Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 23, 1 (1993), 283 - 286 Review of Research Faculty of Science Mathematics Series

ON 3-CYCLES IN n-PARTITE TOURNAMENTS

Vojislav Petrović

Institute of Mathematics, University of Novi Sad Trg Dositeja Obradovića 4, 21000 Novi Sad, Yugoslavia

Abstract

We prove that every strong n-partite $(n \ge 3)$ tournament has at least (n-2) 3-cycles. This generalizes the results of [1] and [2] corresponding to ordinary and 3-partite tournaments.

AMS Mathematics Subject Classification (1991): 05C Key words and phrases: cycle, tournament.

An n-partite tournament $(n \ge 2)$ is obtained from a complete n-partite graph orienting all its edges. An ordinary tournament of order n is an n-partite tournament whose each partite set is a single vertex. It is known from [1] that each strong ordinary tournament of order n contains at least (n-2) 3-cycles (cycles of length 3). The same result has been obtained for strong 3-partite tournaments in [2]. We prove that the same holds for strong n-partite tournaments $(n \ge 3)$.

Basic definitions and terminology will follow those of [1] and [2] .

Lemma 1. If C is a longest cycle of a strong n-partite tournament $T(V_1,...,V_n)$ $(n \geq 2)$ then C meets each partite set, i.e. $V(C) \cap V_i \neq \emptyset$ for each i = 1,...,n.

Proof. The case n=2 is trivial. So, assume that $n\geq 3$. Suppose that $C:x_1...x_mx_1$ is a longest cycle of $T(V_1,...,V_n)$ which avoids a partite set $V_i,\ i\in\{1,...,n\}$. Let v be any vertex of V_i . If v dominates and is dominated by vertices of C, then there exist $x_i,x_{i+1}\in V(C)$ (i=1,...,m; indices are taken modulo m) such that $x_i\to v$ and $v\to x_{i+1}$. Thus, v can be inserted in C between x_i and x_{i+1} producing a longer cycle $x_1...x_ivx_{i+1}...x_mx_1$. This implies that v dominates or is dominated by all vertices of C. Assume the former. Since T is strong there is a path from C to v. Let it be $x_jz_1...z_\ell v,\ j\in\{1,...,m\},\ \ell\geq 1,\ z_i\not\in V(C),\ i=1,...,\ell$. But now $vx_{j+1}...x_nx_1...x_jz_1...z_\ell v$ is a cycle longer that C; a contradiction . \square

Lemma 2. Let $C: x_1...x_m x_1$ be a cycle of a strong n-partite tournament $T(V_1,...,V_n)(n \geq 3)$ such that $V(C) \cap V_i \neq \emptyset$ for each i=1,...,n. Then there are at least n-1 triples $(x_i,x_{i+1},x_{i+2})(i=1,...,m;$ indices are taken modulo m) such that $x_i \in V_j$, $x_{i+1} \in V_k$, $x_{i+2} \in V_\ell$, $j \neq k$, $k \neq \ell$, $\ell \neq j$.

Proof. Without loss of generality we may assume that $x_1 \in V_1, \ x_2 \in V_2$, the first vertex along C from a new set belongs to V_3 and the next one to V_4 etc. If x_i is the first vertex from V_3 comming after x_2 then (x_{i-2}, x_{i-1}, x_i) is a desired triple. Arguing in the same way we conclude that (x_{j-2}, x_{j-1}, x_j) in (n-2)th triple where x_j is the first appearance of a vertex from V_n . Now, we consider the first appearance of a vertex from V_1 after x_j . If it is $x_{j+s}(s>1)$ then $(x_{j+s-2}, x_{j+s-1}, x_{j+s})$ is (n-1) th triple. If it is x_{j+1} and $x_{j-1} \notin V_j$ the triple is (x_{j-1}, x_j, x_{j+1}) . Finally, if $x_{j-1} \in V_1$ we look for the first appearance of a vertex of V_2 after x_{j+1} . Let it be x_p . Then the wanted triple is (x_{p-2}, x_{p-1}, x_p) . It is routine to check that all described triples are distinct. \square

Theorem 1. If $T(V_1, ..., V_n)(n \ge 3)$ is a strong n-partite tournament, then T contains at least (n-2) 3-cycles.

Proof. By induction on n and $m = \sum_{i=1}^{n} |V_i| \ge n$. Let $C: x_1...x_kx_1$ be a longest cycle of T. By Lemma 1 C meets each $V_i (i=1,...,n)$ implying $k \ge n$. According to Lemma 2 there are at least n-1 triples $(x_{i_1},x_{i_1+1},x_{i_1+2}),...,(x_{i_{n-1}};x_{i_{n-1}+1},x_{i_{n-1}+2})(\{i_1,...,i_{n-1}\} \subset \{1,...,k\};$ indices are taken modulo k). If n-2 of them are cyclic the proof is finished. So, assume that at least 2 triples are transitive. Let $(x_{i_1},x_{i_1+1},x_{i_1+2})$ is one of them, where $x_{i_1} \in V_j$. Denote by T_1 the tournament induced by cycle $C_1: x_1...x_{i_1}x_{i_1+2}...x_kx_1$ of length k-1.

- (a) $|V(C) \cap V_j| > 1$. Then C_1 meets all partite sets $V_1, ..., V_n$ and T_1 is also a strongly connected n-partite tournament on < m vertices. By induction hypothesis it contains at least (n-2) 3 cycles. So, does T.
- (b) $|V(C) \cap V_j| = 1$. It means that C_1 avoids $V_j.T_1$ is a strong (n-1)-partite tournament. By induction hypothesis T_1 contains at least (n-3)-3 -cycles. Consider now the vertex $x_{i_1+1} = u$. If u dominates and is dominated by some vertices of C_1 there are two consecutive vertices y_i and y_{i+1} on C such that $y_i \to u$, $y_i \to y_{i+1}, u \to y_{i+1}$. If not u dominates (or is dominated by) all vertices of C_1 . Then there is a path $y_i z_1...z_2 u$ where $y_i \in V(C_1), z_i \notin V(C_1), i = 1,...,q, (q \ge 1)$, as T is strong. As $u \to y_i$ and $z_q \to u$ there are z_{r-1} and z_r , $r \in \{1,...,q\}$, $(z_0 = y_i)$ such that $vz_{r-1}z_rv$ is a 3-cycle. Anyway we meet at least one new 3-cycle. So, the total number is at least n-2. \square

This result cannot be improved. In [1] a strong ordinary tournament was given having precisely (n-2) 3-cycles.

References

- Harary, F., Moser, L., The theory of round robin tournaments, Amer. Math. Monthly 73 (1966), 231-246.
- [2] Godard, W. and all, On multipartite tournaments, Journal of Comb. Theory, Series B52, 284-300 (1991).

REZIME

KONTURE DUŽINE 3 U n- PARTITNIM TURNIRIMA

Pokazano je da svaki jako povezan n - partitni $(n \ge 3)$ turnir sadrži bar n-2 kontura dužine 3. To je generalizacija rezultata F. Harary-ja i W. Godard-a koji se odnose na obične i 3 - partitne turnire.

Received by the editors May 18, 1992