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This paper is concerned with the general solutions of two types of the
conditional Cauchy equation on 3-adic groups. Moreover, the general so-
lution of the Pexider equation 3-adic groups is presented. The paper also
contains the characterization of the algebraic and set-theoretical structure
of the Cauchy i-nuclei for a function defined on n-adic groups.

The definitions, theorems, and notations related to the n-adic group
theory are based on papers (1], [3], [4], [6], [7]-

We begin with the definition of the Cauchy i-nucleus for a function de-
fined on n-adic groups.

Let A() and B[] be n-adic groups. Let f : A — B be any function. For
every 1 = 1,2, ...,n we define the set

N} ={z € A:VT1,...,Tiz1,Tig1, ., Tn € A

269



270 A.Chronowski

f(@1s ey Tim1, 2, 8it1s o0 22)) = [f(21), s f(@im1), £(2), f(in1), oo f(20)]}-

The set N} (for : = 1,2,...,n) is said to be the Cauchy i-nucleus for the
function f (cf. [5], p. 482).

Notice that if there exists an i € {1,2,...,n} such that NjP = A, then
N} = A for every i € {1,2,...,n}.

To examine the problem of the algebraic and set - theoretical structure
of the Cauchy i-nuclei we distinguish three cases: n =2, n =3, n > 3.

If n = 2 the Cauchy i-nuclei for a function defined on groups are empty
sets or subgroups (cf. [5], p. 482).

We shall first deal with the case of n» > 3.

Theorem 1. Let A() and B[] be n-adic groups forn > 3. Let f: A — B
be any function. Then N} =0 or N} = A for every i € {1,2,...,n}.

Proof. Suppose that N} # 0 for any arbitrary fixed ¢ € {1,2,...,n}. Let us
distinguish the following two cases.

(a) The case for 1 < i< n— 1.
If 3 € A then z = (a7 !, y) for the arbitrary fixed elements a1, az, ..., an_1 €
N } and for a certain element y € A. Thus

f(a17 Y2, 20) = f((=17 (a7 ), 280))
= f((z17! a1, (6370, 2i), 24))
= [f(21), s f(@iz1), fla1), [f(a2); -y
f(an-1), f(¥), f(@iz1)]; f(2it2), oo f2n)]
= [f(z1), -, f(zi-1), [fa1), fa2), ... fan—1), F()], f(@i41), s f2n)]
= [f(z1, ..., flzic1), f(2), f(@ig1), ooy f(2n)]
for all zq,...,2i_1,Ziy1,-..,Zn € A.
(b) The casefori=n—1or¢=n.

If z € A then z = (y, a}) for the arbitrary fixed elements ay,...,a, € N}
and for a certain element y € A.

To check that case (b) is valid it is enough to use a similar calculation
technique as in case (a).
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Corollary 1. Let A() and B[] be n-indic groups forn > 3. Let f: A— B
be any function. If there exists an ig € {1,2,...,n} such that Ny° # 0, then

N} = A for every i € {1,2,...,n}.

Now we pass on to the case for n = 3. The following statements will be
found useful in the proof of the next theorem.

Let A() be a 3-adic group. The skew element for the element a € A
will be denoted by @. Let us notice that (a,a,a) = (@,a,a) for every a € A.
Indeed, it is easy to check that ((a,a,a),(a,qa,a),(a,qa,a)) = (a,a,a) for an
arbitrary a € A.

Let A() and B[ ] be 3-adic groups. Suppose that for a function f : A — B
the set Nf2 is non-empty. Then f(@) = f(a) for every a € Nfz. Indeed,
since @ = (@, a,a), we have f(a) = f((@,a,a)) = [f(a), f(a), f(a)]. On the
other hand, [f(a), f(a), f(@)] = f(@) and consequently f(a) = f(a) for every
ac Nfz.

Theorem 2. Let A() and B[ | ne 3—adic groups. Let f : A — B be any
Sfunction. Then

(a) N} = or N} = A,

(b) Nf2 =0 or Nf2 is a 3—adic subgroup of the 3—adic group A(),

(¢c) N} =0 or N? = A.

Proof. The prove conditions (a) and (c) it is enough to imitate the proof
of Theorem 1. Let us consider condition (b). Assume that Nf2 # 0 and
a;,as, a3 € Nf2. Then

f((z1,(a1,a2,a3),73)) = f(((21,0a1,@a2),a3,23))

[[f(21), f(a1), f(az2),], f(a3), f(z3)]
[f(z1),[f(a1), f(a2), f(a3)], f(z3),

= [f(z1), f((a1,a2,a3)), f(z3)] forall z1,z3 € A.

Thus (a1, a;,a3) € Nf?‘ for all a1, as,a3 € N}.
Taking an arbitrary element a € Nf2 we shall prove that a E.Nfz. Indeed,

f((l'l,ﬁ,l‘3)) = f((zla (a’ 67‘1)73:3)) = f(((zl,a,a)7a7$3))
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= [f((21,8,8)), f(a), f(23)] = [f((21),(4,8,),@)), f(a), f(23)]
= [f((21),,(8,8,8))), f(a), f(23)]
= [[f(=1), f(a), /((2,8,))}, f(a), f(=3)]
= [[f(21), f(a),[f(), F(a), F(a)]], f(a), f(z3)]
= [[f(21), [f(a), f(a), f(a)], f(a)], f(a), f(z3)]
= [[f(z1), f(a), f(a), f(a), f(z3)]
= [f(21),[(a), f(a), f(a)], f(=3)]
= [f(21), F(a), f(23)] = [f(z1), f(@), f(23)] for all z;,23 € A.

We shall construct an example of a 3-adic group A() and a function
f:A-—+AforwhichQ);éNf2;éA.

Ezample 1. Let us consider the Klein group A = {e,a,b,c} under the
operation:

~

plolo|o|o

oI |lglalo

olelp|o|e

olo|p|o
Tllo oo

The function & : A — A is defined by setting: ale) =€, afa) = b, afb) =
a, a(c) = c. The function a is an automorphism of the Klein group A. The
3-ary operation on the set A is defined as follows

(-’61,-’62,933) = xla(zz)zs

for all 2,249,235 € A.

It is easy to verify that A() forms a 3-adic group. Next, the func-
tion f : A — A is defined by putting: f(e) = e, f(a) = ¢, f(b) =
a, f(c) = b. The function f is an automorphism of the Klein group. We
shall show that N? = {e}. Indeed, f((z1,€,23)) = f(z123) = f(21)f(z3)
and (f(z1), f(e), f(z3)) = (f(z1),e, f(z3)) = f(z1)f(z3) for all z;,z3 € A.
Suppose that a € Nfz. Then f((b,a,c)) = f(bbc) = f(c) = b and (f(b), f(a),
f(¢)) = (a,c,b) = acb = e. Thus we have obtained a contradiction. Similarly,
- we can check that b ¢ N? and ¢ ¢ N}. Let us notice that N} = N? =0.
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It is easy to verify the following

Remark 1. If 3-adic groups A() and B[] are commutative and N7 # 0,
then Nfz = A for an arbitrary function f: A — B.

In the sequel we shall use the retracts for n— adic groups (cf. [3], [4]).

According to the Hosszi theorem (cf. [4]) for an arbitrary n— adic group
A() there exists a binary group (4, ), an automotphism a € Aut(A4,-), and
an element a € A such that a(a) = a, o™ !(z) = aza™! for every z € A,
and (z1,%2,23, .y Tne1,Tn) = Z1 - &(T2) - ¢2(z3) - ... - @2 (T1—1)

-a-z, for all z;,z9,23,...,Tp—1,Zn € A.

The system (A, -, a,a) is said to be a binary retract of the n—adic group
A(Q) (cf. [3]).

For the sake of simplicity we shall call a binary retract a retract an often
treat it as a group. Instead of (4, -, a,a) we shall also write (A, a, a).

The retract can be used for the construction of n—adic groups (cf. [4]).
It is easy to verify that if (A,-,a,a) and (A, -, ay,a,) are retract (with the
same operation -) of an n—adic group A(), than o = a; and a = a;.

Sokolov (cf. [7]) gives a very useful method of constructing a retract
(A,0,a,a) for an n—adic group A().
Namely.
zoy=(z,p"%,y),
o(z) = (B,2,p"%),
a=(p")
for an arbitrary fixed element p € A and for all z,y € A. The set A with

the operation o forms a group for which p is an indentity.

We shall present a few remarks on the Sokolov method of constructing
retract for 3-adic groups.

Let (A, a,a) be an arbitrary fixed retract of a 3-adic group A(). We shall
prove that the retract (A, a,a) can be constructed by means of the Sokolov
method. Since a(a) = a, we have a(a™') = ¢™}. Thusz oy = (z,a7,y) =
za(al)ay = zy for all z,y € A.

If a 3-adic group A() is commutative, then its every retract is of the
form (A,id4,a). Indeed, suppose that (4,a,a) is a retract of the 3-adic
group A(). Then a(z) = (a~!,z,a7 ') = (a=1,a71,z) = z for every z € A.
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Now we pass on to the definition of the Pexider equation on n—adic
groups. .

The Pexider equation on n—adic groups A() and B[] is said to be the

following functional equation

ant1((21, 22, ..., 20)) = [@1(21), @2(22), ..oy @n(24)]

for all 1,24, ...,z, € A, where ay,09,...,@,4+1 : A — B are unknown func-
tions.

First, we shall consider a certain functional equation on groups and the
obtained results will be used in the proof of the theorem on the general
solution of the Pexider equation on 3-adic groups.

Let us consider on groups A and B the following functional equation

(1) az(p1(z1)p2(22)) = ea(z1)az(z2)

for all z,,22.€ A, where 3,2 : A — A are given bijections and a3, az, a3 :
A — B are unknown functions.

Denote by L,, and R,, the left translation and the right translation,
respectiveluy.

Theorem 3. If a triple of functions (o), az, a3) is the solution of equation
(1) on groups A and B, then there exists a homomorphism ¢ : A — B of
the groups A and B, and elements a,,a9 € B such that

(2) ay = Lo, pp1, ag = Ro,0p2, az = L1 Ry,.

If o : A —» B is a homomorphism of groups A and B, and a,,a, € B
are arbitrary elements, then a triple of functions (a1, as, a3) of form (2) is
the solution of equation (1).

Proof. Let a triple of functions (ai, as, as) be the solution of equation (1).

Since py and po are bijections on the set A, equation (1) can be written
in the equivalent form

az(z172) = (capy ") (21) (027" ) (22)

for all 1,2, € A.
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Let us put 5 = al,ul‘l and G, = a2,u2_1. Consequently as(z122) =
B1(z1)B2(z2) for all z,,z, € A. Put a; = $1(1) and a; = B2(1). Define the
function ¢(z) = a7!B:1(z) for every z € A. Notice that az(z) = 8,(1)82(z) =
a182(z) and as(z) = B1(z)B2(1) = B1(z)a; for every z € A. Hence as(z) =
Bi(z)az = al(al_lﬂl(z))ag = a1p(z)ag for every z € A. Thus f4(z) =
a19(z),B2(z) = ¢(z)az, as(z) = a1p(z)a, for every z € A. It is easy to check
that ¢ : A — B is a homomorphism of groups 4 and B. Since §; = ap;"
and 3 = (12,11,2_1, hence al,ul_l = L,, ¢ and ag,u;l = R,,p, consequently we
get (2). The proof of the second part of this theorem eequires only a simple
calculation. O

It follows from the proof of the above theorem that the following remark
is true.

Remark 2. If a triple of functions (ay, a2, a3) is a solution of equation (1)
on groups A and B, then there exists a homomorphism ¢ : A — B of the
groups A and B such that

a1 = Lg,pp1, @z = Razso,u'% a3 = LalRaQ(p’
where a; = (17 )(1) and a3 = (azp5)(1).

Remark 3. If y; = pp = id4, then equation (1) is said to be the Pexider
equation on groups A nad B.

Taking into account the above results we shall give the general solution
of the Pexider equation on 3-adic groups.

Theorem 4. Let A() and B[] be 3— adic groups with retracts (A, o, a) and
(B, 8,b), respectively.

If a sequence of functions (ai,as,as,04) is a solution of the Pexider
equation on the 3~ adic groups A() and B[ ], then there ezist a homo-
morphism ¢ : A — B of the groups (A, a,a) and (B,(,b), and elements
a1,0a9,a3 € B such that

) = La1 P,
ag = ﬂ_lRacha,
(3) a3 = La—zleaa‘PLm
a4 = La1 Raacp.

If p: A — B is a homomorphism of the groups (A,o,a) and (B, (3,b),
and ay,az,a3 € B are arbitrary elements, then a sequence of functions
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(a1, @z, a3, a4) of form (3) is a solution of the Pezider equation on 3— adic
groups A() and B[ ].

Proof. (i) Let a sequence of functions (a1, az, a3, a4) be a solution of the Pex-
ider equation on the 3— adic groups A() and B[], that is au((z1,z2,23)) =
[a1(z1), az(z2), as(z3)] for all z1,z,, 23 € A.

Using the retracts we can rewrite this equation in the following form

as(zr0(z2)azs) = a1(x1)(Baz)(z2)bas(zs)

for all (z;a(z2)azs) € A. Put a1 = eq(1), a2 = (Baz)(1),a; = az(a™?).
Take z3 = a™! then au(z10(z2)) = ai(z1)(Baz)(z2)bay for all z,,z, € A.
Let us put v = Rbaéﬁaz and so as(z10(z2)) = a1(z1)y2(z2) for all z1,2, €
A.

Notice that (y2a71)(1) = 72(1) = (Baz)(1)bal = ajba. It follows from

Theorem 3 and Remark 2 that there exists a homomorphism ¢ : A — B of
the groups (A4, a,a) and (B, 3,b) such that

] = LC’-l ¥, Y2 = Ragbag(pa’ Qg = Lal Razbaég‘o‘
Hence
Ry, Bz = Ryppaypar, Baz = R0, a = B~ R,,0a; Thus

azbagga'

a1 = Lo, ag= ,B_lRa2<,aa, a4 =Ly R

Put z; = 1 then ay(a(z2)azs) = a1(Baz)(z2)bas(zs) for all zo,z3 € A. Let
us set kg = L,,Baz, k3 = Lyas. Then ay(a(z2)L.(z3)) = ko(z2)ks(zs) for
all z3,z3 € A. Notice that (k2a~1)(1) = #2(1) = a1(Baz)(1) = aray and
(k3L71)(1) = (LpyazL;1)(1) = (Lpasz)(a™!) = baj. It follows from Theorem
3 and Remark 2 that there exists a homomorphism 1) : A — B of the groups
(A,a,a) and (B,f,b) such that Ky = Laja,%a, K3 = RpayPLa, o4 =
Ly,a, Rbag¢~ Since a4 = Lay Roypat e and 50 Laja, Ryat % = Lay Ry pay 0, con-
sequently ¢ = L;21 R,,p. Moreover, k3 = Lpaz = RbaéwLa, hence a3 =
Lb_leaéL;zl R,,pL,, consequently az = La_;bRazbag @Lg. Putting az = azbal
we get the sequence (aq, ag, a3, ay) of form (3).

(ii) Suppose that the functions of the sequence (a1, aq,as,aq) are of
form (3).
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Then
ay((z1, 72,23)) = ay(z10(22)az3)
= a19p(z1)(pa)(z2)p(a)p(z3)as
= (a1p(21))((pe)(22)az)(a3 ' p(a)¢(z3)as)
= (a19(21))((pa)(z2)a2)b(b ™ a3 p(az3)as)
= ((Lay;0)(21))((Raz pe)(22))0((L )y Rasp La )(3))
= a1(z1)(Baz)(22)bas(23) = [a1(z1), a2(z2), az(z3)]

for all z,,z,,23 € A.
This completes the proof of the theorem.

It follows from the proof of the above theorem that the following remark
is true.

Remark 4. Let A() and B[] be 3— adic groups with retracts (4, a,a) and
(B, B3,b), respectively.

If a sequence of functions (ai,az,asz,a4) is a solution of the Pexider
equation on the 3— adic groups A() and B[ ], then there exists a homo-
morphism ¢ : A — B of the groups (4, a,a) and (B, §,b) such that the
functions (o, a2, a3, ay) are of form (3) for a; = ay(1), az = (Baz)(1),
a3 = azbas(a=1).

The Cauchy equation on 3— adic groups A() and B[ ] is the following
functional equation

(4) f((21, 22, 23)) = [f(21), f(22), f(23)]

for arbitrary z1,2z,,z3 € A, where f : A — B is an unknown function.

Theorem 5. Let A() and B[] be 3— adic groups with retracts (A, a,a) and
(B, 8,b), respectively. A function f : A — B is a solution of the Cauchy
equation on the 3— adic groups A() and B[ ] if and only if there ezists a
homomorphism ¢ : A — B of the groups (A,a,a) and (B,(,b), and an
element a; € B such that

(a) f(z) = mop(z),
(b) (pa)(z)B(a1) = B(ar1)(By) (=),

(c) p(a) = B(a1)bay
for every z € A.
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Proof. Let a function f : A — B be a solution of equation (4). It follows from
Theorem 4 and Remark 4 that there exists a homomorphism ¢ : A — B of
the groups (A, a,a) and (B, B,b) such that f(z) = a1¢(z), (pa)(z)B(a1) =
(Bf)(z) for a; = f(1) and for every z € A. Hence (pa)(z)B(a1) = B(ar1¢(z)),
(pa)(z)B(a1) = B(a1)(Be)(z) for every z € A. Moreover, taking z, = zo =
z3 = 1 in equation (4) and applying the retracts we get f(a) = a18(ay)bay
and so ¢(a) = B(ay)bay.
Thus we have obtained conditions (a), (b), (c).

Let us suppose that there exist a homomorphism ¢ : A — B of the
groups (A, a,a) and (B, 3,b), and an element a; € B such that conditions
(a),(b),(c) are fulfilled. It is easy to verify that the function f(z) = a1¢(z)
satisfies equation (4) for every z € A.

This completes the proof of the theorem. O

Remark 5. Theorem 5 is a particular case of Theorem 1 (given in Corovei
[1])-

Remark 6. If 3— adic groups A() and Bf ] are commutative, then condition
(b) of Theorem 5 is always trivially fulfilled.

We shall give an example of two 3- adic groups for which the Cauchy
equation does not have any solution.

Example‘ 3. Let A() be the 3- adic group occurring in Example 1. Notice
that (A, a,e) is a retract for the 3- adic group A() (with the operation in
the Klein group). .

Consider the group B = {1,2,3,4} endowed with the operation:

[ Ti121314]
1

112]3)4

21421341
3134112
41411213

The 3-ary operation on the set B is defined as follows
[z1, 22, 23] = 2212223

for all z1,z,,23 € B.
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B[ ] forms a 3-adic group for which (B,idpg,2) is a retract (with the
operation defined by means of the above table).

Suppose that a function f : A — B is a solution of the Chauchy equation
on the 3-adic groups A() and B[ ]. According to Theorem 5 there exists a
homomorphism ¢ : A — B of the groups (A4, a,¢) and (B, idg,2), and an
element a; € B such that ¢(e) = a12a;. Since ¢(e) = 1, it is eassy to check
that this equality is not fulfilled for any element a; € B.

We shall give the definitions of the conditional Cauchy equation and the
redundant condition on 3-adic group. These definitions are analogues of the
suitable definitions for groups (cf. [2]).

Let A() and B[] be 3-adic groups. Assume that Z C A3 and Z # . We
say that a function f : A — B is a solution on the 3-adic groups A() and
B[] of the conditional Cauchy equation relative to Z if

f((z1, 22, 23)) = [f(21), f(22), f(23)]

for all (z1,z2,z3) in Z.

If an arbitrary solution: f : A — B on the 3-adic groups A() and B[ ]
of the conditional Cauchy equation relative to Z is a solution of the Cauchy
equation on the whole set A%, then we say that the condition (Z, A4, B) is
redundant.

Let A() and B[ ] be 3-adic groups. Let Ag be a 3-adic subgroup of the
3-adic group A(). For the 3-adic group A() we construct the retract (4, & a)
by means of the Sokolov method taking

Y = (.’1), ap, y)

for all z,y € A and for an arbitrary fixed element ag € Ag. Then Ao forms
a subgroup of the group (4, a,a) and (Ao, a|4,, @) is a retract for the 3-adic
group Ao(). Let (B, S,b) be an arbitrary fixed retract of the 3-adic group
B[ ] Suppose that Z = A3.

Applying the above assumptions, notations, and Theorem 5 we get

Theorem 6. A function f : A — B is a solution on 3-adic groups A()
and B[ | of the conditional Cauchy eguation relative to Z if and only if
there ezists a homomorphism ¢ : Ao — B of the groups (Ao, |4,,a) and
(B, B,b), and element ay € B such that
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(a) 1(z) = mp(2), |
(b) (pa)(z)B(a1) = B(a1)(Be)(z),
(c) ¢(a) = B(a1)bay

for every x € Ay.

In virtue of Theorem 2 we get

Corollary 2. Let A() and B[] be 3-adic groups. Suppose thgt Z = A; X
AX AorZ = A X A X A3 for non-empty subsets Ay and A3 of the set A.
Then the condition (Z, A, B) is redundant.

Let A() and B[ | be 3-adic groups. Assume that Ay C A and A; # 0.
Consider the set Z = A X A3 X A.

The condition (Z, A, B) may not be redundant (cf. Example 1). With-
out loss of generality we may assume that the identity of a certain retract
(A, a,a) of the 3-adic group A() is an element of the set A;. Indeed, notice
that z = (2,%,%) = Z for every z € A. Let (B,(,b) be an arbltrary fixed
retract of the 3-adic group B |.

Applying the above assumptions and notations we obtain

Theorem 7. A function f : A — B is a solution on 3-adic groups A() and
B[ ] of the conditional Cauchy equation relative to Z if and only if there
exists a homomorphism ¢ : A — B of the groups (A, a,a) and (B, 3,b), and
an element a; € B such that

(a) f(z) = a1p(z) for every z € A,
(b) (pa)(z)B(a1) = B(a1)(Bp)(z) for every z € A,,
(c) p(a) = B(a1)bax.

Proof. (i) Let a function f : A — B be a solution on the 3-adic groups A()
and B[ | of the conditional Cauchy equation relative to Z. Then f((z1,z3,23)) =
[f(z1), f(z2), f(z3)] for all 21,25 € A and 23 € Ay. Hence f(zi0(z2)azs) =
f(z1)(Bf ) z2)bf(z3) for all 21,23 € A and z; € Aj. Let us put f(1) = a;. If
T3 = 1 then f(z1az3) = f(z1)B(a1)bf(z3), and consequently f(z1Lq(z3)) =
F(z1)(Lp(a)s f)(x3) for all z1,23 € A. In virtue of Theorem 3 and Remark
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2 we obtain that f = L,, ¢ for a certain homomorphism ¢ : A — B of the
groups (A, a,a) and (B, 3,b). Consequently condition (a) holds.

Taking z; = z3 = 23 = 1 we have f(a) = a16(a1)bay, hence p(a) =
B(ay)ba; and condition (¢) is fulfilled.

Notice that f(a~!) = 618(a;)~!. Indeed, p(a™?!) = p(a)~! = a;ib‘lﬂ(al)‘l.
Hence f(a™!) = a1p(171) = b718(a1)"!. Put z; = 1,23 = a~! and assume
that zo € As. Then

flef22)) = a1B(f(22))bf(a™),

flef22)) = a18(f(22))b(b™ Blar) ™),
a1p(a(z2))B(a1) = a18(a19(22)),
(pa)(z2)B(a1) = Blar1)(Be)(z2)-
Thus condition (b) holds.

(ii) We assume that there exists a homomorphism ¢ : A — B of the
groups (A, a,a) and (B, 3,b), and an element a; € B such that conditions
(a),(b),(c) are fulfilled. Then for all z1,23 € a and z2 € A; we have

f((z1,22,73)) = f(z10(T2)az3)

= a19(z10(82)azs) = 019(21)(90)(z2)p(a)p ()
= a1p(z1)(pa)(z2)B(ar)barp(z3) = (a1(21))(B(a1)(Be)(22)b(ar1(23))
= (a1¢(21))B(a19(z2))b(a1p(z3)) = f(z1)(Bf)(z2)bf(z3)
= [f(z1), f(=2), f(=3)]-
This completes the proof of the theorem. O

Remark 7. If 3-adic groups A() and B[ ] are commutative, then the con-
dition (A x Az X A, A, B) for § # A, C A is redundant (cf. Remark 1).
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REZIME
0 USLOVNOJ KOSIJEVOJ JEDNACINI NA TERNARNIM GRUPAMA

U radu su razmotrene dve vrste Kosijeve jednaéine na ternarnim grupama
i na osnovu dobijenih rezultata dato je opste reienje Peksiderove jednacine
na tim grupama. Takodje su odredjene i neke karakterizacije Kosijevog i -
jezgra za funkcije definisane na n - arnim grupama.
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