T has a fized point in D(T).
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Remark 4.2. Letting e(z,y) = 1 or all z € D(T) and y € X, Corollary
4.1 is the set-valued generalization of the theorem of Boyd and Wong [4].

5. Weak directional set-valued contractions in a
narrow sense

Definition 5.1. Let W be a convezr subset of a Banach space X and a
function ¢ € F. A mapping T : W C X — CB(W) is called a weak
directional set-valued contraction in a narrow sense if for each ¢ € W there
ezits a positive € = €(x) < 1 such that for each y € Tz — z

(22)H(T(z + ey), Tz) < eq(max{|lyl|, D(z,Tz), D(z + £y, T(2 + £9))}).

Theorem 5.1. Let T : W C X — CB(W) be a weak directional set-valued
contraction in a narrow sense. If P = I —T is such that P(W) = | J ¢y Pz
is closed in X and {Pz : ¢ € W} is closed in (CB(X),H), then T has a
fized point in W, : :

Proof. By P =1 —T and (22), for each 2 € W and y € Tz — z, we have

H(P(z t+ey),Pz+ey) = H(ztey-T(z+ey),z-Tz+ey)
H(T(z+ ¢y), Tz)

eg(max{{lyll, D(0, Pz), D(0, T(z + ey))}).
Sincez =z+ey € 24+e(Tr—z)=(1-¢)z+eTz C Wand Tz—z C I'}(P),
i.e. —Pz =Tz —x C I'%(P) for all z € W. From Theorem 3.1 it follows

that there exists an element z* € W such that 0 € Pz* = z* — T2* and
hence z* € Tz*. This completes the proof. O

It

IN

Corollary 5.1. Let W be a convez subset of a Banach space X and a func-
tion ¢ € F. Suppose that T : W C X — W satisfies that for each x € W,
there exists a positive ¢ = e(z) < 1 such that for each y = Tz — z,

1T (z + ey).— Tz|| < eq(max{||yl|,l|lz — Tz||, ||z + ey — T(z + ey)||})
If the range (I — T)(W) is closed in X, then T has a fized point in W.

Remark 5.1. Theorem 4.1 and Corollary 5.1 are generalizations of Theo-

rem 3.4 of [3].
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REZIME

SLABE DIREKCIONE KONTRAKCIJE I SLABI PRAVCI
KONTRAKCIJE ZA SKUPOVNE OPERATORE

Slabi pravci kontrakcije i slabe direkcione kontrakcije za nelinearne skupovne
operatore su definisani i koriiceni za dobijanje vrlo opstih teorema o resenju
za jednu klasu nelinearnih skupovnih operatorskih jednaéina. Date teoreme
poboljsavaju i uopstavaju neke vrlo vazne rezultate u [1 — 5].
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