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Abstract

In this paper, in a natutal way, the limiting spectrum of an infinite
countable connected graph is defined. This spectrum is real, discrete
and a graph invariant. By this definition several properties of the
spectrum of infinite graphs to the infinite case are generalized. Besides,
some new properties and questions arise.
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1. Basis results

Let (¢ = (V, E) be an infinite countable connected graph without loops or
multiple edges. In the sequel, we will simply call it a graph.

So far, the spectrum of infinite graphs has been investigated in literature
in at least two ways. We mention the approach by A. Torgasev ([5],(6],
[7],[8] etc) and the approach by B. Mohar ([3],[4] etc). Both approaches are
described in several details in book [2].

The advantage of the approach by A. Torgasev is that the spectrum is
real and discrete. The disadvantage lies in the fact that it uses a weighted
adjacency matrix, depending on a parameter a (0 < a < 1). Consequently,
the spectrum obtained in this way is not a graph invariant.
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260 A. Torgasev

The approach by B. Mohar has the advantage that the spectrum obtained
is real and is a graph invariant. But it is not discrete in the general case.

In the present paper we will introduce, in a very simple and natural way,
a new definition of the spectrum of an infinite graph. The obtained limiting
spectrum is real, discrete and a graph invariant. The only unpleasant feature
of this kind of spectrum is that some of its values can be equal to +co. But,
as we have already said, we are dealing with infinite graphs.

If G is an infinite graph, let F be the set of all finite connested induced
subgraphs of G.

th

For any positive integer n, the n** positive limiting eigenvalue A} (G) of

G (in short, LEV) is defined by
AL(G) = sup{\[(F)| F € F} < +oo,
if the nt* positive eigenvalue A} (F) exists for at least one graph F € F.
Similarly, the »** negative limiting eigenvalue A\ (G) of G is defined by

M (G)=inf{\ (F)| F e F} > —oo,
if the n** negative eigenvalue A\ (F) exists for at least one graph F € F.

We note that AY(G) = r(G) (the spectral radius or the largest limiting
eigenvalue of ) and A;(G) = A(G) ( the least limiting eigenvalue of (7)
always exist as finite or infinite numbers. The n®* positive LEV A (G) or
the n'* negative LEV A (() cannot exist for some sufficiently large n (and
then for all m > n). For instance, if G is the complete infinte graph K,
then each finite induced subgraph of (¢ is also complete, and we easily find
that 7((G) = 400, all the other positive LEV’s AF(G) (n > 2) do not exist,
and

MG)= A (G) = X5(G)=...= —1.

For any infinite graph G, the limiting spectrum or(G) of GG is defined to
be the sequence of all its positive and all its negative LEV’s:

(1) M@ 2AHG) 2> 0> - 2[(G) > A\ (G).
By definition, o7(G) consists of only nonzero values, including also their
"multiplicities”. This spectrum is obviously real and discrete in any case.

Since [A(G)] < r(G) < 400, the whole limiting spectrum or,(G) is situ-
ated in the (finite or infinite) interval [—7(G), r(G)].
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Note that both extremal cases, when A(G), r(G) are finite, or AG) =
—o0, r((G) = 400 are possible.

For instance, if (i is the one-side infinite path Pt or the two-side infinite
path PE, then A\(G) = -2 and »(() = +2.

o—o—0—— O O -
P Py
Moreover, then o1(g) = {2,2,...;-2,-2,...}.

The mentioned graphs provide an example for two nonisomorphic cospectral
infinite graphs. They also show that the spectral radius can not be simple
limiting eigenvalue.

On the other hand, if (¢ is the complete bipartite graph Ko o, then it
is easy to see that A(G) = =2, r(G) = 42, and 01(G) = {+00, —00}.

In the general case, some limiting eigenvalues of an infinite graph are
infinite, and all others are finite, that is, we have a mixed case.

On of the most important properties of the spectrum defined in this way
is that it is a graph invariant, that is it does not depend on the way of
labelling of its vertex set V(). This can be easily proved by the known
interlacing theorem for finite graphs [1, p.19].

We also note the values r(G) and A(G) have already been treated in
literature. So, the invariant 7(G) has been treated in [3] by B. Mohar, in
his approach to the spectrum of infinite graphs. Paper [8] describes all the
infinite graphs with the property r(G) < v/2 4 v/5. Papers [9] and [11] refer
to infinite graphs with the property A(G) > —2. In particular, in paper [3]
all the infinite graphs with the property r((') < 400 have been determined.

Theorem 1. [3] An infinite graph G has a finite spectral radius r(G) if and
only if it has uniformly bounded vertex degrees.

If the spectral radius of a graph ( is finite, then obviously, all its limiting
eigenvalues are also finite. An interesting property of such graphs is proved

in the following theorem.

Theorem 2. Let the spectral radius of an infinite graph G be finite. Then
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its limiting specrtum or,(G) consists of infinitely many positive and infinitely
many negative LEV’s. '

In this case we also have

(2) [A| > 2, for every value A € or(G).

Relation (2) means that the entire spectrum o, (G) lies in the set
[A(G), —2]u [2,7(G)].

Proof. By Theorem 1, graph GG will have uniformly bounded vertex degrees.
Since it is connected and infinite, it is easy to see that there is a sequence of
paths P, (n = 2,3,...), which are induced subgraphs of G. We denote this
fact by P, C G (n < 2).

Next, let m be an arbitrary positive integer. Since all the graphs P, C
G (n > 2m) possess the m*® positive and m'" negative eigenvalue, we have
a similar property for graph . Hence, G will have infinitely many positive
and infinitely many negative limiting eigenvalues.
Besides, since

M(P) = 2, A (P,)— =2, asn — oo,

we get AL (G), |, (G)| > 2 for every index m > 1.
This completes the proof. O

Remark. The statement or(G) N (~2,2) = § can be false, if 7(G) = +oo0.
For instance, if G is the complete 3-partite graph K710, then or(G) =
{+00; -1, —00}.

By the corresponding properties of finite graphs, we also find the follow-
ing results.

Proposition 1.

(a) The limiting spectrum of an arbitrary bipartite infinite graph is sym-
metric around zero.

(b) An infinite graph G has exactly one positive limiting eigenvalue if and
only if it is a complete m-partite graph (m < +o0). In this case
r(G) = +o0.
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We do not know if the converse statement of Proposition 1 (a) is true.
That is, we do not know if there'exists a nonbipartite infinite graph whose
limiting spectrum (together with the corresponding multiciplities) is sym-
metric around zero.

We also do not know the necessary and sufficient conditions under which
an infinite graph has a finite least limiting eigenvalue A(G)). The example
of graph K, shows that r(G) can be equal to +00, while A(G) is finite. But
if A(G) = —oo then we obviously have that »(G) = +o0.

There are also many unsolved question concerning the nt* positive and
the nth negative limiting eigenvalue of infinite graphs (n > 2).

If n = 2, by the corresponding results for finite graphs ([2]), we know
that AJ(G) exists if and only if G has one of the following graphs

as an induced subgraph. Also, A; () exists if and only if G’ has one of
graphs K3, P; as an induced subgraph. We also know similar criterions for
the existence of the limiting eigenvalues AJ(G) and A, (G), but not for any
other limiting eigenvalue of infinite graphs.

Besides, we do not know any necessary and sufficient condition under
which A (G) (or A;(G)), for a fixed = > 2, is finite.

2. Infinite graphs with finitely many LEV’s

In this section we will describe all the infinite graphs which have finitely
many limiting eigenvalues.

First, we consider the following equivalence relation « on the vertex set
V(G) of an infinite graph . Two vertices # and y of G are in relatin «
if they are nonadjacent in G and they have exactly the same neighbours in
(. The corresponding quotient graph ¢ is called the canonical graph of (.
It is also connected and we obviously have that ¢ C G. As the following
examples show, the graph g can be finite as well as infinite.



264 A. Torgagev

If G is any complete m-partite graph (m < o), then its canonical graph
is the complete finite graph K,,. If G is the complete graph K, then its
canonical graph is the same graph K.

We call the graph & canonical if it has no two equivalent vertices. We
say that G is of a finite type k if the corresponding canonical graph ¢ has
k < oo vertices. In the other case, we say that 3 is of an infinite type.

Let @ be an infinite graph, and let Ny, Ny, ... be the correspon ding sets of
equivalent vertices in . It is easy to see that each set N, (1 € V(g)) consists
of isolated vertices only, and for every two indices i, j € V(G) (i # j) the sets
N, Nj are either completely adjacent or completely nonadjacent in . This
means that if an edge between these sets is present in G, then all other such
edges are also present. Hence, we often represent the sets N; and N; (i #7)
by only one such edge. So, the complete bipartite graph ¢ = Kn, N, can be
represented as follows:

Glz

Ny N,
In the general case, we sometimes also write G = g(N;, N,,...) (i €

V(g))-

The canonical graphs of infinite graphs have been investigated (by a
different approach to the spectrum of infinite graphs) in papers [6], [7] etc.

In the sequel, we will consider infinite graphs with finitely many limiting
eigenvalues, and give a full classification of such graphs.

Theorem 3. An infinite graph G has finitely many limiting eigenvalues if
and only if it is of a finite type. In this case r(G) = +o0 and A\(G) = —oo.

Proof. Assue, first, that G' has a finite number m of limiting eigenvalues.
Then any graph ¥ € F has at most m nonzero eigenvalues. By ([6], Theorem
2) the canonical graph f of the graph F will have at most 2™ — 1 vertices.
Whence, it is easy to see that the canonical graph g of ¢ also has at most
2™ — | vertices, that is (G is a graph of a finite type.

Conversely, assume that (7 is of a finite type k, that is |g| = k¥ < oc. Then
any graph F has at most k& nonzero eigenvalues. Since this holds for every
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graph F' € F it is easy to see that (G has at most k limiting eigenvalues, Q.
E. D.

Next, assume that ' is of a finite type k, that is |g| = & < co. Then
at least one of the characteristic subsets Ny,..., Ny of G must be infinite.
Therefore, G will possess a sequence of stars K;, (n = 1,2,...), which are
induced subgraphs of G. By Theorem 1 this gives r(G) = +oc.

Now, assume that A((G) > —oo. Then all the nagative limiting eigen-
values of (G must be finite, and the sum af all the negative LEV’s must
be also finite. But since Y A;(F) = 0 for any graph F' € F, and 7(G) =
sup{r(F)| F € F} = 400, we casily get a contrdiction. Hence, we have
AMG) = —o0, which completes the proof. O

The infinite graph K, ., provides a typical example for graphs mentioned
in Theorem 3. In this case we have or,((7) = {+00; —00}.

In the general case, the limiting eigenvalues of graphs mentioned in The-
orem 3, other than »((7) and A(G), can be finite as well as infinite.

Infinite graphs of the finite type with all LEV’s equal to foco attract
special attention. We note a particular class of infinite graphs with the
mentioned property.

Proposition 2. Let ¢ be a finite type infinite graph with all the character-
istic subsets infinite. Then all its limiting eigenvalues equal to too.

Proof. Let g be the canonical graph of the graph G; then |g| = k¥ < oo. Let
At,..., A be all the nonzero eigenvalues of the graph ¢ (together with their
multiciplities). Note that g € F. For an arbitrary positive integer =, let F,
be the (connected) graph induced by choosing n arbitrary vertices in each
of the subsets N; of the graph G' (¢ = 1,...,k). It is not difficult to see that
all the nonzero eigenvalues of the graph F,, are of te form nAq,...,nA, and
that F,, € F (n = 1,2,...). Since nX; — +oo (if A; > 0) and nX; — —oo (if
A; > 0) as n — 0o, we iminediately get the statement. O

It would also be interesting to give a full classification of infinite graphs

of the finite type, all of whose LEV’s equal +oo. But, so far, we have no
such classification.

As the graph K o, shows, the condition which appears in the last propo-
sition is not necessary in the general case.
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3. On infinite graphs with all LEV’s equal to +oco

In this section we examine whether there exists an infinite graph whose
limiting spectrumn consists of m times 400 and n times —oo (m,n < +o0c).

For any two positive integers m,n < 400, let Q(m.n) be the set of all
nonisomorphic infinite graphs whose limiting spectrum consists of 7 times
+oc and n times —oo. It is obvious that any graph G € Q(m,n) (m,n <
+o00) does not have uniformly bounded vertex degrees.

Proposition 3.

(a) The class Q(m,00) is nonempty for every positive integer m < +oc.
In particular, the class ()(00, 00) s nonempty.

(b) The class Q(m.,n) (v < o) is nonempty form = 1,2,..., f(n), where
f(n) s a certain finite function of n € N, and empty for all other
m > f(n). In particular, the class Q(oo, n) is empty for any positive
nteger n.

Proof. For any positive integer m < +o0, let 1, be the graph obtained
by identification of a point of the graph K, with an end-point of the path
Py, _ (that is, with the only end-point of the graph PZ if m = x).

By the corresponding results of the paper [10], we find that graph h,,
has exactly m positive eigenvalues and oo negative eigenvalues.

Next, let H,, be the infinite graph whose canonical graph is h,,, and
all of whose characteristic subsets are infinite. We immediately find that
H,, € (J(m,).

The remaining part of this statement can be proved in a similar manner,
by corresponding results on the numbers of positive and negative eigenvalues
of finite graphs ([12]). 4

It would also be an interesting (and hard enough) question to describe
all the infinite graphs from the nonempty classes Q(m,n) (m,n < +00).

References

[1] Cvetkovié, D., Doob, M., Sachs, H., Spectra of graphs - Theory and



The limiting spectrum of infinite graphs 267

[10]

[11]

[12]

Application, VEB Deutscher Verlag der Wiss., Berlin, 1980; Academic
Press, New York, 1980. '

Cvetkovic, D., Doob, M., Gutman, I., Torgasev, A., Recent Results in
the Theory of Graph Spectra, North-Holland, Amsterdam, 1988.

Mohar, B., The spectrum of an infinite graph, Linear Algebra Appl. 48:
245-256 (1982).

Mohar, B., Woess, W., A survey on spectra of infinite graphs, Bull.
London Math. Soc. 21: 209-234 (1989).

Torgasev, A., On spectra of infinite graphs, Publ. Inst. Math. (Beograd)
29(43): 269-282 (1981).

Torgasev, A., On infinite graphs with three and four nonzero eigenval-
nes, Bull. Acad. Serbe Sci. et Arts (Sci. Math.) (76) 11: 39-48 (1981).

Torgasev, A., On infinite graphs with five nonzero eigenvalues, Bull.
Acad. Serbe Sci. et Arts (Sci. Math.) (79) 12: 31-38 (1982).

Torgasev, A., On infinite graphs whose spectrum is uniformly bounded
by v/2 + /5, Graph Theory, Proc. Fourth Yugoslav Sem. Graph The-
ory, Novi Sad, April 15-16, 1983, (Ed. D. Cvetkovi¢, 1. Gutman, T.
Pisanski, R. Tosi¢, Inst. Math., Novi Sad, 1984), pp. 299-309.

Torgasev, A., A note on infinite generalized line graphs, Graph Theory,
Proc. Fourth Yugoslav Sem. Graph Theory, Novi Sad, April 15-16, 1983,
(Ed. D. Cvetkovié, I. Gutman, T. Pisanski, R. Toi¢, Inst. Math., Novi
Sad, 1984), pp. 291-297.

Torgasev, A., On graphs with a fixed number of negative eigenvalues,
Discrete Math. 57: 311-317 (1985).

Torgasev, A., Infinite graphs with the least limiting eigenvalue greater
than -2, Linear Algebra Appl. 82: 133-141 (1986).

Torgasev, A., On the numbers of positive and negative eigenvalues of a
graph, submitted to the Journal Combin. Theory (B).



268 A. Torgasev
REZIME

OGRANICAVAJUCI SPEKTAR BESKONACNIH GRAFOVA

U ovom radu, na prirodan nacin se defini$e ograni¢avajudi spektar beskonaéno
povezanog grafa. Ovaj spektar je realan, diskretan i grafovska invarijanta.

Ovom definicijom, nekoliko osobina spektra konaénih grafova uopstene su

za beskonaéni slu¢aj. Pored toga, pojavljuju se neka nova svojstva i namecu

neka nova pitanja.
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