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Abstract

A brief survey of numerical methods for quasilinear singularly per-
turbed boundary value problems without turning points is given. A
new method is proposed for which the first order pointwise accuracy
uniform in the perturbation parameter is proved.
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1. Introduction

We shall consider the following singularly perturbed boundary value prob-
lem:

(1.a) —eu"” — b(u)u' + ¢(z,u) =0, z eI =1]0,1],

1This work was supported in part by the NSF and SIZNR of Vojvodina through funds
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(lb) ’U(O) = Uo, u(l) = Ul,
with the hypotheses which will be assumed throughout the paper:
H1. g€ (0, 1], Up, Ui €R,

be C3(R), ceC3(IxR),
H2 cu(z,u)>ec.>0, z€I, ueR,
H3 bu)>b.>0, veW:=u,u",

where u, < u* and
(2) c(z,u*) > 02> c(z,us), €I, v >2U;>u, j=0,1

(Note that u, and u* exist because of H2.) Thus u* and u, are upper and
lower solutions, respectively, to the problem (1) and it follows that (1) has
a unique solution u, € C3(I) satisfying

u(z) €W, zel.

Because of H3 the following estimates hold, see [6]:
(3) [P < M(1 + e Fexp(=baz/c)), z €I, k=0(1)4

(Here and throughout the paper M denotes any positive constant inde-
pendent of e. When dealing with numerical methods these constant will be
independent of h as well, where h = 1/n,n being the number of steps of
discretization meshes.) Since the estimates (3) are sharp, we can see that u,
has a boundary layer at the origin. Because of that some special methods
for numerical solution of the problem (1) should be applied.

All our references deal with numerical solution of problems of. type (1)
(in some of the papers assumptions are somewhat different). A survey of
results of these papers will be given in the next section. Although in practice
there are several numerical methods for the problem (1), we might say that
there is a.gap in the theory: with the exception of [11] there are no proofs of
the uniform ( = uniform in ¢) pointwise convergence (i.e. the convergence of
the numerical solution towards the discretization of 4.). Since the method
from [11] has not been analysed completely, the question of the uniform
pointwise convergence is still interesting from theoretical point of view. In
this paper in Section 3 we shall present a numerical method for which we
shall prove the first order uniform pointwise convergence. Since this is of
theoretical interest only, we choose not to give numerical results.
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2. A survey of numerical methods

We shall briefly describe main results of paper [1-11].

Papers [4] and [5] do not deal with the uniform convergence in the above
sense: the second and third (respectively) order pointwise convergence is
shown outside of the layer only.

In [3] the global (not pointwise) uniform convergence was proved in the
L'-norm. The same result was proved in [6] but numerical experiments
showed the first order pointwise convergence as well, which is not the case for
the method from [3]. A result similar to [6] is obtained in [7] by a somewhat
different method. Both [6] and [7] use the upwind finite-difference scheme
and a discretization mesh dense in the layer. Even more satisfactory from
practical point of view is paper [8] since there numerical results show the
second order pointwise convergence. However, only the uniform stability of
the method was proved in [8].

In [10] an exponentially fitted scheme was proposed but only existence
and uniqueness of a solution to the discrete problem was investigated. An-
other approach was used in [11]: the continuous problem was approximated
by a problem with piecewise constant coefficients for which an exact scheme
was derived. The first order uniform pointwise convergence was proved.
However, the resulting discrete problem is complicated and some open ques-
tions remain, e.g. how to solve it.

Papers [1], [2] and [9] make use of the reduced. problem
(4) ~b(u)u' + ¢(z,u) =0, z€l, ul)="U,

with a unique solution u¢ which is a good approximation to u, outside of
the layer. In [2] the point ke was introduced, [0, ke] representing the layer.
Then (4) was solved in [ke, 1] by the fourth order Runge-Kutta method, and
finally (1a) was solved in [0, ke] (with the boundary conditions u(0) = Up and
u(ke) = Up(ke)) by using the central differences. This resulted in an error
with the terms exp(—kb.) and k?¢, hence the uniform pointwise convergence
was not proved.

A different approach was used in [1] and a O(e + h)—error was proved.
This result is improved to O(e + A?) in [9]. The exponential fitting and
equidistant meshes were used in [1], while [9] uses a switching scheme and
a special non-equidistant mesh.
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The method which will be presented here is ’essent'ia]ly'a. combination of
approaches from [1] and [6]. Now we shall give its basic discription. Details
will be given in the next section.

The idea from [1] was to consider an initial value problem related to (1).
In [9], the initial value problem was written in the following form:

(5) e + f(u) = f(Uo(z)), z €I, u(0)= Uy,

(a different form was used in [2]). Here and throughout the paper we take:

(6) flu) = / " b(s) ds.
In [2) and [9] it was shown that
(7) lte(z) — ue(2)] < Me, z€l,

where 4. is a unique solution to the problem (5).

Thus, if (5) is solved with a pointwise accuracy O(h), we get the total
pointwise error O(e + h). This is quite satisfactory in practice since usually
¢ € h. However, if we consider all values of £ from (0,1] the error gets bad
for greater values of ¢, and obviously, this result does not mean the uniform
pointwise convergence. It was noted in [1] that the method described should
be combined with another method when ¢ is not small, but such a method
was not specified. (Note that the combination cannot have accuracy of order
greater than 1, and that is exactly what we shall get here.) We shall propose
a particular method which will give the error O(h) when h < M*e, where
M™* is a constant bounded both from above and below indepenedently of ¢
and h. The method is essentially the same as the one from [6] except that
here we shall use the central scheme instead of the upwind scheme. We shall
introduce a new independent variable ¢, transform the problem (1) and solve
it numerically on equidistant t-mesh. The problem (5) will be treated in a
similar way when h > M,¢, and then we shall get the error O(e +h) = O(h).
In this way, the combination of the two methods gives the first order uniform
pointwise convergence.

3. The uniform pointwise convergence result

Let us rewrite the equation (1a) in the conservation form:

—eu” — f(u) + e(z,u) = 0,
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where f is given in (6). Let us then introduce new variables ¢ and y:

z = A1), y(t)=u(A?)),

with
w(t) == ael(535)® - 1], te[0,al,
At) = w(t) == A(t — a)® + Jw"(a)(t - a)® + W(a)(t - @)
+w(a), t € [a, 1],

where a € (0,1) and @ = o + €1/12. The coefficient A is determined from
the condition m(1) = 1 and a > 0 has to be chosen so that A > 0. Thus
A€ C¥I)and

(8) , 2B >0, k=0,1,2, tel.
The problem (1) is transformed to the following problem, c.f. [6]:
(1) —e(u(t)y') - f(v) +a(t,y) =0, tel, y(0)="Uo, y(1)=10h,

where now I' = d/dt, and:

u(t) = 1/X@), at,y) = (A1), y)N(2).
In the same way we transform (5):

(5”) | ep(t)y’ +a(t,y) =0, tel, y(0)=Up, where
a(t,y) = f(y) — f(Uo(A(?)))-
Let I* be an equidistant t-mesh with the points
=th, i1=0(1)n, h=1/n, ne N\{1}.

By w”, v* etc. we shall denote mesh functions on 7#\{0,1}. They will be
identified with R™~1-vectors.
In particular, we take:

up = [us(A(#1)), ue(A(t2)), - -, ue(A(tn-1)),
@} = [B( M), B(M(t2), - - -, Be(Altn-2))]T,
=[1,1,...,1)7.
Let '

h
oo =, gmax il (w3 2= ),
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) n—1
h
o™l = £ lwil.
i=1
The corresponding matrix norms will be denoted in the same way. Let
Wh = {wh e R"! 1yt < wh < ureh},
(the inequality sign in R™"! should be understood componentwise).

Finally, let
2

Y

*

where
b(u) <b*, ueW.

It is obvious that
Ml S M* S M27

where M; and M, are positive constants independent of € and A.

We shall use the central discretization of (1°):

(9) Tw': = —eh™[pi_1jowica — (Bic1yj2 + Higr/2)wi
+  pig1/2Witt] = [fwig1) — fwio1)]/2h +2(8;, wi) = 0,
i = 1()n-1,

where
pix1/2 = m(t: £ h/2)
and we take formally: ‘
wg := Up, w,:=U1.
The problem (5’) will be discretized by the backward Euler scheme:
(10) Siwh = ep(t: ) (wi — wi—1)/h +a(t;,w;) =0, i=1(1)n—-1,

where again wg := Up.

Lemma 1. Let h < M*e. Then the discrete problem (9) has a unigque
solution z* € W, and the following stability inequality holds for any w",
vh € Wh:

(11) lw® = oMy < 67| Tw" — Toh |
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Proof. It holds that
1
(12) Twh—To"* = B(w* - ", B= / T' (o™ + s(wh — v))ds,
0

~where T'(w") denotes the Fréchet derivative of the operator T at w”. The

condition h < M*e guarantees that B is an L-matrix. Moreover, we have,

cf. [6]: V )
BTth > bt th =[ty,t5,...,t,-1]%.

This means that B is an M-matrix and that
IB= 1 < 77
From here and (12) we get (11).
The existence follows from
Tue" > 0> Tu,eh
which is satisfied because of (2). O

Similarly we have, cf. [9]:

Lemma 2. The discrete problem (10) has a unigue solution 7* € W* and
the following stability inequality holds for any w*, vh € Wh:

“wh - 'Uh“oo < bIIHSTUh - S”h“oo-

Let
L[z i R< M
3k otherwise

Then we have

Theorem 1. Let the function A be given with a fized a = t; for some j €
{1,2,...,n— 1}. Then it holds that

12" — ut||oo < Mh.

Progf. Let h < M*e, thus zh = z". We shall show that
(13) |Tub|ly < MA?
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and from (11) it will follow
12 = ulh < MA2,
i.e.
12" = u*loo < Mh.
The estimate (13) follows from
(14) |Twh| < MA%, i=11)n—-1,

which can be proved because of the special choice of the function A, cf. [6].
In order to prove (14) expand the truncation error T;u” and use the following
facts:

- function w is smooth in [0,a] and 7 is smooth in [a, 1],

- in addition to (8) it holds that

0< Aty < M, k=3,4 teI\{a},
— using (3) we have

S ®) < M, k=014, te\{a},
— since w'(a > Me'/4, for t€[a,1] we have |
(15) @) < M, k=0(1)3,

—for t € [0, @] (15) can be checked directly.
(Note that because of a = t; it holds that all the above quantities occur in
the expansion of T;u” at points which are different from c.)

Similarly we can prove, cf. [6], [9]):

- 12 ~ @l < M,
which togethér with (7) gives
(6) 11 - vl < M(e + ).

Since we use z* when h > M*¢, from (16) we get

fi2* - utllo < MAD

Acknowledgement. - Thanks are due to the author’s colleague Ling Ping
from Nanjing University for providing the author with an early summary

and a copy paper [1].



On numeriecal methods for quasilinear singular perturbation problems . . . 369

References

[1] Ling Ping, Su Yu-cheng, Numerical solution of quasilinear singularly
perturbed ordinary differential equation without turning points. Appl.
Math. Mech. 10 (1989), 1005-1010.

[2] Lorenz, J., Combinations of initial and boundary value methods for
a class of singular perturbation problems. In: Hemker, P.W., Miller,
J.J.H. (eds.) Numerical analysis of singular perturbation problems,
pp- 295-315. London: Academic Press 1979.

[3] Niijima, K., An error analysis for a difference scheme of exponential
type applied to a nonlinear singular perturbation problem without turn-
ing points. J. Comput. Appl. Math. 15 (1986), 93-101.

[4] Ross, H.-G., A second order monotone upwind scheme. Computing 36
(1986), 57-67.

[6] Vulanovié, R., Higher order monotone schemes for a nonlinear singular
perturbation problem. Z. Angew. Math. Mech. 68 (1988), 428-430.

[6] Vulanovié, R., A uniform numerical method for quasilinear singular
perturbation problems without turning points. Computing 41 (1989),
97-106.

[7] Vulanovié, R., Mesh generation methods for numerical solution of quasi-
linear singular perturbation problems. Zb. Rad. Prirod.-Mat. Fak. Univ.
u Novom Sadu, Ser. Mat. (to appear).

[8] Vulanovi¢, R., A switching scheme for quasilinear problems without
turning points. In: Proc. VII Conf. on Appl. Math., Osijek, 1989

[9] Vulanovié, R., A second order numerical method for nonlinear singular
perturbation problems without turning points (to appear).

[10] Zadorin, A.IL., O sushchestvovanii i edinstvenosti resheniya nekotorykh
raznostnykh zadach dlya kvazilineinogo obyknovenogo differencial’nogo
uravneniya s malym parametrom. Chisl. Metody Mekh. Sploshn. Sredy
15 (1984), 33-44.

[11] Zadorin, A.L., Chislennoe reshenie kvazilineinogo uravneniya s malym
parametrom. Chisl. Metody Mekh. Sploshn. Sredy 3 (20) (1989), 89-94.



370 R. Vulanovié

REZIME

O NUMERICKIM METODIMA ZA KVAZILINEARNE SINGULARNE
PERTURBACIONE PROBLEME BEZ POVRATNIH TACAKA

Dat je kratak pregled numerickih metoda za kvazilinearne singularno per-
turbovane konturne probleme bez povratnih ta¢aka. PredloZen je jedan novi
metod za koji je dokazana ta¢nost prvog reda u maksimum normi, uniformna
po perturbacionom parametru.
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