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In this paper we prove that only rectangular grupoids and normal
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1. Introduction

For an arbitrary algebra A, by p,(A) is denoted the number of essentially n-
ary polynomials i.e. those n-ary operations which are composed of projection
operations using the basic operations of A and which depend on all variables.

In [1] it was proved that if a non-associative groupoid G satisfies identi-
ties 2z = = (zy)z = 22z and z(y(zu)) = z(2(yu)), then p,(G) = n?, for all
n > 0.

For a semigroup S we have that p,(S) = n? for all » > 0, if and only
if S generates the variety of normal bands (see [2]). Normal bands are
idempotent semigroups satisfying zyzu = zzyu.

In this paper we shall show that there are no other groupoids having n?
essentially n-ary polynomials. Namely, we have the following
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MAIN THEOREM

Let G be a groupoid. Then p,(G) = n? for all n > 0 if and only if one
of the following conditions hold

(i) G generates the variety of normal bands;
(ii) G is not a semigroup and satisfies

Tz =1
z(yz) = 2

((z9)2)u = ((z2)y)w;
(i4)) G is not a semigroup and satisfies

Tz = 2
(zy)z = ==z

z(y(zu)) = z(z(yu)).

In order to prove the Main theorem we shall prove the following theo-
rems.

Theorem 1. Let G be a groupoid for which the polynomial z(yz) is not
essentially 3-ary. Then p,(G) = n? for all n > 0 if and only if G is non-
associative and satisfies

zx = z
z(yz) = =zz

((ey)2)u = ((22)y)u.

Theorem 2. There is no non-associative groupoid G for which z(yz) and
(zy)z are essentially 3-ary polynomials and p,(G) = n? for alln > 0.

Before passing to the proofs of Theorems 1 and 2 we shall explain some
notations and prove a general lemma.
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If p(z1,%2,-..,%xs) is an n-ary polynomial and o € S,, (the group of per-
mutations), then by p° we denote the polynomial p(2,(1), Z5(2); - - - » To(n))-
In what follows we use sometimes z, y, z, u instead of z;, 25, z3, Z4.

Also, we denote by p and ¢ the polynomials z(yz) and (zy)z i.e. p =
z(yz) and ¢ = (zy)=.

Lemma 1. Let G be a groupoid for which p,(G) = n%, n > 0. Then

(i) G is idempotent.
(ii) zy, yz are two different essentially binary polynomials.

Proof. (i) Follows from p1(G) = 1.
(ii) If zy is not essentially binary, then 2y = z or zy = y which implies
p2(G) = 0. However, p;(G) = 4 by the assumption. Analogously for yz.

Suppose zy = yz. If G is a semigroup, then G is a semilattice and p3(G) = 1
which contradicts p2(G) = 4. If G is not a semigroup, then

1
Pa(G) 2 (2" — (1)), n 2 2
as it was shown in [4]. However,
1
100 = p1o(G) > 5(210 —1) = 341.

Contradiction. O

2. Groupoids for which p = z(yz) is not an essen-
tially ternary polynomial

Lemma 2. There is no groupoid G, which satisfies the identity z(yz) ='a:y,
such that p,(G) = n?, n > 0.

Proof. Supose that G is such a groupoid.
Claim 1. FEach polynomial of the groupoid G is equal to a polynomial of
the form (...((i,®iy)%i,)...)2s,, where the variables are not necessarily

different.

Proof. Follows from z(yz) = zy. O
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Claim 2. The set {(zy)z,(yz)y,(zy)y, (yz)z} is not a subset of the set
{z,y, zy,yz}.

Proof. The opposite implies that the set {z,y,zy,yz} is closed under the
multiplication of polynomials. This means that p;(G) = 2, which is a
contradiction. O

Claim 3. If t is a polynomial having = as its first variable, then tz = t.
FEspecially, (zy)x = zy and (yz)y = yz.

Proof. From z(yz) = zy it follows that tz = t¢t = ¢t. O

Claim 4. If r and s are two polynomials having different first variables,
then v # s. Especially, (zy)y # (yz)z.

Proof. Let z be the first variable of r and y the first variable of s. If r = s,
then zr = zs i.e. ¢ = zy, which contradicts Lema 1. O

Claim 5. The set {my,ym,'(:cy)y,(yx)m} contains four essentially binary
polynomials.

Proof. From Claim 2 and 3 it follows that (zy)y, (yz)z ¢ {z,y,zy,yz}. The
proof now follows from (zy)y # (yz)z (Claim 4). O ‘

Claim 6 If r,s are polynomials such that r # s and z is a variable which
does not appear in r and s, then 7z # sz.

Proof. If » and s have different first variables, then this is Claim 4. If the
first variable is the same for 7 and s, then from Claim 3 it follows that
TT # 8T ie. Tz # 52z. O

Now we can prove the Lemma.

Counsider the polynomial (zy)z. According to Claim 4 every polynomial
depends on the first variable. Hence, (zy)z depends on z. For y = = we
obtain the polynomial zz, which is, according to Claim 5, essentially binary.
Therefore (zy)z depends on z. Analogously, for z = z, we have that (zy)z
depends on y.

In the same way we prove, by taking y = ¢ and 2 = z, that polynomials
((zy)2)z,((zy)y)2,(((zy)y)z)z depend on all variables.
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Let us show now that (zy)z,((zy)2)z, ((zy)y)z, ((zy)y)z)z are differ-
ent. If we put in these polynomials y = z, we obtain zz,(z2)z2,zz2, (z2)z.
Therefore

(zy)z # ((zy)2)z,

(zy)z # (((zy)y)?),
((z9)y)z # ((zy)2)2,
((zy)y)z # (((zy)y)2)=

If in the same polynomials we insert 2 = z we obtain polynomials zy, zy,
(zy)y, (zy)y (Claim 3). This implies

(zy)z # ((zy)y)z
((zy)2)z # (((zy)y)2)z

(Claim 5).

The above arguments show that each one of the sets

A = {(zy)z((zy)2)z,((zy)y)z, (((zy)y)z)z}
B = {(y2)z,((y2)7)z,((y2)2)z, (((y2)2)z)z}
C = {(z2)y,((zz)y)y, ((22)7)y, (((27)z)y)y}

contain four essentially 3-ary polynomials. Claim 4 implies that
ANB=BNnC=CnNA=0.

Hence, the set AU B U C contains 12 essentially 3-ary polynomials. This
contradicts the assumption that p3(G)=9. O

Proof of Theorem 1.

(<) The dual of this was proved in [1].

(—) Taking z = y we see that z(yz) depends on z. If the polynomla.l z(yz)
does not depend on y, then z(yz) = z(zz) = zz. It was proved in [1] (dual)
that in that case G is an idempotent non-associative groupoid satisfying the
identity ((zy)z)u = ((zz)y)u. If the polynomial z(yz) does not depend on
z, then z(yz) = z(yy) = zy. However, from Lemma 2 it follows that this is
not possible. O
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3. Non-—associative groupoids having both of the

polynomials z(yz) and (zy)z essentially ternary
In the following lemmas of this section, G is a non-associative groupoid
having p = z(yz) and ¢ = (zy)z essentially 3-ary and p,.(G) = n?2, for all
n > 0.

Lemma 3. At least one of the following identities is true on G.

(h) =(y2) = z(zy) (I) =z(yz) = (y2)z
(I2) z(yz) = y(z=2) (Io) z(yz) = (22)y
(I3) z(yz) = y(2z) (In) =z(yz) = (2y)z
(I) z(yz) = 2(zy) (hLi2) (zy)z = (z2)y
(Is) z(yz) = 2(yz) (Ia) (zy)z = (yz)z
(Ie) z(yz) = (2y)z (Iia) (zy)z = (y2)z
(I7) =z(yz) = (z2)y (hs) (zy)z = (22)y
(Is) =z(yz) = (yz)z (Iie) (zy)z = (2y)z.

Proof. All the polynomials p?,¢%,0 € Sz, are essentially 3-ary and there are
12 of them. Because of p3(G) = 9 two of them must be equal i.e. there are
0,7 € S3 such that

p’=po#¢rorg =q,0#T0rp’ =g,
which implies

a

p=p T oTlr # (1),or ¢ = q"_lT,a_lr #(1),orp= q"_lT.
a
Lemma 4. The following identities do not hold on G

I3, 14, Ig, Ir, Is, Ig, 1o, I11, 14, It5.

Proof. Ig is the associative law and from Iy and I; follows the law of
commutativity. Therefore Ig, Iy, [11 are not true on G.

Suppose I3 holds on G i.e. z(yz) = y(zz). A simple argument shows
that

z(yz) = y(zz)=1yz
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z(zy) = z(yz)=yz
(zy)z = z(z(zy)) = z(yz) = yz
(y2)z = =z(z(yz)) = z(yz) = yz
(zy)(yz) = y(z(zy)) = y(yz) = 2y,
which means that the set {z,y,zy, yz} is closed under the multiplication of
polynomials. This is in contradiction with p,(G) = 4. A dual argument

shows that I 5 is not true on G. I, implies I3 and hence I, is not true on
G. A dual argument shows that I14 is not true on G.

Suppose I7 holds on G i.e. z(yz) = (z2)y. We have

z(yz) = (sz)y=72y
(zy)y = =z(yy) ==y
(zy)z ((zy)y)z = (zy)(zy) = =y
z(zy) = (zy)z =12y
(zy)(yz) = ((zy)2)y = (zy)y = 2y,

which contradicts p2(G) = 4. Hence, I7 is not true on G.

Suppose Ig holds on G i.e. z(yz) = (yz)z. Then

z(zy) = (zz)y==zy
(zy)z = y(zz)=yz
z(yz) = =z(y(yz)) = (y2)(yz) = yz
(yz)z = z(yz)=yz
(zy)(yz) = (y(zy))z = (zy)z = yz.
This contradicts po(G) = 4.
Suppose that I;o holds on G i.e. z(yz) = (zz)y. Then
z(yz) = (zz)y=7zy
(zy)z = y(zz)=yz
z(zy) = z((yz)y) = (yz)(yz) = yz
(yz)r = z(zy)=yz
(zy)(yz) = (z(zy))y = (yz)y = zy

and therefore contradicts p,(G) = 4. O
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Lemma 5. ‘

(i) The polynomial f = (zy)(zu) is essentially {-ary.
(it) G satisfies f = f° for some 0 € Sy,0 # (1).

(1it) f = f° does not hold on G if 0(1) # 1 and o(4) # 4.

Proof. (i). Follows from the assumption that p and ¢ are essentially 3-ary

and substitutions of the form y = z and v = ¢.

(ii). Follows from p4(G) = 16 and |S4| = 24 similarly as in Lemma 3.

(iii). All identities f = f?,0(1) # 1 and o(4) # 4, imply commutativity.

Namely, ,
(zy)(zu) = (y2)(uz)
(zy)(zu) = (yu)(2z)
(zy)(zu) = (yz)(uz)
(zy)(zu) = (yu)(z2)
(zy)(2u) = (2y)(uz)
(zy)(zu) = (zu)(ye)
(zy)(zu) = (22)(uy)
(zy)(zu) = (zu)(zy)
(zy)(2u) = (uy)(z2)
(zy)(zu) = (uz)(yz)
(zy)(zu) = (uz)(zy)
(zy)(2u) = (uz)(zy)
(zy)(zu) = (uz)(y2)
(zy)(zu) = (uy)(z2)

zy=yzforz=z,u=y
zy=yzforz=z,u=y
zy=yzforz=z,u=y
zy=yzforz=z,u=y
zz=zz fory=z,u= 2
zz=zzxfory=z,u==z2
zz=zzfory=2z,u=
zz=zzfory=z,u=
zz=zzxfory=z,u=

zz=zzfory=1z,u=

zz=zzfory=z,u=

zy=yz for z=z,u=

TRy

z
z
z
z
zz=zzfory=z,u=z
z
Y
(/]

zy=yzforz=z,u=

a

Lemma 6. The following pairs of identities do not hold on G.

(7)) Li,I (1v) Iz, 13 (vii) I, hs (z) I, L
(M) Il,I5 (’U) I12,I16 (’U’LM) Il,Ilg (Zl) I5,I12
(ZZZ) .[2,[5 (’Ui) 1137-[16 (Z.Z‘) 12,112 (:uz) I5., 113.

Proof. It holds that
z(yz) = z(2y) Az(yz) = y(z2) = x(yz) = z(2y) = 2(zy)
z(yz) = z(2y) A z(yz) = 2(yz) = z(yz) = z(2y) = y(22)
z(yz) = y(ez) Az(y2) = 2(yz) = =z(yz) = y(zz) = 2(zy).
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The obtained contradiction to Lemma 4 proves (i), (i) and (iii). (iv), (v)
and (vi) are dual to (i), (iii) and (ii) respectively.

(vii) This case contradicts Lemma 1 because of

z(yz) = z(2y) A (zy)z = (yz)z = 2y = (zy)(zy) = (yz)(y2) = yz.

(viii) Suppose I, and I16 hold on G i.e. z(yz) = z(zy) and (zy)z = (2y)z
Then o
(yo)z = (22)y = 2y
and
2(yz) = 2(zy) = 2((y2)z) = 2(z(yz)).
If in the last equality we put z = z(yz), we have

(z(yz))(yz) = 2(yz) = (yz)r = 2(yz) = zy = z(yz).
It is routine to verify
z(zy) = z(yz) = zy

(zy)z = (zy)(z(zy)) = (zy)(zy) = zy
(zy)(yz) = (zy)(zy) = zy.

Contradiction with p2(G) = 4.
(ix) Suppose I and Iy, are valid on G i.e. z(yz) = y(zz) and (zy)z =
(zz)y. Then
z(yz) = yz
(ey)e = =zy.
Also -
z(yz) = y(22) = y((z2)z) = (22)(yz) = (2(yz))z = (yz)2
which contradicts Lemma 4.

(x)  This case contradicts Lemma 1 because of
z(yz) = y(z2)A(zy)z = (29)r = yz = (yz) = =((2y)y) = (2y)(zy) = zy.

Cases (xi) and (xii) are dual to (x) and (viii). O
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Lemma 7. The pair of identities I, I,5 is not true on G.

Proof. Suppose the opposite i.e. on G we have

2(y2) = a(zy)
()2 = (s2)y.

Claim 7. z(2y) € {z,y,zy,yz}.

Proof. Suppose the opposite. In that case we have the following possibilities:

1° z(zy) = z. This implies

z(yz) = z(zy) ==
(zy)z = (2z)y = 2y
(yz)z = (yz)(z(zy)) = (yz)((zy)z) = (yz)(zy) = (yz)(yz) = yz
(zy)(yz = (zy)(zy) = zy.
29 z(zy) = y. This implies

z(yz) = z(zy) = y

(zy)z = (z2)y = 2y

(yz)z = (yz)(y(yz)) = (y=((yz)y) = (y2)(yz) = yz

(zy)(yz) = zy. ‘
3% z(zy) = zy. This implies

z(yz) = e(zy) = ¢y
(ey)e = (zz)y = <y
(yz)z = (y(yz))e = (yz)(yz) = yo
(ey)(yz) = 2y
49 z(zy) = yz. This implies
z(yz) = yz
(zy)e = zy
(yz)z = (y(yz))z = (yz)(yz) = ye
(zy)(yz) = zy.
All these cases contradict the assumption that po(G) =4. O
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Claim 8. z(zy) # y(yz).

Proof. If in z(zy) = y(yz) we put y = yz, we hawe z(z(yz)) = (yx)((y:z:):z:)
which implies

z(zy) = z((zy)e) = z(z(zy)) = 2(2(y2)) = (y2)((y2)z) = (yz)((y2)) =
= (yz)(z(2y)) = (yz)((2y)e) = (yo)(2y) = y=.

This contradicts Claim 7. O
Claim 9. The set T = {p°|o € 53} has 6 elements.

Proof. From Lemmas 4 and 6 it follows that on G no identity from I;-I6,
except I; and Iz, holds. This implies the assertion. O

Claim 10. The set T U{z(z(yz)),y(z(yz)), 2(z(yz))} contains all 9 essen-
tially 3-ary polynomials.

Proof. Insert y = z in the polynomial. We obtain an essentially binary
polynomial z(zz) (Claim 7). If in the same polynomial we put y = = and
z = z, we obtain the polynomials z(z(z2)) = z(z2), z(z(yz)) = z(zy) which
implies that z(z(yz)) is essentially 3-ary. Since

y(z(y2)) = y(y(z2)) , 2(2(yz)) = z(2(zy)),
it follows that these two polynomials are essentially 3-ary.

The following calculation

w(z(yz)) = z(yz) = z(zy)=zy forz=y
z(z(yz)) = y(zz) = =z(zy)=yz forz==z
z(z(yz)) = z(zy) = z(zz)=z2z fory==
z(z(yz)) = (zy)z = z(zz)=2z fory==
z(z(yz)) = (yz)z = z(zz)=2zz fory==2
2(z(yz)) = (22)y =

z(zy)=czy forz=12

shows that z(z(y2)),y(2(y2)), 2(=(y2)) € T.

From z(z(yz)) = y(z(yz2)), for z = y, it follows that z(zy) = y(zy) which
is impossible according to Claim 8. Hence {z(z(yz2)),y(z(yz)), 2(z(yz))} has
3 elements. This proves Claim 10. O
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Claim 11. (zy)(z(yz)) is an essentially 3-ary polynomial and

(zy)(z(y2)) € T U {=(z(y2)), y(z(y2)), 2(z(y2)).

Proof. In (zy)(z(yz)) we insert y = z and y = z and get polynomials z(zz)
on z and z. According to Claim 7

and zz. .Therefore, (zy)(z(yz)) depends

z(zz) # zz which implies dependence on y.

The second part of the claim follows

(zy)(z(y2)) = z(yz) =
(zy)(z(y2)) = y(z2) =
(zy)(z(y2)) = 2(zy) =
(zy)(2z(y2)) = (zy)z =
(zy)(z(y2)) = (yz)z =
(zy)(z(y2)) = (22)y =
(zy)(2(y2)) = z(z(y2)) =
(zy)(2(y2)) = y(2(y2)) =
(zy)(2(y2)) = 2(2(y2)) =

from

zy = z(zy) forz ==
zy =y(yz) forz=y
zy=z(zy) forz=1z
z(zz) =zz fory=z
z(zz)=zz fory=1z
zy=yz forz=1y

zy = z(zy) forz =y
zy =y(yz) forz=y
zy=y(yz) forz=1y

which is in contradiction with Claim 7 and Lemma 1. O

Claim 10 and Claim 11 contradict p3(G) = 9. This proves our lemma. O

Lemma 8. The pair of identities I3, I3
Proof. Dual to Lemma 7. O
Lemma 9. The pair of identities Is, I1¢

Proof. Suppose the opposite, i.e.

z(y2)
(zy)z

holds on G.

Claim 12. z(zy) = yz and (yz)z = zy.

is not true on G.

15 not true on G.

#(yz)
(2y)z
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Proof. Consequence of Is and I;s. O
Claim 13. z(yz) = (zy)z.

Proof. z(yz) = z(z(zy)) = (zy)(zz) = (zy)z. O
Claim 14. z(yz) is essentially binary and z(yz) ¢ {zy,yz}.

Proof. Claim 13 and (zy)(yz) = ((yz)y)z imply z(yz) ¢ {z,y,2y,yz},
because the opposite means that {z,y,zy,yz} is closed under the multipli-
cation of polynomials. O

Claim 15. z((yz)z) is an essentially 3-ary polynomial.

Proof. Follows from the substitutions z = z and z = y, by applying Claim
14 and Lemma 1. O

Claim 16. The set TU{z((y2)z),y((z2)y), z2((zy)z),z((zy)z)} contains 10
essentially 3-ary polynomials.

Proof. The set T has 6 elements which can be proved in the same way
as in Lemma 7, Claim 9. The set {z((yz)z,y((22)y), 2((zy)z2)),z((zy)z)}
contains 4 essentially 3-ary polynomials. This follows from Claim 15 and

z((y2)z) = y((zz)y) = z((yz)z = y(ay) (for z = z) = yz = y(zy)
z((zy)z) = z((yz)z) = z((z2)z) = z((z2)z) (fory = z) =

= 2z = (z(zz))z (Claim 13) = zz = zz
z((2y)z) = y((22)y) = z((zy)z) = y(zy) (for z =z) =

= (z(zy))z = y(zy) (Claim 13) = zy = y(zy)
z((zy)z) = z((2y)z) = zz = 2(xz) (for y = z)

(we have contradictions with Claim 14 and Lemma 1).

To prove that

T n{z((y2)z),y((22)y), 2((zy)2), z((29)z)} = 0
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it is sufficient to show that z((yz)z) ¢ T. However, this follows from

z((yz)z) = 2(yz) = z(yz)==zy forz=1y
2((y2)z) = z(zy) = =z(yz)=gy forz=y
z((yz)z) = y(zz) = «((z2)z) =2z(z2) fory =z =

=> (z(z2))r = x(z2) > 22 = 2z
z((yz)z) = (zy)z = a(yz)=yz forz=y
x((yz)x) =(yz)z = yr=zy forz==z

2((y2)2) = (e2)y = a(ys)=ye forz=y

(we have contradictions with Claim 14 and Lemma 1). O

Claim 16 contradicts the assumption that p3(G) = 9 which means that
our supposition about the pair Iy, I15 is not true. O

Lemma 10. Fzactly one of the identities Iy, I, Is, I3, I13, 116 holds on G
and no other from the list I;-I s. The set {p”|o € S3}U{¢°|o € S3} contains
all 9 essentially §-ary polynomials.

Proof. The first assertions follows from Lemmas 3, 4, 6, 7, 8, 9. The second
part is a direct consequence of the first. O

Lemma 11. G does not have a commutative binary polynomsial.

Proof. Suppose o is a commutative operation on G induced by the given
commutative polynomial. If o is non-associative, then by [4], we have

pn(G) 2 pal(G) > (2"~ (-1,

where G’ = (G,0). This contradicts p,(G) = n?. If o is associative, then
G’ is a semilattice and z o y o z iz an essentially 3-ary polynomial. However,
from Lemma 10 it follows that

zoyoz€e{p’lo€ S3}U{¢|o€ 53}

which implies z 0 y = zy (e.g. if z 0 y 0 z = (27)y, then we put z = z, etc).
This contradicts Lemnma 1. O '

Lemma 12. I; does not hold on G.
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Proof. Suppose the opposite i.e.
2(yz) = z(zy)
holds on G

Claim 17. z(yz) = z(zy).
Proof. Obvious. O

Claim 18. z(zy) € {z,y,2y,yz}.

Proof. Suppose the opposite. Then we have the following 4 cases:
1° z(zy) = z. This implies
z(yz) =1z
(yz)z = (yz)(2(zy)) = (yz)((yz)z) = yz
(zy)z = (zy)(z(zy)) = (zy)((y2)z) = (zy)(yz) = (zy)(zy) = =y
(zy)(yz) = zy;
20 z(2y) = y. This implies
z(yz) =y
(yz)z = (y=)(y(yz)) = (y2)((y2)y) =y
(zy)z = (zy)(y(y2)) = (zy)((zy)y) = ¥
(zy)(yz) = zy;
3% z(zy) = zy. This implies
z(yz) = 7y
(zy)z = (zy)((zy)z) = (zy)(z(zy)) = zy
(yz)z = (yz)((yz)z) = (y7)(2(y2)) = (y2)(2y) = Y=
(zy)(yz) = zy;
4% z(zy) = yz. This implies
z(yz) = yz
(y2)z = 2(2(yz)) = 2(yz) = y=
(zy)z = z(z(zy)) = z(yz) = yz
(zy)(yz) = zy.

All these cases are in contradiction with p,(G) = 4. O
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Claim 19. The polynomial z(z(yz)) is essentially 3-ary.

Proof. For z = y we have an essentially binary polynomial z(zy) (Claim
18), so thatz(z(yz)) depends on z and at least one of the variables y, 2.
However, since z(z(yz) = z(z(zy)) the assertion follows. O

Claim 20. z(z(yz2)) € {p°|o € S3}.
Proof. Follows from.

z(z(y2)) = z(yz) = z(zy) = zy for z=y
z(z(yz)) = y(zz) = z(2y) = y(yz) for z= y
z(z(yz2)) = z(zy) = z(zy) = y(yz) for z=y

(we obtain contradictions with Lemma 11 and Claim 18). O
Claim 21. z(z(yz2)) € {¢°|o € S3}.
Proof. From z(z(yz)) = ¢ it follows

¢° = 2(2(y2)) = 2(2(2y)) = (2(2(¥2))* = (¢7)®) = ¢

ie.
g= qa_l (23)0

which contradicts L.emma 10 because of
o~1(23)0 # (1).0

Claims 19, 20, 21 contradict Lemma 10, which proves that I; does not hold
on G. O

Lemma 13. I3 is not itrue on G.
Proof. Dual of the proof of Lemma 12. O

Lemma 14. If I, holds on G then

z(zy) # y-
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Proof. Suppose the opposite, i.e. let
2(yz) = y(zz)
z(2y) =y
hold on G.

Claim 22. (yz)z =z.

Proof. (yz)z = (yz)(y(yz)) = y((yz)(yz)) = y(yz) = .0
Claim 23. (zy)z ¢ {z,y,zy,yz}.
Proof. Obiously, a:(ya:) = yz and if

(zy)z € {z,y,zy,yz},
then
(zy)(yz) = y((zy)z) € {z,y,2y,yz},

i.e. the set {z,y,zy,yz} is closed under the multiplication of polynomials
which is impossible since p(G) =4. O

Claim 24. (zy)(zz) is an essentially 3-ary polynomial.
Proof. Follows from the substitutions y = z and y = z, and Lemma 1. O
Claim 25. (zy)(zz) € {p°|o € S3} U {¢?|o € S3}.

Proof. Follows from

(zy)(zz) = z(y2z) > (zy)z =yz forz =12z
(zy)(zz) =2(2y) = (zy)z =y forz ==z
(zy)(zz) = y(zz) = (zy)z =yz forz =2
(zy)(zz)=(zy)z=> z=2z fory =2z
(zy)(zz) = (z2)y = (zy)z =2y forz =2
(zy)(zz) = (yz)z2 = (zy)z =2 forz ==z
(zy)(z2z) = (y2)z => (zy)z =2 forz =12
(zy)(zz) = (22)y = (zy)z =2y forz =2
(zy)(zz)=(zy)z=> 2=z fory =2z
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(contradicts Claim 23 and Lemma 1). O

Claims 3 and 4 contradict Lemma 10. O
Lemma 15. If I; holds on G then
z(zy) € {z,y,2y,yz}.
Proof. Suppose the opposite, i.e. let

2(yz) = y(zz)
z(zy) € {z, 9, zy,yz}.

Claim 26. The polynomial z(z(yz)) is essentially 3-ary.

Proof. For z = z and 2z = y we obtain the polynomials yz -and z(zy) which
imply dependence on y and z. From yz # z(zy) it follows dependence on
z. O

Claim 27. z(z(yz)) = (zy)=z.

Proof. According to Lemma 10
z(z(y2)) € {p°|o € S3} U {¢°|o € S3}.
The cases

z(2(yz)) = 2(yz) = z(zy) = zy forz =y
z(z(y2)) = 2z(zy) 2> z(zy) =2y forz =y
z(z(yz)) = y(zz) = z(zy) = y(yzx) forz =y
z(z(yz)) = (zz)y > yc=zy forz=2
z(z(yz)) = (yz)z = yz = (yz)z (forz=1z) =
= 2(zy) = z((zy)y) = (zy)(2y) = <y
2(2(y2)) = (v2) = a(y) = ya for z =y
z(z(yz))=(zz)y > yz=zy forz =2
z(2(y2)) = (2y)z = z(zy) = yz forz =y
lead to a contradiction with the assumption on z(zy), Lemma 11 and Lemma

1. So it has to be
z(z(yz)) = (zy)z.0
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Claim 28. z(zy) = (zy)y, (zy)z = yz , z(z(zy)) = zy.
Proof. Follows from Claim 27 for z = y,2z = z,y = z respectively. O
Claim 29. The polynomial (yz)z)z is essentially 3-ary.

Proof. For y = z and y = = we obtain twice the polynomial 2(zz) from
which follows the dependence on z and z. If ((yz)z)z does not depend on y
then :

((yz)z)z = =.
This implies

z = ((yz)z)z = (y7)((yz)z) = (y2)(y(yz)) = y((yz)(yz)) = y(yz)

(we use Claim 28) which contradicts the assumption. O
Claim 30. ((yz)z)z ¢ {polo € S3}U{¢’|o € S3}.
Proof. Suppose the opposite. Then one of the following cases hold

((y2)z)z = 2(yz) = y(yz) =2y forz =y
((y2)z)z = z(2y) = y(yz) =2y forz =y
((y2)z)z = y(2z) = 2(2z) = 2z fory ==z
((yz)z)z = (zy)z = y(yz) = z(zy) forz =y
((y2)z)z = (z2)y = y(yz) = z(zy) forz=y
((y2)z)z = (yz)z = y(yz) =2y forz=y
((y2)z)z = (y2)z = y(yz) = yz forz =y
((y2)z)z = (22)y = y(yz) =2y forz =y
((y2)z)z = (2y)z = y(yz) = yz forz =y

(we use Claim 28). However, all these cases lead to contradictions with the
assumption z(zy) € {z,y,zy,yz} and Lemma 11. O

Claim 29 and Claim 30 contradict Lemma 10 so that assertion of our
lemma follows. O

Lemma 16. If I; holds on G then z(zy) = zy.
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Proof. From Lemma 15 we have

z(zy) € {z,y,zy,yz}
and from Lemma 14
z(zy) # .
We eliminate the other two posibilities for z(zy) in the following way
2(zy) = z = = = z(2(y2)) = 2(y(z2)) = Y(z(z2)) = yz
z(zy) = yz = y(yz) = y(z(2y)) = 2(y(zy)) = =(2(yy)) = z(zy)

(contradicts Lemma 1 and Lemma 11). O

Lemma 17. If I; holds on G then
(zy)z & {z,y,2y,yz}.
Proof. Suppose the opposite, i.e. that on G we have

z(yz) = y(z2)
(zy)z & {z,y,2y,yz}.

Claim 31. The polynomial (z(yz))z is not essentially 3-ary.

Proof. Suppose the opposite. Then
(2(y2))z € {p°|o € S3} U {¢"|o € 53}

(Lemma 10). However, all the cases

(z(y2))z = z(y2) = (zy)z =2y forz =y
(z(y2))z = z(2y) = (zy)z =2y forz =1y
(z(y2))z = y(2z) = (zy)z = y(yz) = yz forz =y
(z(y2))z = (zy)z2 = (zz)z =22z fory =2z
(z(y2))z = (z2)y = (yz)z =2y (forz=12) =

= yz = (yz)(yz) = y((yz)z) = y(zy) = zy
(z(y2))z = (yz)z = (zy)z = (yz)y forz =y
(2(y2))z = (v2)2 > (ay)e = yo forz =y
(z(y2))z = (22)y = (yz)z = za (forz=12) =

= yz = (yz)(yz) = y((yz)z) = zy
(2(y2))z = (zy)z = (zy)z = yz forz=y

lead to a contradiction with the assumption about (zy)z and Lemma 11. O
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Claim 32. (yz)z = z.

Proof. for y = z and y = z we obtain the polynomial (zz)z, which is
essentially binary by the assumption. Therefore, the polynomial (z(yz))z
depends on z and z so that, according to Claim 31 does not depend on y.
It follows that

(2(y2))z = (az)a
(for y = z), i.e. :
(v = 2

(for z=1z). O
Claim 33. (zy)(z2y) = 2y.

Proof. (zy)(zy) = 2((zy)y) = zy. O

Claim 34. No identity of the form f = f7, where f = (zy)(zu), ¢ €
Sa, 0 # (1), holds on G.

Proof. Suppose the opposite. According to Lemma 5(iii) one of the following
identities is true on G

(zy)(2u) = (zy)(uz) = z(2u) = z(uz) fory=12=

(zy)(zu) = (zz)(yu) = zy = (zy)(zy) = (z2)(yy) = (z2)y
(zy)(2u) = (z2)(vy) = zy = (zy)(2y) = (z2)(yy) = (z2)y
(zy)(zu) = (zu)(yz) = (zy)z = (zy)(2z) = (z2)(yz) =
(zy)(zu) = (zu)(zy) = (zy)r =2y foru=z,2==z
(zy)(zu) = (yz)(2u) = (2y)2 = (yz)z foru =2
(zy)(zu) = (yz)(zu) = (zy)z = (zy)(22) = (v2)(22) = 22
(zy)(2u) = (2z)(yu) = zy = (zy)(2y) = (22)(yy) = (2z)y
(zy)(zu) = (2y)(zu) = 2y = (zy)(2y) = (2y)(zy) = zy

However, it is easy to see that all these cases lead to a contradiction with
the fact that no identity I,-I6, except I, holds on G (Lemma 10),. or
with the assumption that p and ¢ are essentially 3-ary polynomials, or with
(zy)z & {z,y,zy,yz}, or with Lemma 1. O
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Since Claim 34 contradicts Lemma 5 the assertion of our Lemma holds.
a

Lemma 18, If I, is true on G, then
(yz)z € {=,y,zy,yz}.

Proof. Follows from pa(G) = 4 and Lemmas 16, 17, z(yz) = yz and
(zy)(yz) = y((zy)z) € {z,y,zy,yz}. O

Lemma 19. If I, holds on G then
(zy)z = yz.
Proof. According to Lemma, 17

(zy)z € {z,y,zy,yz}.
The posibilities

(zy)z =z = (yz)z = (z(yz))z ==
(zy)z =y = y = (zy)z = z((zy)z) = 2y
(zy)z = zy = (yz)z = (z(yz))z = z(yz) = yz

do not hold because of the contradiction with Lemma 18 and Lemma 1, so
that

(2y)z = ya.
a

Lemma 20. I, does not hold on G.

Proof. Suppose the opposite, i.e. let

z(yz) = y(zz)
be true on G. From Lemmas 16, 18, 19 and identity I it follows that

z(zy) = zy
z(yz) = yz.
(zy)z = yz

(y2)2 ¢ {z,y,2y,yz}.

N .-

Al
.
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Consider the polynomial (z(zy))y. We prove that it is essentially 3-ary by

substituting y = = and y = 2 and using Lemma 11.

On the other hand

(z(2y))y & {p°lo € S3}U{¢°|o € S}

because in all the cases

we obtain

(z(2y))y = z(y2) = (zy)y = zy
(z(2y))y = z(2y) = (zy)y = zy
(z(2y))y = y(22) = (2y)y = yz
(z(2y))y = (zy)z = (22)z = 22
(z(2y))y = (z2)y = (2zy)y = zy
(z(2y))y = (y2)z = (22)z = 22
(z(2y))y = (yz)z = (zy)y = yz
(z(29))y = (22)y = (zy)y = zy
(z(2y))y = (2y)z = (zy)y = yz

(yz)z € {z,y,2y, yz}-

forz=y
forz=y9
forz=2
fory=2
forz=1z
fory =
for z =
for z =
for z =

This contradiction with Lemma 18 proves our lemma. O

Lemma 21. I 5 i3 not true on G.

Proof. This is the dual of Lemma 20. O

Lemma 22. I5 is not true on G.

Proof. Suppose Is holds on G, i.e.

z(y2) = 2(yz).

Claim 35. z(zy) = yz, (zy)z = z(yz).

Proof.

z(zy) = y(zz) = yz

(zy)z = z(z(2y)) = 2(y=).0

<L 8 @ 8
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Claim 36. z(yz) ¢ {z,y,2y,yz}.

Proof. In the opposite case we have the following possibilities

z(yz) =z = (yz)z = z(z(yz)) =2z =z
2(yz) =y = (yz)z = =(z(yz)) = zy

z(yz) = zy = (y2)z = 2(2(y2)) = z(zy) = y=
z(yz) = yz = (yz)z = z(2(yz)) = 2(yz) = ¥

which, according to Claim 35, lead to the conclusion that the set {z,y,zy,yz}
is closed under the multiplication of polynomials. O

Claim 37. ‘The polynomial (2y)(z(yz)) is essentially 3-ary.
Proof. Use the substitutions y = z and y = z and Claim 36. O
Claim 38. (zy)(z(y2)) = y(zz).

Proof. According to Lemma 10

(29)(2(y2)) € {p°|o € 53} U {¢°|o € S3}.

All the other possibilities are not true because they contradict Claim 36 or
Lemma 1 in the following way

(zy)(z(yz)) = 2(yz) = y(zy) = 2y forz =y
(zy)(z(yz)) = z(zy) = y(zy) = zy forz =y
(zy)(z(y2)) = (zy)z = yz = (ey)z = z(yz) forz ==
(2y)(z(y2))=(z2)y=>yz =zy forz =12z
(zy)(z(y2)) = (yz)z > 2z =2z fory =z
(zy)(z(y2)) = (y2)z = y(zy) = yz forz=y
(zy)(z(y2))=(22)y=>yz =2y forz =2z
(zy)(z(y2)) = (2y)z = y(zy) = yz forz =y.0

Claim 39. The polynomigl (zy)((z2)z) is essentially 3-ary.

Proof. Use substitutions z = z and z = y and apply Claim 36 and Lemma
11. 0O
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Claim 40. (zy)((z2)z) = (zy)z or (zy)((z2)z) = (yz)z.
Proof. Lemma 10 implies

(zy)((22)2) € {p°|o € S3} U {¢°|o € S3}.

All the other possibilities do not hold since they contradict Claim 36 in the
following way

(zy)((z2)z) = z(yz) = y(zy) =zy forz=y
(zy)((z2)2) = 2(2y) = y(zy) =2y forz =y
(zy)((z2)z) = y(zz) = (zy)z = yr forz ==z
(zy)((z2)z) = (z2)y = (zy)z =2y forz ==z
(zy)(z2)z) = (y2)z = y(zy) = yz forz =y
(zy)((z2)2) = (22)y = (zy)z =2y forz ==z
(zy)((z2)z) = (2y)z = y(zy) = yz for z = y.O

Claim 41. (zy)y = y(zy).

Proof. This is a consequence of Claim 40 for z = y in the first case and
z = z in the second. O

Claim 42. (zy)(yz) = (yz)(zy).
Proof. According to Claim 38 and Claim 41 we have

(zy)(yz) = (zy)((yz)(yz)) = y((yz)z) = y(z(yz)) = (y=)(zy),
which proves this Claim. O

The assertion of Claim 42 is in contradiction with Lemma 11 and this
proves assertion of Lemma. O

Lemma 23. I, is not true on G.
Proof. Dual of Lemma 22. O

Proof of Theorem 2.
Follows from Lemmas 10, 12, 13, 20, 21, 22, 23. O
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4. Proof of the Main Theorem

It was proved in [2] that from (i) follows p,(G) = »2%, n > 0. In [1] it is
proved that (iii) implies p,(G) = n%, n > 0. The proof that (ii) implies
Pn(G) = n?, n > 0 is the dual of the proof given in [1].

Suppose p,(G) = n?. If the polynomial z(yz) is not essentially 3-ary

then (ii) holds (Theorem 1). If the polynomial (zy)z is not essentially 3-ary
then (iii) holds (dual of Theorem 1). If G is a semigroup then (i) holds (see
[1]). Theorem 2 claims that it is not possible for G not to be a semigroup
and both of the polynomials z(yz) and (zy)z to be essentially 3-ary. O
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REZIME

O GRUPOIDIMA KOJI IMAJU n? ESENCIJALNIH
n-ARNIH POLINOMA

U radu je pokazano da samo pravougaoni grupoidi i normalne trake imaju
pr, nizove oblika (0,1,4,...,7n2,...). Time je data potpuna karakterizacija
grupoida sa osobinom p,(G) = n?.
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