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Abstract

A space optimal algorithm is introduced for generating all the
maximal simultaneously circuitless and cutsetless edge-subsets of a
2-connected graph G. The aigorithm makes use of three boolean
functions, which test whether a candidate Tor su¢h a maximal double
independent set is valid. The efficiency of the tests is due to the fact
that they use local search only; one need not produce the families of
all the circuits and cutsets of G.
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1. Preliminaries

We assume familiarity with the basic notions of graph theory such as: graph,
vertex, edge, circuit and cutset.
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A subset of edges of a graph ‘G is said to be a double independent
subset if it contains no circuits and no cutsets of the graph G . A double
independent set of edges of (' 1is said to be mazimal double independent
(basoid, [3]) if no superset of it is also double independent. These notions
were introduced and some of their properities were studied in detail in the
paper [1].

It turns out that it suffices (without any loss of generality) to restrict
attention to 2-connected graphs G when investigating double independent
sets; in more general cases, the double independent subsets belong to 2-
connected components of .

The algorithm for generating maximal double independeunt sets of edges
of 2-connected graphs is based on the definition of double independent sets,
as well as on the following observation [1]:

A double independent subset S of edges of a graph is a maximal double
independent subset iff every edge in the complement of 5 forms a circuit
or/and a cutset with the edges in S only.

It was also proved in [2] that the maximal possible size of a double
independent set is equal to the so-called topological degree of freedom [3].

In what follows, we shall denote the edge-set of a graph G by FE(G).
Also, a set of cardinality 1 will be denoted as 7-set.

2. Algorithm T

This section, the main one in the paper, includes an algorithm for enu-
meration of all the maximal double independent subsets of the edge-set of a
2-connected graph G . The algorithm uses directly the definition of maximal
double-independent sets. It generates candidates as combinations without
repetitions, consisting of d edges of (G, where the number d is bounded
from above by the topological degree of freedom. Three questions are asked
in turn for each candidate (-

Does C contain a cutset 7 Does C contain a circuit ?

Will the addition of an edge z cause the set C'U{z} to include either
a circuit or a cutset of G 7

All the three tests are solved locally, without producing and keeping in
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memory the family of all the circuits and all the cutsets of G.

ALGORITHM List_all_ maximal_double_independent _sets ;
Input: 2-connected graph G, with v vertices and e edges.
* Output: All the maximal double independent subsets of the edge-set of
G , without repetitions.

FUNCTION Contains_cutset (Candidate, Graph ): boolean;

(* Tests whether the current Candidate contains a cutset of Graph *)
BEGIN

Remove Candidate from Graph;

(* New_graph is obtained *)
Contains_cutset is TRUE if and only if
New_graph is not connected

END;

FUNCTION Contains_circuit ( Candidate, Graph ) : boolean;
(* Tests whether the current Candidate contains -
a circuit of Graph #)
BEGIN '
Temporary_graph := Graph;
REPEAT
IF there exists a hanging (one vertex of
which has degree 1) edge A of Temporary_graph
THEN '
remove h from Temporary_graph
UNTIL there are no hanging edges in
Temporary.graph;
Contains_circuit is FALSE if and only if
Temporary.graph has no edges
END;

FUNCTION Maximal (Candidate, Graph): boolean;
(* Tests whether the current Candidate, which is known to be
double - independent within Graph, is a maximal edge-set
with this feature x)
BEGIN
Remove all the edges of Candidate from G ;
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Denote the obtained graph by Gy ;
S := the set of all the 1-cutsets of Gy ;
Contract (identify the end vertices of) all the edges
of Candidate from by G ;
Denote the obtained graph by G ;
T := the set of all the 1-circuits of G ;
Maximal is TRUE if and if
S U T =E(Graph) \ E(Candidate)
END;

BEGIN (* List_all_maximal_double_independent_sets *)

card := Topological _degree_of freedom;
REPEAT
REPEAT
Generate the following Candidate;
_(* candidates are combinations without repetitions
consisting of card edges among e edges *)
IF NOT Contains_cutset ( Candidate, G ) THEN
IF NOT Contains_circuit ( Candidate, G ) THEN
IF Maximal (Candidate, G ) THEN
output ( Candidate ) ;
ELSE jump over the combinations which
contain that circuit
ELSE jump over the combinations which
. contain that subset
UNTIL there are no more combinations;
card := card — 1
UNTIL card = 0;

END:; (* List_all_maximal_double_independent_sets x)

lexi

The mechanism of jumping over is implemented in according with the
cographical order of candidates. To put it more precise, suppose that a

combination ¢;..cy contains a critical subset X (circuit or cutset) ¢;..c;,.
The lexicographically next combination is obtained by searching for the
lexicographically next possibility for ¢;,. In this way are jumped over only
those candidates containing the set X, which begin with the sequence ¢;..c;, .
Thus we may conclude that this jumping over is not complete; nevertheless,
it is a useful shortcut.
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3. Validity and elaboration of the algorithm

In this section we shall prove that the algorithm is correct and that it is
space-optimal. In addition, we shall explain the background of the applied
tests (boolean functions) and illustrate their performance by examples.

Theorem 1. The algorithm given in Section 2. correctly solves the problem,
that s, it produces all the mazximal double independent sets of edges of the
input connected graph G without duplications.

Proof. The statement of the theorem can be broken into the following three
statements:

(1) All the maximal double independent sets of edges of G are generated
by our algorithm; that is, no maximal double independent set of edges
G can be missed.

(2) The only sets which are output by our algorithm are the maximal
double independent sets of edges of G .

(3) Each maximal double independent set of edges of G is generated
only once by our algorithm; that is, the algorithm does not produce
duplications.

Statements (1) and (3) follow from the fact that the tests are performed
on the family of ALL combinations without repetitions, consisting of some
d edges of G, for a given cardinality d (when the possible cardinalities
d are considered, the proof of statement (1) also requires an application
of the above cited results from the paper [2]). The only exceptions are
those combinations, which are safely jumped over, due to the fact that they
include some already recognized cutset or circuit. The exhaustive list of
such combinations is generated in the lexicographical order ( which elimi-
nates the possibility that duplications occur), and it is well-known how to
produce the lexicographically next combination without missing some other
combinations in between. The three tests, which are performed with each
candidate, guarantee that nothing but maximal double independent sets of
edges of G will appear in the output (statement (2)). O

Theorem 2. The algorithm is space-optimal.
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Proof. The applied local approach does not use any larger structure, which
would oversize the input structure, which is of order O(n?), where n denotes
the number of vertices of G . O

Remark. An attempt to prove the jumping over the combinations (so
that ALL the combinations containing a recognized cutset (circuit) are not
further visited) would probably lead to a loss of space-optimality (in such a
case we would possibly have to keep in memory the recognized sets; otherwise
we should give up from the lexicographical order and it is not clear how to
generate the combinations properly).

We proceed with a more detailed descriptions and explanations of the
three main successive tests, which are applied to each candidate. In addi-
tion, we elaborate the auxilliary connectivity test and the construction of
auxilliary sets 5 and 7T, which are used for the maximality test:

3A. Connectivity test

This test is applied to check whether a subset S of edges of G contains
a cutset (this is true iff the set E(G)\ S is connected). In addition, this
test is used within a loop during the construction of a Set_cutset..

The auxilliary structure used for checking connectivity is the connectivity
vector. It is indexed by vertices, while its components are the labels of
separate connected components. The input state of the connectivity vector
are all zeros. Each new edge unifies the non-zero labels of the components
‘which are connected by the edge (if one label is zero, then it becomes equal
to the other one). If both labels are equal to zero, then a new non-zero
value is introduced to replace them. An illustration is given by the following
example:

Let the graph on the vertex-set {1,2,3,4,5,6,7,8,9}, with the following
edges (= pairs of vertices), listed in order be given: (1,8), (9,1), (7,3), (6,9),
(4,2), (1,6), (4,5).

The steps of adjustment of the connectivity vector seem as follows:
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Different labels in the final state of the connectivity vector correspond to
the vertices in different connected components.

3B. Local search for an included cutset

The connectivity test is almost sufficient; it should be preceded by the
removal of the edges of the tested candidate from the edge-set. The candi-
date contains a cutset if and only if the graph obtained after this removal is
not connected (this is a direct consequence of the definition of a cutset).

3C. Local search for an included circuit

This search is based on the following observation: an edge is circuit-free
if and only if it can be eliminated by iterative deletions of hanging edges.
Thus the candidate contains a circuit if and only if the resulting graph has
no edges, after all the possibilites for iterative deletions of hanging edges are
exhausted.

3D. Testing maximality

This stage of the algorithm requires the construction of two auxilliary
edge-sets, which are related to the current circuitless and cutsetless candi-
date Cand:

= the set of all edges z of E(G)\Cand such that the set Cand\ {z}
includes a cutset :

S = the set of all edges y of FE(G)\Cand such that the set CandU {y}
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includes a circuit

These constructions will use the assumptions that the set Cand is
cutsetless and circuitless respectively (in other words, it is essential for these
constructions that the double independence of the set Cand is guaranteed).
After they are done, there remains to check whether the sets § and T
cover the set E(G). If this is not the case, then the double independent set
Cand is not maximal double independent.

Remark. Note that the maximality test should be applied solely to those
candidates, which are known to be double independent.

3E. A construction of the set S

This construction is based on the following obvious fact:

If the edge-set Cand is cutset-free, then the set Cand U {z} contains
a cutset of the underlying graph G if and only if the set {z} is a 1-cutset
of the set E(G)\ Cand (that is, of the graph which is obtained from G
after the removal of edges of Cand).

Namely, if the removal of the edge z from the set E(G)\Cand does not
produce two connected components, then the same will hold for the removal
of the edges in Cand U {z} from the set G, and conversely.

Thus the construction of the set S requires one call of the connectivity
test for each edge of the set E(G)\ Cand.

Example. Let G denote the graph with vertices A,B,C,D,E,F,G and
with edges 1=AB, 2=BC, 3=CD, 4=AD, 5=CE, 6=EF, 7=FG, 8=CG, and
let Cand = {2,3}. After the edges 2 and 3 are removed, one obtains two
circuit-free edges (=1-cutsets), 1 and 4, as well as the circuit consisting of
the edges denoted by 5, 6, 7, 8. It follows that S = {1,4}.
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3F. A construction of the set T

This construction is based on the following obvious fact:

If the edge-set Cand is circuit-free, then the set Cand U {z} contains a
circuit of the underlying graph G if and only if the set {z} is a 1-circuit of
the graph obtained from G after the contraction of all the edges belonging
to Cand (that is, after the deletion of all these edges and identification of
their end-vertices).

Namely, if the edge = completes a circuit, then by iterative contractions
of other edges of that circuit one finally obtains that z is transformed to a
loop; similarly, if  does not complete a circuit, then its vertices must not
be equal after the contractions are done. Thus the conctraction of edges of
Cand is responsible for the identification of vertices of the edge =z.

Remark. The two facts, which are used in this and in the previous example,
are dual to each other in the matroid sense [4]; one of these facts can be
obtained from the other by mutual replacement of the matroidally dual
notions ”circuit” and ”cutset”, as well as "restriction” (obtained by deleting
the edges from a given subset) and ”contraction” (obtained by contracting
the edges from a given subset). ’

Example. Let G denote the graph with vertices A;B,C,D,E,F,G,H and
with edges 1=AB, 2=BC, 3=CD, 4=DE, 5=EF, 6=FG, 7=GH, 8=AH,
9=BE, 10=BG. In addition, let Cand = {1,2,3,7,9,10}. The path for
the construction of the set T associated to Cand seems as follows:

List of edges 1,...,10, represented by end-vertices

Edge 1 2 3 4 5 6 7 8 9 10
AB BC CD DE EF FG GH AH BE BG
Contract 1 - AC CD DE EF FG GH AH AE AG
Contract 2 - - AD DE EF FG GH AH AE AG
Contract 3 - - - AE EF FG GH AH AE AG
Contract 7 - - - AE EF FG - AG AE AG
Contract 9 - - - AA AF FG - AG - AG
Contract 10 - - - AA AF FA - AA - -

The set T contains exactly all those edges of E(G)\ Cand, which are
finally contracted to loops. In this case, this happens with the edges 4 and
8,50 T = {4,8}. Note that both of the edges 5 and 6 should be added to
Cand in order to close a circuit; none of them could do it alone.
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Remark. It seems more appropriate to perform one contraction after an-
other and to consider the generated effects, as in the table above. On the
contrary, when the construction of the set 5 is considered, it seems more
appropriate to remove all the edges of Cand at once and to treat the edges
from E(G)\ Cand independently from each other afterwards.

4. Some illustrative examples

We elaborate two complete .examples, which were listed in [1].
Example 1.

Let (G7 denote the graph with vertices A,B,C,D and edges 1=AB,
2=AD, 3=8BD, 4=BC, 5=BC, 6=CD.

Maximal double independent sets of (G; are 36, 134, 135, 146, 156, 234,
235, 246 and 256. It is easy to check that none of them includes a cutset of
G1 (some of the sets 12, 136, 236, 456, 1345 and 2345) or a circuit of Gy
(some of the sets 45, 123, 346, 356, 1246 and 1256).

In order to justify that the mentioned double independent sets are ma-
ximal, we show the circuits and cutsets which arise with some of them, after
one new element is added:

Double independent set 36 is maximal since:
the supersets 136 and 236 are cutsets,
while the supersets 346 and 356 are circuits.

Sets S and T are equal to 12 and 45 respectively in this case.
Double independent set 134 is maximal since:
the supersets 1234 contains circuit 123 and cutset 12;

the supersets 1345 contains circuit 45 and is itself a cutset ;
the supersets 1346 contains circuit 346 and cutset 136.

Both sets § and T are equal to 256 in this case.

In a similar fashion we may proceed with the remaining seven maximal
double independent sets.

It can be shown that the topological degree of freedom of graph G; is
equal to 3.
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Trace of the algorithm:

Candidate :
123 contains  cutset 12 (jump over 124 and 125)
134 is double independent and maximal
135 is double independent and maximal
136 contains  cutset 136
145 contains  circuit 45
146 is double independent and maximal
156 is double independent and maximal
234 is double independent and maximal
235 is double independent and maximal
236 contains  circuit 236
245 contains  circuit 45
246 is double independent and maximal
256 is double independent and maximal
345 contains  circuit 45
346 contains  circuit 346
356 contains  circuit 356
456 contains  circuit 45

In accordance with the remark given in the algorithm, note that the
combinations 124, 125 and 126 were not visited, due to the former stretch
of the cutset 12. On the contrary, four candidates were rejected due to the
same circuit 45. This circuit does not belong to lexicographically the first
part of the candidate and therefore it could not be used for a safe shotcut
of generating combinations.

Example 2. Let G2 denote the graph on 8 vertices and 14 edges, obtained
by double joining two copies of the graph G; con31dered in the previous
example, in the following manner:

The vertices of (G are denoted A, B, C, D, E, F, G, H.

The edges of G2 are
1=AB, 2= AH, 3=BH, 4=BC, 5=BC, 6=CH, 7=GH,
8=CD, 9=DG, 10=FG, 11=DF, 12=DE, 13=DE, 14=FF.

There are two cardinalities (5 and 6) of maximal double independent
sets of Gy , with 8, respectively with 80, double independent sets.

We shall give the complete list of maximal double independent sets of
edges, corresponding to the graph G :
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Maximal double independent sets of cardinality 5:

3 6 11 14 2 3 6 11 14 3 6 7 11 14
3 6 8 11 14 3 6 9 10 12 3 6 9 10 13
6 9 10 14 3 6 9 11 14

Maximal double independent sets of cardinality 6:

—

w

1 3 4 7 11 141 3 4 8 11 14}1 3 4 9 10 12
1 3 4 9 10 13(1 3 4 9 10 141 3 4 9 11 14
1 3 5 7 11 141 3 5 8 11 14|1 3 5 9 10 12
135 9 10 13(1 3 5 9 10 141 3 5 9 11 14
1 36 9 11 12(1 3 6 9 11 13|1 3 6 9 12 14
1 36 9 13 141 3 6 10 11 12|1 3 6 10 11 13
1 3 6 10 12 1411 3 6 10 13 141 3 6 7 11 14
1 4 6 8 11 141 4 6 9 10 12,1 4 6 9 10 13
1 46 9 10 141 4 6 9 11 141 5 6 7 11 14
1 56 8 11 141 5 6 9 10 12|1 5 6 9 10 13
1 5 6 9 10 14(1 5 6 9 11 142 3 4 7 11 14
2 3 4 8 11 14|12 3 4 9 10 12|12 3 4 9 10 13
2 3 4 9 10 14|12 3 4 9 11 14|12 3 5 7 11 14
2 3 5 8 11 14|12 3 5 9 10 122 3 5 9 10 13
2 3 5 9 10 142 3 5 9 11 14|12 3 6 9 11 12
2 3 6 9 11 132 3 6 9 12 14|12 3 6 9 13 14
2 3 6 10 11 12|2 3 6 10 11 13[2 3 6 10 12 14
2 3 6 10 13 14|2 4 6 7 11 142 4 6 8 11 14
2 4 6 9 10 12|12 4 6 9 10 13(2 4 6 9 10 14

2 46 9 11 14|2 5 6 7 11 142 5 6 8 11 14
2 5 6 9 10 12|12 5 6 9 10 13(2 5 6 9 10 14
2 5 6 9 11 14|13 6 7 9 11 1213 6 7 9 11 13
3 6 7 9 12 1413 6 7 9 13 1443 6 7 10 11 12
3 6 7 10 11 13|3 6 7 10 12 143 6 7 10 13 14
3 6 8 9 11 12{3 6 8 9 11 13|3 6 8 9 12 14
3 6 8 9 13 143 6 8 10 11 12|3 6 8 10 11 13
3 6 8 10 12 1413 6 8 10 13 14
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REZIME

MEMORIJSKI OPTIMALAN ALGORITAM ZA NABRAJANJE
MAKSIMALNIH DUPLO NEZAVISNIH SKUPOVA GRANA U
GRAFU

Predlozen je jedan memorijski optimalan algoritam za generisanje svih mak-
simalnih podskupova skupa grana nekog 2-povezanog grafa, koji (istovre-
meno) ne sadrze ni konture, ni snopove (preseke). Algoritam ukljucuje tri
bulove funkcije, pomocu kojih se testira ispravnost kandidata za takve mak-
simalne duplo nezavisne skupove. Efikasnost testova sledi iz Cinjenice da
oni koriste samo lokalna pretraZivanja; ne moraju se generisati familije svih
kontura i snopova grafa.
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