Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 23, 1 (1993), 313 - 317

Review of Research Faculty of Science Mathematics Series

ON WEAK PARTIAL £-VALUED CONGRUENCE ALGEBRAS

Gradimir Vojvodić

Institute of Mathematics, University of Novi Sad Trg Dositeja Obradovića 4, 21000 Novi Sad, Yugoslavia

Abstract

In this paper for a given algebra $\underline{\mathcal{A}}$, the notation of a weak partial £-valued (fuzzy) congruence algebra $\overline{K_{\omega}(\mathcal{A})} = (\overline{C_{\omega}(\mathcal{A})}, \wedge, \vee, \circ, \sigma, \Delta, A^2)$, is introduced. $\overline{C_{\omega}(\mathcal{A})}$ is a weak £-valued (fuzzy) congruence relation on an \mathcal{A} , defined in [1]. $\overline{K_{\omega}(\mathcal{A})}$ gives more information on \mathcal{A} just lattice $\overline{C_{\omega}(\mathcal{A})}$.

AMS Mathematics Subject Classification (1991): 03E72 Key words and phrases: Fuzzy sets, universal algebra.

1.

1. Let $\mathcal{A}=(A,F)$ be an algebra and $K\subseteq A$ be the set of its constants (if $K\neq\emptyset$, then we consider the empty set as a subalgebra of \mathcal{A}). Let $\mathfrak{L}=(L,\wedge,\vee,1,0)$ be a complete lattice. All £-valued sets here are mappings from A (or A^2 in the case of £-valued relations) to L. The set A and its subsets are identified with their characteristic functions (0, and 1 are from L). Thus, $K:A\to L$, and K(x)=1 if $x\in K$. Otherwise, K(x)=0. A £-valued subalgebra of \mathcal{A} is any mapping $\bar{B}:A\to L$, such that

(a)
$$K \subseteq \bar{B}$$

(b)
$$\bar{B}(f(x_1,\ldots,x_n)) \geq \bar{B}(x_1) \wedge \ldots \wedge \bar{B}(x_n)$$
,

for all $x_1, \ldots, x_n \in A, f \in F_n \subseteq F, n \in N$.

The set of all £-valued subalgebras on \mathcal{A} is denoted by $\overline{S(\mathcal{A})}$. A weak £-valued congruence on A is a mapping $\bar{\rho}: A^2 \to L$, such that ([1]):

- i. For every $c \in K, \bar{\rho}(c,c) = 1$ (reflexivity);
- ii. For all $x, y \in A, \bar{\rho}(x, y)$ (symmetry);
- iii. For all $(x,y) \in A$, $\bar{\rho}(x,y) \ge \bigvee_{z \in A} (\bar{\rho}(x,z) \wedge \bar{\rho}(z,y))$ (transivity) iv. For all $x_1, \ldots, x_n, y_1, \ldots, y_n \in A$, $f \in F_n \subseteq F$, $n \ge 1$,

$$\bar{\rho}(f(x_1,\ldots,x_n), f(y_1,\ldots,y_n)) \ge \bigwedge_{i=1}^n \bar{\rho}(x_i,y_i)$$
 substitution

The set of all weak £-valued congruence relations on \mathcal{A} is denoted by $C_{\omega}(\mathcal{A})$. If (i) is replaced by

(i'): for every $x \in A$, $\bar{\rho}(x,x) = 1$ (reflexivity), then $\bar{\rho}$ is a £-valued congruence relation on \mathcal{A} , and the set of all such relations on \mathcal{A} is denoted by $C(\mathcal{A})$.

2.

c) If $\bar{\rho}$ and $\bar{\theta}$ are two arbitrary fuzzy relations on A, then $\bar{\rho} \circ \bar{\theta} : A^2 \to L$, and for $x, y \in A$,

$$\bar{
ho} \circ \bar{ heta}(x,y) = \bigvee_{z} (\bar{
ho}(x,y) \bigwedge \bar{ heta}(z,y)).$$

3.

If £ is complete and infinitely distributive, then \circ is an associative operation in the set of all £-valued fuzzy on A, (see [4]).

 $[\]overline{(C_{\omega}(A)}, \leq)$ is a complete lattice (where $\bar{\rho} \leq \bar{\theta}$, iff for every $x, y \in A, \ \bar{\rho}(x, y) \leq$ $\bar{\theta}(x,y)$, having as a sublattice the lattice $(\overline{C(A)},\leq)$ and the lattice $(\overline{S(\mathcal{A})}, \leq).$ ([1]).

In the following, £ is complete and infinitely distributive.

2. Let us give an algebra A. By its weak partial £-valued congruence algebra we mean a partial algebra:

$$\overline{K_{\omega}(\mathcal{A})} = \overline{(C_{\omega}(A)}, \wedge, \vee, \circ, \bar{\sigma}, \Delta, A^2)$$

where:

$$\overline{(C_{\omega}(A)}, \wedge, \vee) = \overline{C_{\omega}(A)},$$

o- is a composition of £-valued relations (binary partial operation on $\overline{C_{\omega}(A)}$, $\bar{\sigma}$) is a weak £-valued congruence relation on A, such that for $x, y \in A$:

$$ar{\sigma}(x,y) \stackrel{def}{=} \left\{ egin{array}{ll} ar{B}_m(x), & x=y \ 0, & ext{othervise} \end{array}
ight.$$

where \bar{B}_m is the least £-valued subalgebra of ${\cal A}$ and

$$\Delta(x,y) \stackrel{def}{=} \left\{ \begin{array}{ll} 1, & x=y \\ 0, & \text{otherwise.} \end{array} \right.$$

The next example shows that $\overline{K_{\omega}(\mathcal{A})}$ gives more information on a just lattice $\overline{C_{\omega}(\mathcal{A})}$.

Example 1. Let us consider the following algebras A_1, A_2 both with the same domanian $B = \{0, 1, 2, 3, 4, 5\}$ which is also the set of constants,

$$A_1 = (B, *_1, f_1, B); A_2 = (B, *_2, f_2, B)$$

*1	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4
f_1	0	1	2	3	4	5
	0	1	2	3	4	5

*2	0	1	2	3	4	5
0.	0	0	0	0	0	0
1	0	0	0	0	0	0
2	0	0	. 0	0	0	0
3	0	0	0	0	0	0
4	0	0	0	0	0	0
5	0	0	0	0	0	0
f_2	0	1	2	3	4	5_
	1	2	3	4	5	1

and where $\pounds = (\{1,0)\}, \land, \lor, 0, 1)$.

It is easy to verify that

$$\overline{C_{\omega}(\mathcal{A}_1)} \cong \overline{C_{\omega}(\mathcal{A}_2)},$$

while

$$\overline{K_{\omega}(A_1)} \not\cong \overline{K_{\omega}(A_2)}.$$

The following theorem holds:

Theorem 1. Let A be an algebra and $\overline{K_{\omega}(A)}$ its weak partial \mathfrak{L} -valued congruence algebra. Then for any $\bar{\rho}, \bar{\theta} \in \overline{C_{\omega}(A)}$ it holds that:

(1)
$$\Delta \circ (\Delta \vee \bar{\rho}) = \Delta \vee \bar{\rho}$$
,

(2)
$$\Delta \circ (\Delta \wedge \bar{\rho}) = \Delta \wedge \bar{\rho}$$
,

(3)
$$\bar{\rho} \circ \bar{\theta} \in \overline{C_{\omega}(\mathcal{A})}, \quad iff \ \bar{\rho} \circ \bar{\theta} = \bar{\theta} \circ \bar{\rho}$$

Proof. (1) for all $x, y \in A$ we have:

$$(\Delta \circ (\Delta \vee \bar{\rho}))(x,y) = \bigvee_{z \in A} (\Delta(x,z) \wedge (\Delta \vee \bar{\rho}(z,y)) =$$

$$= (\Delta(x,x) \wedge (\Delta \vee \bar{\rho})(x,y)) \vee \bigvee_{z \neq x} (\Delta(x,z) \wedge (\Delta \vee \bar{\rho})(z,y)) = (\Delta \vee \bar{\rho})(x,y):$$

- (2) similarly as (1);
- (3) see p.2.1. ([2]). \Box .

Now, we shall give the necessary and sufficient conditions that weak partial \mathfrak{L} -valued congruence algebra $\overline{K_{\omega}(\mathcal{A})}$ of a given algebra \mathcal{A} is just an algebra.

Theorem 2. A weak partial £-valued congruence algebra $\overline{K_{\omega}(A)}$ is an algebra iff following is satisfied:

- (1) for each $\bar{\rho}, \bar{\theta} \in \overline{C(A)}$ there holds: $\bar{\rho} \circ \bar{\theta} = \bar{\theta} \circ \bar{\rho}$;
- (2) there holds: either $\overline{S(A)} = \{A\}$ or $\overline{S(A)} = \{\emptyset, A\}$.

Proof.

- (\Leftarrow) If conditions (1) and (2) are satisfied, then it follows immediately that $K_{\omega}(A)$ is an algebra.
- (⇒) If $\overline{S(A)} \neq \{A\}$ and $\overline{S(A)} \neq \{\emptyset, A\}$, then there exists $\bar{B} \in \overline{S(A)}$ such that $\bar{B} \leq A$. By L 1.4. ([1]) we have $\bar{B}^2 \in \bar{C}_{\omega}(A)$. Now, it is easy to verify that $\bar{B} \circ A^2 \neq A^2 \circ \overline{B^2}$, and so, by Theorem 1. (3)., $\overline{B^2} \circ A^2 \notin \overline{C_{\omega}(A)}$. □

References

- [1] Vojvodić, G., Šešelja, B., On the lattice of weak fuzzy congruence relations on algebras. Univ. u Novom Sadu, Zb. Rad. Prirod. Mat. Fak. Ser. Mat. 15(1) (1985), 199-207.
- [2] Vojvodić, G., Šešelja, B., On the permutability of weak fuzzy congruence relations. Univ. u Novom Sadu, Zb. Rad. Prirod. Mat. Fak. Ser. Mat. 15,1 (1985), 217-223.
- [3] Vojvodić, G., A note an weak partial congruence algebras. (to appear).
- [4] Matematique floue, Seminare, Lion, 1977-78.

REZIME

O SLABIM PARCIJALNIM £-VREDNOSNIM KONGRUENCIJSKIM ALGEBRAMA

U radu se uvodi slaba parcijalna £-vrednosna (rasplinuta) kongruencijska algebra $\overline{K_{\omega}(A)}$ za datu algebru. Ispitivana su neka svojstva takve parcijalne algebre.

Received by the editors June 10, 1991