Univ. u Novom Sadu Review of Research
Zb. Rad. Prirod.—Mat. Fak. Faculty of Science
Ser. Mat. 23, 1 (1993), 287 - 312 Mathematics Series

ON GROUPOIDS HAVING n? ESSENTIALLY n-ARY
POLYNOMIALS

Sinisa Crvenkovié, Nikola Ruskuc
Institute of Mathematics, University of Novi Sad
Trg Dositeja Obradovica 4, 21000 Novi Sad, Yugoslavia

Abstract

In this paper we prove that only rectangular grupoids and normal
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1. Introduction

For an arbitrary algebra A, by p,(A) is denoted the number of essentially n-
ary polynomials i.e. those n-ary operations which are composed of projection
operations using the basic operations of A and which depend on all variables.

In [1] it was proved that if a non-associative groupoid G satisfies identi-
ties 2z = = (zy)z = 22z and z(y(zu)) = z(2(yu)), then p,(G) = n?, for all
n > 0.

For a semigroup S we have that p,(S) = n? for all » > 0, if and only
if S generates the variety of normal bands (see [2]). Normal bands are
idempotent semigroups satisfying zyzu = zzyu.

In this paper we shall show that there are no other groupoids having n?
essentially n-ary polynomials. Namely, we have the following
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MAIN THEOREM

Let G be a groupoid. Then p,(G) = n? for all n > 0 if and only if one
of the following conditions hold

(i) G generates the variety of normal bands;
(ii) G is not a semigroup and satisfies

Tz =1
z(yz) = 2

((z9)2)u = ((z2)y)w;
(i4)) G is not a semigroup and satisfies

Tz = 2
(zy)z = ==z

z(y(zu)) = z(z(yu)).

In order to prove the Main theorem we shall prove the following theo-
rems.

Theorem 1. Let G be a groupoid for which the polynomial z(yz) is not
essentially 3-ary. Then p,(G) = n? for all n > 0 if and only if G is non-
associative and satisfies

zx = z
z(yz) = =zz

((ey)2)u = ((22)y)u.

Theorem 2. There is no non-associative groupoid G for which z(yz) and
(zy)z are essentially 3-ary polynomials and p,(G) = n? for alln > 0.

Before passing to the proofs of Theorems 1 and 2 we shall explain some
notations and prove a general lemma.
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If p(z1,%2,-..,%xs) is an n-ary polynomial and o € S,, (the group of per-
mutations), then by p° we denote the polynomial p(2,(1), Z5(2); - - - » To(n))-
In what follows we use sometimes z, y, z, u instead of z;, 25, z3, Z4.

Also, we denote by p and ¢ the polynomials z(yz) and (zy)z i.e. p =
z(yz) and ¢ = (zy)=.

Lemma 1. Let G be a groupoid for which p,(G) = n%, n > 0. Then

(i) G is idempotent.
(ii) zy, yz are two different essentially binary polynomials.

Proof. (i) Follows from p1(G) = 1.
(ii) If zy is not essentially binary, then 2y = z or zy = y which implies
p2(G) = 0. However, p;(G) = 4 by the assumption. Analogously for yz.

Suppose zy = yz. If G is a semigroup, then G is a semilattice and p3(G) = 1
which contradicts p2(G) = 4. If G is not a semigroup, then

1
Pa(G) 2 (2" — (1)), n 2 2
as it was shown in [4]. However,
1
100 = p1o(G) > 5(210 —1) = 341.

Contradiction. O

2. Groupoids for which p = z(yz) is not an essen-
tially ternary polynomial

Lemma 2. There is no groupoid G, which satisfies the identity z(yz) ='a:y,
such that p,(G) = n?, n > 0.

Proof. Supose that G is such a groupoid.
Claim 1. FEach polynomial of the groupoid G is equal to a polynomial of
the form (...((i,®iy)%i,)...)2s,, where the variables are not necessarily

different.

Proof. Follows from z(yz) = zy. O
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Claim 2. The set {(zy)z,(yz)y,(zy)y, (yz)z} is not a subset of the set
{z,y, zy,yz}.

Proof. The opposite implies that the set {z,y,zy,yz} is closed under the
multiplication of polynomials. This means that p;(G) = 2, which is a
contradiction. O

Claim 3. If t is a polynomial having = as its first variable, then tz = t.
FEspecially, (zy)x = zy and (yz)y = yz.

Proof. From z(yz) = zy it follows that tz = t¢t = ¢t. O

Claim 4. If r and s are two polynomials having different first variables,
then v # s. Especially, (zy)y # (yz)z.

Proof. Let z be the first variable of r and y the first variable of s. If r = s,
then zr = zs i.e. ¢ = zy, which contradicts Lema 1. O

Claim 5. The set {my,ym,'(:cy)y,(yx)m} contains four essentially binary
polynomials.

Proof. From Claim 2 and 3 it follows that (zy)y, (yz)z ¢ {z,y,zy,yz}. The
proof now follows from (zy)y # (yz)z (Claim 4). O ‘

Claim 6 If r,s are polynomials such that r # s and z is a variable which
does not appear in r and s, then 7z # sz.

Proof. If » and s have different first variables, then this is Claim 4. If the
first variable is the same for 7 and s, then from Claim 3 it follows that
TT # 8T ie. Tz # 52z. O

Now we can prove the Lemma.

Counsider the polynomial (zy)z. According to Claim 4 every polynomial
depends on the first variable. Hence, (zy)z depends on z. For y = = we
obtain the polynomial zz, which is, according to Claim 5, essentially binary.
Therefore (zy)z depends on z. Analogously, for z = z, we have that (zy)z
depends on y.

In the same way we prove, by taking y = ¢ and 2 = z, that polynomials
((zy)2)z,((zy)y)2,(((zy)y)z)z depend on all variables.
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Let us show now that (zy)z,((zy)2)z, ((zy)y)z, ((zy)y)z)z are differ-
ent. If we put in these polynomials y = z, we obtain zz,(z2)z2,zz2, (z2)z.
Therefore

(zy)z # ((zy)2)z,

(zy)z # (((zy)y)?),
((z9)y)z # ((zy)2)2,
((zy)y)z # (((zy)y)2)=

If in the same polynomials we insert 2 = z we obtain polynomials zy, zy,
(zy)y, (zy)y (Claim 3). This implies

(zy)z # ((zy)y)z
((zy)2)z # (((zy)y)2)z

(Claim 5).

The above arguments show that each one of the sets

A = {(zy)z((zy)2)z,((zy)y)z, (((zy)y)z)z}
B = {(y2)z,((y2)7)z,((y2)2)z, (((y2)2)z)z}
C = {(z2)y,((zz)y)y, ((22)7)y, (((27)z)y)y}

contain four essentially 3-ary polynomials. Claim 4 implies that
ANB=BNnC=CnNA=0.

Hence, the set AU B U C contains 12 essentially 3-ary polynomials. This
contradicts the assumption that p3(G)=9. O

Proof of Theorem 1.

(<) The dual of this was proved in [1].

(—) Taking z = y we see that z(yz) depends on z. If the polynomla.l z(yz)
does not depend on y, then z(yz) = z(zz) = zz. It was proved in [1] (dual)
that in that case G is an idempotent non-associative groupoid satisfying the
identity ((zy)z)u = ((zz)y)u. If the polynomial z(yz) does not depend on
z, then z(yz) = z(yy) = zy. However, from Lemma 2 it follows that this is
not possible. O
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3. Non-—associative groupoids having both of the

polynomials z(yz) and (zy)z essentially ternary
In the following lemmas of this section, G is a non-associative groupoid
having p = z(yz) and ¢ = (zy)z essentially 3-ary and p,.(G) = n?2, for all
n > 0.

Lemma 3. At least one of the following identities is true on G.

(h) =(y2) = z(zy) (I) =z(yz) = (y2)z
(I2) z(yz) = y(z=2) (Io) z(yz) = (22)y
(I3) z(yz) = y(2z) (In) =z(yz) = (2y)z
(I) z(yz) = 2(zy) (hLi2) (zy)z = (z2)y
(Is) z(yz) = 2(yz) (Ia) (zy)z = (yz)z
(Ie) z(yz) = (2y)z (Iia) (zy)z = (y2)z
(I7) =z(yz) = (z2)y (hs) (zy)z = (22)y
(Is) =z(yz) = (yz)z (Iie) (zy)z = (2y)z.

Proof. All the polynomials p?,¢%,0 € Sz, are essentially 3-ary and there are
12 of them. Because of p3(G) = 9 two of them must be equal i.e. there are
0,7 € S3 such that

p’=po#¢rorg =q,0#T0rp’ =g,
which implies

a

p=p T oTlr # (1),or ¢ = q"_lT,a_lr #(1),orp= q"_lT.
a
Lemma 4. The following identities do not hold on G

I3, 14, Ig, Ir, Is, Ig, 1o, I11, 14, It5.

Proof. Ig is the associative law and from Iy and I; follows the law of
commutativity. Therefore Ig, Iy, [11 are not true on G.

Suppose I3 holds on G i.e. z(yz) = y(zz). A simple argument shows
that

z(yz) = y(zz)=1yz
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z(zy) = z(yz)=yz
(zy)z = z(z(zy)) = z(yz) = yz
(y2)z = =z(z(yz)) = z(yz) = yz
(zy)(yz) = y(z(zy)) = y(yz) = 2y,
which means that the set {z,y,zy, yz} is closed under the multiplication of
polynomials. This is in contradiction with p,(G) = 4. A dual argument

shows that I 5 is not true on G. I, implies I3 and hence I, is not true on
G. A dual argument shows that I14 is not true on G.

Suppose I7 holds on G i.e. z(yz) = (z2)y. We have

z(yz) = (sz)y=72y
(zy)y = =z(yy) ==y
(zy)z ((zy)y)z = (zy)(zy) = =y
z(zy) = (zy)z =12y
(zy)(yz) = ((zy)2)y = (zy)y = 2y,

which contradicts p2(G) = 4. Hence, I7 is not true on G.

Suppose Ig holds on G i.e. z(yz) = (yz)z. Then

z(zy) = (zz)y==zy
(zy)z = y(zz)=yz
z(yz) = =z(y(yz)) = (y2)(yz) = yz
(yz)z = z(yz)=yz
(zy)(yz) = (y(zy))z = (zy)z = yz.
This contradicts po(G) = 4.
Suppose that I;o holds on G i.e. z(yz) = (zz)y. Then
z(yz) = (zz)y=7zy
(zy)z = y(zz)=yz
z(zy) = z((yz)y) = (yz)(yz) = yz
(yz)r = z(zy)=yz
(zy)(yz) = (z(zy))y = (yz)y = zy

and therefore contradicts p,(G) = 4. O
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Lemma 5. ‘

(i) The polynomial f = (zy)(zu) is essentially {-ary.
(it) G satisfies f = f° for some 0 € Sy,0 # (1).

(1it) f = f° does not hold on G if 0(1) # 1 and o(4) # 4.

Proof. (i). Follows from the assumption that p and ¢ are essentially 3-ary

and substitutions of the form y = z and v = ¢.

(ii). Follows from p4(G) = 16 and |S4| = 24 similarly as in Lemma 3.

(iii). All identities f = f?,0(1) # 1 and o(4) # 4, imply commutativity.

Namely, ,
(zy)(zu) = (y2)(uz)
(zy)(zu) = (yu)(2z)
(zy)(zu) = (yz)(uz)
(zy)(zu) = (yu)(z2)
(zy)(2u) = (2y)(uz)
(zy)(zu) = (zu)(ye)
(zy)(zu) = (22)(uy)
(zy)(zu) = (zu)(zy)
(zy)(2u) = (uy)(z2)
(zy)(zu) = (uz)(yz)
(zy)(zu) = (uz)(zy)
(zy)(2u) = (uz)(zy)
(zy)(zu) = (uz)(y2)
(zy)(zu) = (uy)(z2)

zy=yzforz=z,u=y
zy=yzforz=z,u=y
zy=yzforz=z,u=y
zy=yzforz=z,u=y
zz=zz fory=z,u= 2
zz=zzxfory=z,u==z2
zz=zzfory=2z,u=
zz=zzfory=z,u=
zz=zzxfory=z,u=

zz=zzfory=1z,u=

zz=zzfory=z,u=

zy=yz for z=z,u=

TRy

z
z
z
z
zz=zzfory=z,u=z
z
Y
(/]

zy=yzforz=z,u=

a

Lemma 6. The following pairs of identities do not hold on G.

(7)) Li,I (1v) Iz, 13 (vii) I, hs (z) I, L
(M) Il,I5 (’U) I12,I16 (’U’LM) Il,Ilg (Zl) I5,I12
(ZZZ) .[2,[5 (’Ui) 1137-[16 (Z.Z‘) 12,112 (:uz) I5., 113.

Proof. It holds that
z(yz) = z(2y) Az(yz) = y(z2) = x(yz) = z(2y) = 2(zy)
z(yz) = z(2y) A z(yz) = 2(yz) = z(yz) = z(2y) = y(22)
z(yz) = y(ez) Az(y2) = 2(yz) = =z(yz) = y(zz) = 2(zy).
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The obtained contradiction to Lemma 4 proves (i), (i) and (iii). (iv), (v)
and (vi) are dual to (i), (iii) and (ii) respectively.

(vii) This case contradicts Lemma 1 because of

z(yz) = z(2y) A (zy)z = (yz)z = 2y = (zy)(zy) = (yz)(y2) = yz.

(viii) Suppose I, and I16 hold on G i.e. z(yz) = z(zy) and (zy)z = (2y)z
Then o
(yo)z = (22)y = 2y
and
2(yz) = 2(zy) = 2((y2)z) = 2(z(yz)).
If in the last equality we put z = z(yz), we have

(z(yz))(yz) = 2(yz) = (yz)r = 2(yz) = zy = z(yz).
It is routine to verify
z(zy) = z(yz) = zy

(zy)z = (zy)(z(zy)) = (zy)(zy) = zy
(zy)(yz) = (zy)(zy) = zy.

Contradiction with p2(G) = 4.
(ix) Suppose I and Iy, are valid on G i.e. z(yz) = y(zz) and (zy)z =
(zz)y. Then
z(yz) = yz
(ey)e = =zy.
Also -
z(yz) = y(22) = y((z2)z) = (22)(yz) = (2(yz))z = (yz)2
which contradicts Lemma 4.

(x)  This case contradicts Lemma 1 because of
z(yz) = y(z2)A(zy)z = (29)r = yz = (yz) = =((2y)y) = (2y)(zy) = zy.

Cases (xi) and (xii) are dual to (x) and (viii). O
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Lemma 7. The pair of identities I, I,5 is not true on G.

Proof. Suppose the opposite i.e. on G we have

2(y2) = a(zy)
()2 = (s2)y.

Claim 7. z(2y) € {z,y,zy,yz}.

Proof. Suppose the opposite. In that case we have the following possibilities:

1° z(zy) = z. This implies

z(yz) = z(zy) ==
(zy)z = (2z)y = 2y
(yz)z = (yz)(z(zy)) = (yz)((zy)z) = (yz)(zy) = (yz)(yz) = yz
(zy)(yz = (zy)(zy) = zy.
29 z(zy) = y. This implies

z(yz) = z(zy) = y

(zy)z = (z2)y = 2y

(yz)z = (yz)(y(yz)) = (y=((yz)y) = (y2)(yz) = yz

(zy)(yz) = zy. ‘
3% z(zy) = zy. This implies

z(yz) = e(zy) = ¢y
(ey)e = (zz)y = <y
(yz)z = (y(yz))e = (yz)(yz) = yo
(ey)(yz) = 2y
49 z(zy) = yz. This implies
z(yz) = yz
(zy)e = zy
(yz)z = (y(yz))z = (yz)(yz) = ye
(zy)(yz) = zy.
All these cases contradict the assumption that po(G) =4. O
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Claim 8. z(zy) # y(yz).

Proof. If in z(zy) = y(yz) we put y = yz, we hawe z(z(yz)) = (yx)((y:z:):z:)
which implies

z(zy) = z((zy)e) = z(z(zy)) = 2(2(y2)) = (y2)((y2)z) = (yz)((y2)) =
= (yz)(z(2y)) = (yz)((2y)e) = (yo)(2y) = y=.

This contradicts Claim 7. O
Claim 9. The set T = {p°|o € 53} has 6 elements.

Proof. From Lemmas 4 and 6 it follows that on G no identity from I;-I6,
except I; and Iz, holds. This implies the assertion. O

Claim 10. The set T U{z(z(yz)),y(z(yz)), 2(z(yz))} contains all 9 essen-
tially 3-ary polynomials.

Proof. Insert y = z in the polynomial. We obtain an essentially binary
polynomial z(zz) (Claim 7). If in the same polynomial we put y = = and
z = z, we obtain the polynomials z(z(z2)) = z(z2), z(z(yz)) = z(zy) which
implies that z(z(yz)) is essentially 3-ary. Since

y(z(y2)) = y(y(z2)) , 2(2(yz)) = z(2(zy)),
it follows that these two polynomials are essentially 3-ary.

The following calculation

w(z(yz)) = z(yz) = z(zy)=zy forz=y
z(z(yz)) = y(zz) = =z(zy)=yz forz==z
z(z(yz)) = z(zy) = z(zz)=z2z fory==
z(z(yz)) = (zy)z = z(zz)=2z fory==
z(z(yz)) = (yz)z = z(zz)=2zz fory==2
2(z(yz)) = (22)y =

z(zy)=czy forz=12

shows that z(z(y2)),y(2(y2)), 2(=(y2)) € T.

From z(z(yz)) = y(z(yz2)), for z = y, it follows that z(zy) = y(zy) which
is impossible according to Claim 8. Hence {z(z(yz2)),y(z(yz)), 2(z(yz))} has
3 elements. This proves Claim 10. O
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Claim 11. (zy)(z(yz)) is an essentially 3-ary polynomial and

(zy)(z(y2)) € T U {=(z(y2)), y(z(y2)), 2(z(y2)).

Proof. In (zy)(z(yz)) we insert y = z and y = z and get polynomials z(zz)
on z and z. According to Claim 7

and zz. .Therefore, (zy)(z(yz)) depends

z(zz) # zz which implies dependence on y.

The second part of the claim follows

(zy)(z(y2)) = z(yz) =
(zy)(z(y2)) = y(z2) =
(zy)(z(y2)) = 2(zy) =
(zy)(2z(y2)) = (zy)z =
(zy)(z(y2)) = (yz)z =
(zy)(z(y2)) = (22)y =
(zy)(2(y2)) = z(z(y2)) =
(zy)(2(y2)) = y(2(y2)) =
(zy)(2(y2)) = 2(2(y2)) =

from

zy = z(zy) forz ==
zy =y(yz) forz=y
zy=z(zy) forz=1z
z(zz) =zz fory=z
z(zz)=zz fory=1z
zy=yz forz=1y

zy = z(zy) forz =y
zy =y(yz) forz=y
zy=y(yz) forz=1y

which is in contradiction with Claim 7 and Lemma 1. O

Claim 10 and Claim 11 contradict p3(G) = 9. This proves our lemma. O

Lemma 8. The pair of identities I3, I3
Proof. Dual to Lemma 7. O
Lemma 9. The pair of identities Is, I1¢

Proof. Suppose the opposite, i.e.

z(y2)
(zy)z

holds on G.

Claim 12. z(zy) = yz and (yz)z = zy.

is not true on G.

15 not true on G.

#(yz)
(2y)z
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Proof. Consequence of Is and I;s. O
Claim 13. z(yz) = (zy)z.

Proof. z(yz) = z(z(zy)) = (zy)(zz) = (zy)z. O
Claim 14. z(yz) is essentially binary and z(yz) ¢ {zy,yz}.

Proof. Claim 13 and (zy)(yz) = ((yz)y)z imply z(yz) ¢ {z,y,2y,yz},
because the opposite means that {z,y,zy,yz} is closed under the multipli-
cation of polynomials. O

Claim 15. z((yz)z) is an essentially 3-ary polynomial.

Proof. Follows from the substitutions z = z and z = y, by applying Claim
14 and Lemma 1. O

Claim 16. The set TU{z((y2)z),y((z2)y), z2((zy)z),z((zy)z)} contains 10
essentially 3-ary polynomials.

Proof. The set T has 6 elements which can be proved in the same way
as in Lemma 7, Claim 9. The set {z((yz)z,y((22)y), 2((zy)z2)),z((zy)z)}
contains 4 essentially 3-ary polynomials. This follows from Claim 15 and

z((y2)z) = y((zz)y) = z((yz)z = y(ay) (for z = z) = yz = y(zy)
z((zy)z) = z((yz)z) = z((z2)z) = z((z2)z) (fory = z) =

= 2z = (z(zz))z (Claim 13) = zz = zz
z((2y)z) = y((22)y) = z((zy)z) = y(zy) (for z =z) =

= (z(zy))z = y(zy) (Claim 13) = zy = y(zy)
z((zy)z) = z((2y)z) = zz = 2(xz) (for y = z)

(we have contradictions with Claim 14 and Lemma 1).

To prove that

T n{z((y2)z),y((22)y), 2((zy)2), z((29)z)} = 0
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it is sufficient to show that z((yz)z) ¢ T. However, this follows from

z((yz)z) = 2(yz) = z(yz)==zy forz=1y
2((y2)z) = z(zy) = =z(yz)=gy forz=y
z((yz)z) = y(zz) = «((z2)z) =2z(z2) fory =z =

=> (z(z2))r = x(z2) > 22 = 2z
z((yz)z) = (zy)z = a(yz)=yz forz=y
x((yz)x) =(yz)z = yr=zy forz==z

2((y2)2) = (e2)y = a(ys)=ye forz=y

(we have contradictions with Claim 14 and Lemma 1). O

Claim 16 contradicts the assumption that p3(G) = 9 which means that
our supposition about the pair Iy, I15 is not true. O

Lemma 10. Fzactly one of the identities Iy, I, Is, I3, I13, 116 holds on G
and no other from the list I;-I s. The set {p”|o € S3}U{¢°|o € S3} contains
all 9 essentially §-ary polynomials.

Proof. The first assertions follows from Lemmas 3, 4, 6, 7, 8, 9. The second
part is a direct consequence of the first. O

Lemma 11. G does not have a commutative binary polynomsial.

Proof. Suppose o is a commutative operation on G induced by the given
commutative polynomial. If o is non-associative, then by [4], we have

pn(G) 2 pal(G) > (2"~ (-1,

where G’ = (G,0). This contradicts p,(G) = n?. If o is associative, then
G’ is a semilattice and z o y o z iz an essentially 3-ary polynomial. However,
from Lemma 10 it follows that

zoyoz€e{p’lo€ S3}U{¢|o€ 53}

which implies z 0 y = zy (e.g. if z 0 y 0 z = (27)y, then we put z = z, etc).
This contradicts Lemnma 1. O '

Lemma 12. I; does not hold on G.
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Proof. Suppose the opposite i.e.
2(yz) = z(zy)
holds on G

Claim 17. z(yz) = z(zy).
Proof. Obvious. O

Claim 18. z(zy) € {z,y,2y,yz}.

Proof. Suppose the opposite. Then we have the following 4 cases:
1° z(zy) = z. This implies
z(yz) =1z
(yz)z = (yz)(2(zy)) = (yz)((yz)z) = yz
(zy)z = (zy)(z(zy)) = (zy)((y2)z) = (zy)(yz) = (zy)(zy) = =y
(zy)(yz) = zy;
20 z(2y) = y. This implies
z(yz) =y
(yz)z = (y=)(y(yz)) = (y2)((y2)y) =y
(zy)z = (zy)(y(y2)) = (zy)((zy)y) = ¥
(zy)(yz) = zy;
3% z(zy) = zy. This implies
z(yz) = 7y
(zy)z = (zy)((zy)z) = (zy)(z(zy)) = zy
(yz)z = (yz)((yz)z) = (y7)(2(y2)) = (y2)(2y) = Y=
(zy)(yz) = zy;
4% z(zy) = yz. This implies
z(yz) = yz
(y2)z = 2(2(yz)) = 2(yz) = y=
(zy)z = z(z(zy)) = z(yz) = yz
(zy)(yz) = zy.

All these cases are in contradiction with p,(G) = 4. O
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Claim 19. The polynomial z(z(yz)) is essentially 3-ary.

Proof. For z = y we have an essentially binary polynomial z(zy) (Claim
18), so thatz(z(yz)) depends on z and at least one of the variables y, 2.
However, since z(z(yz) = z(z(zy)) the assertion follows. O

Claim 20. z(z(yz2)) € {p°|o € S3}.
Proof. Follows from.

z(z(y2)) = z(yz) = z(zy) = zy for z=y
z(z(yz)) = y(zz) = z(2y) = y(yz) for z= y
z(z(yz2)) = z(zy) = z(zy) = y(yz) for z=y

(we obtain contradictions with Lemma 11 and Claim 18). O
Claim 21. z(z(yz2)) € {¢°|o € S3}.
Proof. From z(z(yz)) = ¢ it follows

¢° = 2(2(y2)) = 2(2(2y)) = (2(2(¥2))* = (¢7)®) = ¢

ie.
g= qa_l (23)0

which contradicts L.emma 10 because of
o~1(23)0 # (1).0

Claims 19, 20, 21 contradict Lemma 10, which proves that I; does not hold
on G. O

Lemma 13. I3 is not itrue on G.
Proof. Dual of the proof of Lemma 12. O

Lemma 14. If I, holds on G then

z(zy) # y-
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Proof. Suppose the opposite, i.e. let
2(yz) = y(zz)
z(2y) =y
hold on G.

Claim 22. (yz)z =z.

Proof. (yz)z = (yz)(y(yz)) = y((yz)(yz)) = y(yz) = .0
Claim 23. (zy)z ¢ {z,y,zy,yz}.
Proof. Obiously, a:(ya:) = yz and if

(zy)z € {z,y,zy,yz},
then
(zy)(yz) = y((zy)z) € {z,y,2y,yz},

i.e. the set {z,y,zy,yz} is closed under the multiplication of polynomials
which is impossible since p(G) =4. O

Claim 24. (zy)(zz) is an essentially 3-ary polynomial.
Proof. Follows from the substitutions y = z and y = z, and Lemma 1. O
Claim 25. (zy)(zz) € {p°|o € S3} U {¢?|o € S3}.

Proof. Follows from

(zy)(zz) = z(y2z) > (zy)z =yz forz =12z
(zy)(zz) =2(2y) = (zy)z =y forz ==z
(zy)(zz) = y(zz) = (zy)z =yz forz =2
(zy)(zz)=(zy)z=> z=2z fory =2z
(zy)(zz) = (z2)y = (zy)z =2y forz =2
(zy)(zz) = (yz)z2 = (zy)z =2 forz ==z
(zy)(z2z) = (y2)z => (zy)z =2 forz =12
(zy)(zz) = (22)y = (zy)z =2y forz =2
(zy)(zz)=(zy)z=> 2=z fory =2z
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(contradicts Claim 23 and Lemma 1). O

Claims 3 and 4 contradict Lemma 10. O
Lemma 15. If I; holds on G then
z(zy) € {z,y,2y,yz}.
Proof. Suppose the opposite, i.e. let

2(yz) = y(zz)
z(zy) € {z, 9, zy,yz}.

Claim 26. The polynomial z(z(yz)) is essentially 3-ary.

Proof. For z = z and 2z = y we obtain the polynomials yz -and z(zy) which
imply dependence on y and z. From yz # z(zy) it follows dependence on
z. O

Claim 27. z(z(yz)) = (zy)=z.

Proof. According to Lemma 10
z(z(y2)) € {p°|o € S3} U {¢°|o € S3}.
The cases

z(2(yz)) = 2(yz) = z(zy) = zy forz =y
z(z(y2)) = 2z(zy) 2> z(zy) =2y forz =y
z(z(yz)) = y(zz) = z(zy) = y(yzx) forz =y
z(z(yz)) = (zz)y > yc=zy forz=2
z(z(yz)) = (yz)z = yz = (yz)z (forz=1z) =
= 2(zy) = z((zy)y) = (zy)(2y) = <y
2(2(y2)) = (v2) = a(y) = ya for z =y
z(z(yz))=(zz)y > yz=zy forz =2
z(2(y2)) = (2y)z = z(zy) = yz forz =y
lead to a contradiction with the assumption on z(zy), Lemma 11 and Lemma

1. So it has to be
z(z(yz)) = (zy)z.0
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Claim 28. z(zy) = (zy)y, (zy)z = yz , z(z(zy)) = zy.
Proof. Follows from Claim 27 for z = y,2z = z,y = z respectively. O
Claim 29. The polynomial (yz)z)z is essentially 3-ary.

Proof. For y = z and y = = we obtain twice the polynomial 2(zz) from
which follows the dependence on z and z. If ((yz)z)z does not depend on y
then :

((yz)z)z = =.
This implies

z = ((yz)z)z = (y7)((yz)z) = (y2)(y(yz)) = y((yz)(yz)) = y(yz)

(we use Claim 28) which contradicts the assumption. O
Claim 30. ((yz)z)z ¢ {polo € S3}U{¢’|o € S3}.
Proof. Suppose the opposite. Then one of the following cases hold

((y2)z)z = 2(yz) = y(yz) =2y forz =y
((y2)z)z = z(2y) = y(yz) =2y forz =y
((y2)z)z = y(2z) = 2(2z) = 2z fory ==z
((yz)z)z = (zy)z = y(yz) = z(zy) forz =y
((y2)z)z = (z2)y = y(yz) = z(zy) forz=y
((y2)z)z = (yz)z = y(yz) =2y forz=y
((y2)z)z = (y2)z = y(yz) = yz forz =y
((y2)z)z = (22)y = y(yz) =2y forz =y
((y2)z)z = (2y)z = y(yz) = yz forz =y

(we use Claim 28). However, all these cases lead to contradictions with the
assumption z(zy) € {z,y,zy,yz} and Lemma 11. O

Claim 29 and Claim 30 contradict Lemma 10 so that assertion of our
lemma follows. O

Lemma 16. If I; holds on G then z(zy) = zy.
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Proof. From Lemma 15 we have

z(zy) € {z,y,zy,yz}
and from Lemma 14
z(zy) # .
We eliminate the other two posibilities for z(zy) in the following way
2(zy) = z = = = z(2(y2)) = 2(y(z2)) = Y(z(z2)) = yz
z(zy) = yz = y(yz) = y(z(2y)) = 2(y(zy)) = =(2(yy)) = z(zy)

(contradicts Lemma 1 and Lemma 11). O

Lemma 17. If I; holds on G then
(zy)z & {z,y,2y,yz}.
Proof. Suppose the opposite, i.e. that on G we have

z(yz) = y(z2)
(zy)z & {z,y,2y,yz}.

Claim 31. The polynomial (z(yz))z is not essentially 3-ary.

Proof. Suppose the opposite. Then
(2(y2))z € {p°|o € S3} U {¢"|o € 53}

(Lemma 10). However, all the cases

(z(y2))z = z(y2) = (zy)z =2y forz =y
(z(y2))z = z(2y) = (zy)z =2y forz =1y
(z(y2))z = y(2z) = (zy)z = y(yz) = yz forz =y
(z(y2))z = (zy)z2 = (zz)z =22z fory =2z
(z(y2))z = (z2)y = (yz)z =2y (forz=12) =

= yz = (yz)(yz) = y((yz)z) = y(zy) = zy
(z(y2))z = (yz)z = (zy)z = (yz)y forz =y
(2(y2))z = (v2)2 > (ay)e = yo forz =y
(z(y2))z = (22)y = (yz)z = za (forz=12) =

= yz = (yz)(yz) = y((yz)z) = zy
(2(y2))z = (zy)z = (zy)z = yz forz=y

lead to a contradiction with the assumption about (zy)z and Lemma 11. O
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Claim 32. (yz)z = z.

Proof. for y = z and y = z we obtain the polynomial (zz)z, which is
essentially binary by the assumption. Therefore, the polynomial (z(yz))z
depends on z and z so that, according to Claim 31 does not depend on y.
It follows that

(2(y2))z = (az)a
(for y = z), i.e. :
(v = 2

(for z=1z). O
Claim 33. (zy)(z2y) = 2y.

Proof. (zy)(zy) = 2((zy)y) = zy. O

Claim 34. No identity of the form f = f7, where f = (zy)(zu), ¢ €
Sa, 0 # (1), holds on G.

Proof. Suppose the opposite. According to Lemma 5(iii) one of the following
identities is true on G

(zy)(2u) = (zy)(uz) = z(2u) = z(uz) fory=12=

(zy)(zu) = (zz)(yu) = zy = (zy)(zy) = (z2)(yy) = (z2)y
(zy)(2u) = (z2)(vy) = zy = (zy)(2y) = (z2)(yy) = (z2)y
(zy)(zu) = (zu)(yz) = (zy)z = (zy)(2z) = (z2)(yz) =
(zy)(zu) = (zu)(zy) = (zy)r =2y foru=z,2==z
(zy)(zu) = (yz)(2u) = (2y)2 = (yz)z foru =2
(zy)(zu) = (yz)(zu) = (zy)z = (zy)(22) = (v2)(22) = 22
(zy)(2u) = (2z)(yu) = zy = (zy)(2y) = (22)(yy) = (2z)y
(zy)(zu) = (2y)(zu) = 2y = (zy)(2y) = (2y)(zy) = zy

However, it is easy to see that all these cases lead to a contradiction with
the fact that no identity I,-I6, except I, holds on G (Lemma 10),. or
with the assumption that p and ¢ are essentially 3-ary polynomials, or with
(zy)z & {z,y,zy,yz}, or with Lemma 1. O
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Since Claim 34 contradicts Lemma 5 the assertion of our Lemma holds.
a

Lemma 18, If I, is true on G, then
(yz)z € {=,y,zy,yz}.

Proof. Follows from pa(G) = 4 and Lemmas 16, 17, z(yz) = yz and
(zy)(yz) = y((zy)z) € {z,y,zy,yz}. O

Lemma 19. If I, holds on G then
(zy)z = yz.
Proof. According to Lemma, 17

(zy)z € {z,y,zy,yz}.
The posibilities

(zy)z =z = (yz)z = (z(yz))z ==
(zy)z =y = y = (zy)z = z((zy)z) = 2y
(zy)z = zy = (yz)z = (z(yz))z = z(yz) = yz

do not hold because of the contradiction with Lemma 18 and Lemma 1, so
that

(2y)z = ya.
a

Lemma 20. I, does not hold on G.

Proof. Suppose the opposite, i.e. let

z(yz) = y(zz)
be true on G. From Lemmas 16, 18, 19 and identity I it follows that

z(zy) = zy
z(yz) = yz.
(zy)z = yz

(y2)2 ¢ {z,y,2y,yz}.

N .-

Al
.
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Consider the polynomial (z(zy))y. We prove that it is essentially 3-ary by

substituting y = = and y = 2 and using Lemma 11.

On the other hand

(z(2y))y & {p°lo € S3}U{¢°|o € S}

because in all the cases

we obtain

(z(2y))y = z(y2) = (zy)y = zy
(z(2y))y = z(2y) = (zy)y = zy
(z(2y))y = y(22) = (2y)y = yz
(z(2y))y = (zy)z = (22)z = 22
(z(2y))y = (z2)y = (2zy)y = zy
(z(2y))y = (y2)z = (22)z = 22
(z(2y))y = (yz)z = (zy)y = yz
(z(29))y = (22)y = (zy)y = zy
(z(2y))y = (2y)z = (zy)y = yz

(yz)z € {z,y,2y, yz}-

forz=y
forz=y9
forz=2
fory=2
forz=1z
fory =
for z =
for z =
for z =

This contradiction with Lemma 18 proves our lemma. O

Lemma 21. I 5 i3 not true on G.

Proof. This is the dual of Lemma 20. O

Lemma 22. I5 is not true on G.

Proof. Suppose Is holds on G, i.e.

z(y2) = 2(yz).

Claim 35. z(zy) = yz, (zy)z = z(yz).

Proof.

z(zy) = y(zz) = yz

(zy)z = z(z(2y)) = 2(y=).0

<L 8 @ 8
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Claim 36. z(yz) ¢ {z,y,2y,yz}.

Proof. In the opposite case we have the following possibilities

z(yz) =z = (yz)z = z(z(yz)) =2z =z
2(yz) =y = (yz)z = =(z(yz)) = zy

z(yz) = zy = (y2)z = 2(2(y2)) = z(zy) = y=
z(yz) = yz = (yz)z = z(2(yz)) = 2(yz) = ¥

which, according to Claim 35, lead to the conclusion that the set {z,y,zy,yz}
is closed under the multiplication of polynomials. O

Claim 37. ‘The polynomial (2y)(z(yz)) is essentially 3-ary.
Proof. Use the substitutions y = z and y = z and Claim 36. O
Claim 38. (zy)(z(y2)) = y(zz).

Proof. According to Lemma 10

(29)(2(y2)) € {p°|o € 53} U {¢°|o € S3}.

All the other possibilities are not true because they contradict Claim 36 or
Lemma 1 in the following way

(zy)(z(yz)) = 2(yz) = y(zy) = 2y forz =y
(zy)(z(yz)) = z(zy) = y(zy) = zy forz =y
(zy)(z(y2)) = (zy)z = yz = (ey)z = z(yz) forz ==
(2y)(z(y2))=(z2)y=>yz =zy forz =12z
(zy)(z(y2)) = (yz)z > 2z =2z fory =z
(zy)(z(y2)) = (y2)z = y(zy) = yz forz=y
(zy)(z(y2))=(22)y=>yz =2y forz =2z
(zy)(z(y2)) = (2y)z = y(zy) = yz forz =y.0

Claim 39. The polynomigl (zy)((z2)z) is essentially 3-ary.

Proof. Use substitutions z = z and z = y and apply Claim 36 and Lemma
11. 0O
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Claim 40. (zy)((z2)z) = (zy)z or (zy)((z2)z) = (yz)z.
Proof. Lemma 10 implies

(zy)((22)2) € {p°|o € S3} U {¢°|o € S3}.

All the other possibilities do not hold since they contradict Claim 36 in the
following way

(zy)((z2)z) = z(yz) = y(zy) =zy forz=y
(zy)((z2)2) = 2(2y) = y(zy) =2y forz =y
(zy)((z2)z) = y(zz) = (zy)z = yr forz ==z
(zy)((z2)z) = (z2)y = (zy)z =2y forz ==z
(zy)(z2)z) = (y2)z = y(zy) = yz forz =y
(zy)((z2)2) = (22)y = (zy)z =2y forz ==z
(zy)((z2)z) = (2y)z = y(zy) = yz for z = y.O

Claim 41. (zy)y = y(zy).

Proof. This is a consequence of Claim 40 for z = y in the first case and
z = z in the second. O

Claim 42. (zy)(yz) = (yz)(zy).
Proof. According to Claim 38 and Claim 41 we have

(zy)(yz) = (zy)((yz)(yz)) = y((yz)z) = y(z(yz)) = (y=)(zy),
which proves this Claim. O

The assertion of Claim 42 is in contradiction with Lemma 11 and this
proves assertion of Lemma. O

Lemma 23. I, is not true on G.
Proof. Dual of Lemma 22. O

Proof of Theorem 2.
Follows from Lemmas 10, 12, 13, 20, 21, 22, 23. O
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4. Proof of the Main Theorem

It was proved in [2] that from (i) follows p,(G) = »2%, n > 0. In [1] it is
proved that (iii) implies p,(G) = n%, n > 0. The proof that (ii) implies
Pn(G) = n?, n > 0 is the dual of the proof given in [1].

Suppose p,(G) = n?. If the polynomial z(yz) is not essentially 3-ary

then (ii) holds (Theorem 1). If the polynomial (zy)z is not essentially 3-ary
then (iii) holds (dual of Theorem 1). If G is a semigroup then (i) holds (see
[1]). Theorem 2 claims that it is not possible for G not to be a semigroup
and both of the polynomials z(yz) and (zy)z to be essentially 3-ary. O
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REZIME

O GRUPOIDIMA KOJI IMAJU n? ESENCIJALNIH
n-ARNIH POLINOMA

U radu je pokazano da samo pravougaoni grupoidi i normalne trake imaju
pr, nizove oblika (0,1,4,...,7n2,...). Time je data potpuna karakterizacija
grupoida sa osobinom p,(G) = n?.
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