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Abstract

The two point selfadjoint boundary layer problem, described by the
second order differential equation, is considered. Standard spectral ap-
proximation is adapted to the character of the exact solution and is
constructed according to the Jacobi orthogonal basis. An error esti-
mate is provided and theoretical results are supported by a numerical
example.
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1. Introduction

We shall consider the selfadjoint boundary layer problem
(1.1) Ly = —€*y"(2) + g(2)y(z) = f(=z), = € [a,b]

(1:2) Gy = (y(a),y(b)) = (4, B),

where € > 0 is a small parameter, f(z), g(z) € C?a,b], g(z) > K? > 0.
The solution of (1.1), (1.2) describes the stationary state of the evolution
equation :
vt — 2y + 9%z, t)y = fO(2,1), ¢ € [a,8], £ >0,

y(a,ty= A, y(b,t) = B, t>0, y(z,0) = yo(z), z € [a,b],
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which arises in convection-diffusion flow problems. It is well known, (see e.g.
[3]), that problem (1.1), (1.2) is inverse monotone and that it has a unique
solution y(z) € C?[a,b], which represents a stable state of the evolution
problem.

In this paper we want to construct the spectral approximation for the so-
lution of problem (1.1), (1.2), adapting it to the character of boundary layer
and using Jacobi orthogonal basis {P:’ﬁ(t), a > —1, > —1} generated by
the differential equation

(1.3) (1-t)¢"t)+ (B~ a— (a+ B+ 2))¢(t)+
+k(k+a+B+1)8(t) =0, te[-1,1]

or Bonnet’s recurrence relation
(14) P — (ewt + BB () + mPEA (D) =0, k=0,1,...,

PP =1, PP (1) =0,

with
N =(2k+a+ﬂ+1)(2k+a+ﬂ+2)
k A+ Nk+a+p+1)
(L5) 8, (2k+a+ B+ 1)(a? - 5?)

S22kt D)(k+a+B+D)(2k+a+p)
_ (k+a)k+B)(2k+a+5+2)

TE G Dk+atB+D)2k+ath)
Jacobi polynomials represent the largest class of classical orthogonal poly-
nomials defined on a finite interval. As the special cases, they include:
Legendre polynomials (& = 8 = 0), Chebyshev polynomials of the first and
second kind (e = 8 = —1/2) and (¢ = § = 1/2) and Gegenbauer poly-
nomials (&« = 8 = ¢ - 1/2, ¢ > —1/2). Thus, this paper generalizes some
previous works by the author, where the Chebyshev and Legendre basis were
applied. '

In the first part of the paper, we shall transform the original problem
(1.1), (1.2) into a more convenient form, which enables the application of
direct spectral method. In the second part we shall develop some reccurence
relations and, finally, construct a system of linear equations for evaluating
the coefficientes of the truncated orthogonal series which represents the spec-
tral approximation. In the third part we shall estimate the error and, at
the end, we shall give a numerical example which ilustrates the theoretical
results.
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2. Transformation of the problem

It is well known that the solution of (1.1), (1.2), in general, has two boundary
layers,one at each endpoint,and that the solution of the reduced problem is

- {@
(2.1 (@)= 25

We are going to look for the solution of (1.1), (1.2) in the form

(22) y(2) = yr(z) + u(z),

where u(z) satisfies

(2.3) Lu = Eyl(x), Gu = (A% B°), A° = A — ygr(a), B® = B — yg(b).
The first step is to approximate function u(z) by

{ v(z) € [a,a+ 6]
a(c)={ 0 zclatéb—3a,
w(z) =z €[b—§6,b]

(2.4)

where § > 0 is the appropriately chosen division point.
Functions v(z) and w(z) are the solutions of the following problems

(2.5) Lv = Eyj(z), = € [a,a+ 6], G = (v(a),v(a+ §)) :‘(AO,O)

(2.6) Lw = eXyf(z), z € [b—8,b], G™w = (w(b— §), w(b)) = (0, B°).

Practically, (2.4) means that y(z) = yr(z) when z € [a + é,b — §] and,
according to [6], the following estimate is valid

@7)  d(z) = [y(z) - yr(@)| < (M + Ma) exp(—K6/€) + Mse?,

where My, M,, M3 denote the constants independent of z and ¢, which satisfy
(2.8) My > |A°, My > |B°|, M3 > |K*yj()| while z € (a,b).

So, we are going to determine the division number § from the request
(2.9) ' d(z) < C?é,

where C can be any constant which satisfies C? > 2Ma,.
This gives

1
(2.10) §> %[2lnz+ln(|A°|,|B°|)—21nC].



350 N. Adzi¢

For the practical use we shall take the smallest value for § in (2.8), which
will provide the intervals [a,a + é] and [b ~ §,b] to be sufficiently small and,
thus, we shall be able to avoid the ”stiff” solution in further procedure. The
second step is to construct the spectral approximations for functions v(z)
and w(z). As the procedure is similar in both cases, we shall develop it only
for v(z). First, we have to transform subinterval [a,a + é] into [—1,1] using
the substitution

(2.11) =+

1
26t+a+ '2-6,

which (2.5) transforms into

(2.12) LV = —p2V'() + GV (1) = €¥Yr(2), t € [-1,1],

(2.13) TV = (V(=1), V(1)) = (4°,0),
where
(214 #=26/8 V() = o3t + o+ 36), G(t) = g(36t + a+ §0),

Yr(t) = yh(36t + a + 36).

3. Construction of the approximate solution

When speaking of the Jacobi spectral approximation for the solution V'(¢)
of the problem (2.12), (2.13), obtained applying the direct method, we, in
fact, consider a truncated orthogonal series according to the Jacobi basis

n

(3.1) Va(®) = 3 arPP(1),
k=0
such that , ‘
(3.2) LV, = €¥YR(?), t € [-1,1], T°V, = (4%,0).

Expressing the second derivative of V,,(t) as

n

(3.3) VI =3 ar(BRO))”

k=2

the equations in (3.2) become

(3.4) — > a(PPP@) + G a PP (t) = €YR(t)
i k=2 k=0
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n n

(3.5) Y aPPf(-1) = 4% Y ax PP (1) = 0.
k=0 k=0
Further, we have to overcome two difficulties: first to express P, o (t)"”

through P; (1) and second, to obtain the product G(t)Vp(t) and the func-
tion €2Yg(t) as the truncated Jacobi series. To that purpose we shall ap-
proximate G(t) by the power series

(3.6) G(t)~ G™(t) =) _hit’
j=o
and Yg(t) by the finite Jacobi series
(3.7) Ya(t) & Y™(t) = Y nePgf(t).
k=0 )

Now, we can prove the following lemmas:

Lemma 1. For each j,k € N we have

k+j
(3.8) P = Y AIP(),
i=k—j )
with
AT il Al . :
Al= L BTl by T for =k -+ 2,k -2,
Q1 Oy Qi1 .
i A
J _ . —J+1 . —-j+2
Aj_jp1 = —Br-jh P + Yk—j+2 PP
(3.9)
j-1 i-1
Aj'- _ k+5-2 " lAk+j—1
k+5—-1 Okt j—2 +1— ak+j—1,
7—1 7—-1
A= ~1A’°‘j+1 Al = Derina
k—7 —. -7+ 41 ’* k+7 Qktj—1

where «;, 3; and 7; are constants (1.5).
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Proof. From Bonnet’s relation (1.4) we obtain
(3:10)  tRM(t) = AL PRY() + AL (1) + AL PEY (),

where ) 5 :
1 1 _ M 1 _ 7
A= —, A = , Ay = —.
o; o; (s H

Multiplying (3.10) by ¢ (j-1) times, using notation (3.9) each time, we finally
come to (3.8).

a

Lemma 2. The second derivative of the Jacobi polynomial P, P (t) may be
represented as

k—2
(3.11) (PEP()" = S o@D Pr(t) k= 2,3,...,
=0
where the coefficients b,@, 1=0,...,k—2 are determined recursively by the

relations (3.15), (3.16).

Proof. The first derivative of P_ P (¢) is a polynomial of k — 1 degree, which
means that it can be represented exactly as a linear combination of the
elements of any basis of space mx_; (the space of all the real polynomials of
degree up to & — 1). Thus, using the Jacobi basis, we get

k-1
(3.12) (PEP())-= S b PA ().

=0
On the other hand, for all the classical orthogonal polynomials 8(t) we have
(3.13) A(t)ﬂfc(t) = (ukt + ’Uk)ak(t) — wkek_l(t)

(see [4]), where, for the Jacobi polynomials,

At)=1-% w = —k, vx = @%:—i—f)—m
(3.14)
_2(k + o)(k+ 8)

kT T %kt at B)
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Introducing (3.12) in (3.13) and making use of (3.8) for j = 2, after equating
the coefficients at P*?(t), we come to

b0 = MAkn 40

AT T T w e
ukA,l,__l Wi ) 1) 1
(315)  pM =kt Tk ) oM (1~ ——),
k-3 A:—l Ai_l k=2 kel A:—l
1 1 1 1 1 1)
bS—)n = -b'(-_)l —_ bf )(1 - F)— bt(+)l - b‘(~+)2 1= k - 2,...,2.

L

Further on, we are going to substitute (3.11) and (3.12) into (1.3) and, using
the same technique as above, we shall obtain

¥ =k(k+a+8+1) - (a+8+2,,

Al (B- a)) g @t 8+2)

+
AZ—I ) Az—l

KD = . 44, (‘—<a +8+2)
(3.16)

1 A'l
b@z = _bgz)l + bS”(Z, -1)- bg)l - bz('i)z - b.('-lr)l(a +8+ 2);4'«_5'*'

L]

R 2)A} Al |
+b§2)(ﬂ o (:—;ﬂ+ ) ')—b§1)1(°+ﬁ+2)j4"§’ i=k-2,...,2

o
Now, we can state the main theorem.

Theorem 1. The coeffcients ai of the approzimate solution (3.1) satisfy-
_the following system of equations

i+2 n . m

(8.17) - ”2b$2) Z ap+ Z(h,-Af Z ar) = €r; i=0,...,n -2,
k=0 j=0 k=M

(318) Y (-1) ( k“;" )a,, = A°, Z( k:" )a,,_= 0,

k=0 k=0

where M = max(0,i = j), m = min(n,i'+j).
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Proof. In order to obtain equations (3.17), we start from (3.4), make use of
(3.6),(3.7) and(3.11) and come to

_,u2 E(Z b(Z)Pa ﬁ(t)) + E h.: (E aktJ ’ﬁ(t)) — €2 E T,Pa“@(t)
k=2 i=0 —0 =
With account of (3.8) the above equation will giVe

k+3

_,u2 Z(Z b(2)P°‘ ﬁ(t))+2h (E ak( Z A]Pa’ﬁ(t))) — &2 E"‘zpa’ﬁ(t)
k=2 =0 i=k—j

After changing the order of summation, equating terms at Pf”ﬁ ),

1 =0,...,n — 2 we come to (3.17). The last two equations (3.18) are
obtained from boundary conditions (3.5) directly, using that for the Jacobi
polynomials, we have

P = (“") nd POA (1) = (~1)*PP(1)

a

Once the coefficients a; are evaluated from the system (3.17), (3.18) the
Jacobi spectral approximation (3.1) may be, using substitution (2.11), de-
termined at each point z € [a,a + 6] as

(3.19) va(z) = Vn(z(f—g_—“) ~1)

and the approximate solution to (1.1), (1.2), thus, becomes

(3.20) _ yn(z) = yr(z) + vu(z), z € [a,a+ §].

4. The error estimate

The error estimate, apart from the boundary laiyers, forz € [a+ 68,0 — 4], is
already given by (2.7). With account of (2.10) this gives

(4.1) d(z) = |y(z) — yr(z)| < C* forz € [a + 6,b — §].

In order to estimate the error on the subinterval [a, a+ §], we shall represent
the error function d(z) in the form
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d(z) |y(2) — yn(2)| = [u(z) - va(2)|

< u(z) — v(2)] + |v(2) — vn(z)l-
To provide the estimate for these two terms we have to prove the following
lemmas:

(4.2)

Lemma 3. For z € [a,a + 8] we have

(43) d°(z) = |u(z) - v(z)| < 16°,
where
(4.4) 6° = y(a + 8) — yr(a + 6).

Proof. From (2.3), using notation (4.4), we can see that u(z) satisfies
(4.5) - Lu = €ygr(z), = € [a,a + 8], G°u = (A 6°).
Subtracting (2.5) from (4.5) we come to

(4.6) L(u—wv) =0forz € [a,a + 6], G°(u— v) = (0,6°).

By the principle of inverse monotonicity we can easily conclude that

u(z) — v(z) > 0 for §° > 0,and u(z) — v(z) < 0 for §% < 0. In the first case,
we have to construct function Q(z) = u(z) — v(z) — §° and apply operator
(L, G°) to it, which will give

(4.7) LQ = —-§%(z) <0, a)=-6°<0, Qa+6)=0.

Using inverse monotonicity, again, we conclude from (4.7) that Q(z) < 0,
which implies
(4.8) u(z) — v(z) < §° when 6° > 0,

In the second case, we have to apply the same technique to the function
—Q(z) which will give

(4.9) w(z) — v(z) > 6° when 6° <0,
and (4.8), (4.9) together give (4.3).
a

- The following lemma is, in fact, a generalization of Oliver’s estimate for the
one dimensional case, given in [5] for the Chebyshev basis.
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Lemma 4. For the error function

(4-10) Z(t) = V(1) - Va(t)l, t € [-1,1],
‘the following approzimate estimate is valid
, ntq
(4.11) Z(t) = Z(t) = Y Si(t)ej, g€ N,
Jj=n+l1
with N
(4.12) Si(t) =Y ai; PPy - PPP(t), j=n+1,...,

=0
where 0;;,j > n+1, i =0,...,n, are defined as solutions of the system

n
(4.13) Z Fo;; = F;.

- 1=0
(F; and F; are column matrices of the coefficients in the system (3.17),
(3,18).)

Proof. As the exact solution V() of (2.12), (2.13) is a function from the
space C*[-1, 1} and we can represent it by its Jacobi series

(4.14) V(t) = iA,,P:ﬁ(t),
-~ k=0
s0 we have
@18)  2() =3 @ - )PP - 3 APER()]
: i=0 t=n+1

If we write down the system (3.17), (3.18) in the form

zn:}.;’;a; =R,

1=0

where F; and R are column matrices, then A;, ¢t = 0,... are solutions of the
analogue infinite system. Using o; j, defined by (4.13), {(4.15) becomes

(418) - 20)=1 Y Sl

Jj=n+1
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where S;(t) are defined in (4.12). Taking into account that the sum (4.16) is
dominantly determined by the first few terms and that the magnitude of A4;
is approximately the same as a; (evaluated for a larger degree, i.e. n + g),
when #n is large enough, we obtain (4.11).

a

These two lemmas provide the approximate estimate for the error (4.2),
which is stated in the following theorem.

Theorem 2. For the approzimate solution (8.20) of the problem (1.1), (1.2)
it holds that

(4.17) . d(z) = |y(z) — y(2)| = C%* + zq(a:),‘ z € [a,a + 6],
with

(4.18) zo(z) = Zy(
where Z,(t) is given by (4.11).

Proof. Using (4.3) from Lemma 3, with respect to (4.4) and (4.1‘) we directly
obtain that for the first term in (4.2) one has

2(z —a)
)

— 1),

(4.19) lu(z) - v(z)| < C°.
As for the second term, we first have to remark that, according to (2.9),
(420)  Jv(2) — va(2)| = V() = Va(t)| = Z(2) = Z,(2) = 2(2),

where (4.11) and notation (4.18) were used. Starting from (4.2), relations
(4.19) and (4.20) imply (4.17).

a

Remark 1. The error estimate for z € [b — 6,b] could be provided in the
same mahner.

5. Numerical example

The following tables give results for the boundary value problem due to [2]

Ly =~/ () + Gagu(e) = T2, 6y= (101 = (0,0
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The solution of the reduced problem is ygr(z) = z — 1, so that we have the
boundary layer only at z = 0. Here K? = (1 —¢)/4, which we need in (2.10)
to determine §. We can choose C' =1 as, from (2.8) we only have M3 > 0.
As the orthogonal basis in (3.1) we have used the Jacobi polynomials with
a=f8= —%, i.e. Chebyshev basis.

€ =0.001 & =0.0276 d(x)
z y(z) n=5 n=10 n=15
0.0001 005  -83(-3) -T.1(-5) -4.4(-5)
0.0003 014 -21(2) -1.5(-4) -1.2(-4)
0.0008 033 -3.7(-2) -1.6(-4) -2.7(-4)
0.0015 053 -3.5(-2) -1.6(-4) -3.9(-4)
0.0025 071 -6.4(-3) -3.9(-4) -4.4(-4)
0.005 091 5.4(-2) -4.7(-4) -3.2(-4)
0.01 0.99  -2.2(-3) -1.4(-4) -7.3(-5)
Table 1.
€ = 0.00001 4 = 0.00046 d(z)
z y(z) n=5 n=10 n=15 n=20
0.000001 0.05  -1.8(-2) -4.3(-4) 8.8(-6) 1.3(-5)
0.000003 014 -4.9(-2) -8.3(4) 7.3(-6) 9.5(-6)
0.000008 033 -1.0(-1) -1.3(-4) 7.9(-6) -1.8(-6)
0.000015 -0.53 -1.3(-1)  2.2(-3)  1.1(-5) 8.1(-7)
0.000025 071 -1.1(-1) 3.8(-3) -15(:5) -2.2(-6)
0.00005 -0.91 1.2(-2) -1.3(-3) 9.3(-6) -2.5(-6)
0.0001 - -0.99 1.1(-1)  7.0(-4) -2.0(-5) -6.8(-7)

‘Table 2.
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REZIME

JAKOBJIEVA APROKSIMACIJA RESENJA KONTURNOG
PROBLEMA

Posmatra se samokonjugovani konturni problem opisan diferencijalnom jed-
nac¢inom drugog reda. Standardna spektralna aproksimacija je prilagodjena
karakteru tacnog redenja i konstruisana je u odnosu na Jakobijevu ortog-
onalnu bazu. Data je ocena greske, a teoretski rezultati su potkrepljeni
numeri¢kim primerom.
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