Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 23, 1 (1993), 121 - 134 Review of Research Faculty of Science Mathematics Series

n-PARTITIONS OF TOPOLOGICAL SPACES

Miloš S. Kurilić

Institute of Mathematics, University of Novi Sad Trg Dositeja Obradovića 4, 21000 Novi Sad, Yugoslavia

Abstract

A partition of type n on a set X is a family Π of its subsets, such that any n elements of X are contained in exactly one subset and every subset contains at least n elements of X. If X is a Hausdorff space and if Π satisfies certain topological conditions (expressed by the convergence of nets) then we consider Π as a topological space. Some examples of such partitions are given here. Topological projective and Euclidean planes appear as special cases of 2-partitions.

AMS Mathematics Subject Classification (1991): 51H10, 54B20 Key words and phrases: topological spaces, generalized partitions, topological planes.

1. Preliminaries

The well-known notion of the n-partition on a set X appears in many different branches of mathematics. In combinatorics it is investigated as a block-scheme. In algebra were studied the lattices on n-partitions and the connection of n-partitions with quasigroups. Geometrist sees an n-partition as an incidence structure.

The idea to topologize an n-partition is a result of a conversation with professor J.Ušan who considered n-partitions from the aspect of n-ary

122 M.S.Kurilić

relations and hyperoperations. I am grateful to him for many useful suggestions.

Finally, something about notation. If X is a set |X| will be its cardinality, P(X) the power set of X and $[X]^n$ the family of subsets of X with exactly n elements. By N, R and C we will denote the set of natural, real and complex numbers respectively. The set of all permutations of $\{1, 2, ..., n\}$ will be denoted with $\{1, 2, ..., n\}$!. If (X, \mathcal{O}) is a topological space, letters \mathcal{P} and \mathcal{B} will be reserved for the subbase and base for the topology \mathcal{O} . At last, the fact that a net $x_0 > 0$ converges to x will be denoted by $x_0 > 0$.

2. Topological n-partitions

Let X be a set with at least n elements. By [2], a collection $\Pi \subset P(X)$ is an n-partition on X iff (i) each $p \in \Pi$ contains at least n elements; (ii) any n distinct elements of X are contained in some $p \in \Pi$; and (iii) two distinct elements of Π may have at most n-1 common elements.

According to the definition, n distinct elements $x^1,...,x^n \in X$ determine the unique element of Π , denoted by $p(x^1,...,x^n)$, (notation $p(\{x^1,...,x^n\})$ or $p_{\{x^1,...,x^n\}}$ would be better but more complicated). Clearly, $p(x^1,...,x^n) = p(x^{\pi_1},...,x^{\pi_n})$ for every $\pi \in \{1,2,...,n\}!$. Also, if $y^1,...,y^n \in p(x^1,...,x^n)$ are distinct, then $p(x^1,...,x^n) = p(y^1,...,y^n)$.

To simplify the following definition, if $x^1, ..., x^n \in X$ are not distinct (that is if $|\{x^1, ..., x^n\}| < n$) we define $p(x^1, ..., x^n) = X$. Then, of course, $p(x^1, ..., x^n) \notin \Pi$ (except if $\Pi = \{X\}$).

Definition 1. Let (X,\mathcal{O}) be a Hausdorff space. An n- partition Π on X is topological iff it holds: if $x^1, x^2, ..., x^n, z \in X$ are arbitrary distinct points and $\langle x^i_{\sigma} \mid \sigma \in \Sigma \rangle$ are nets, such that $\langle x^i_{\sigma} \rangle \rightarrow x^i$, i=1,...,n; where $p(x^1_{\sigma},...,x^n_{\sigma})=p_{\sigma}$ and $p(x^1,...,x^n)=p$, then

- (a) if $\langle z_{\sigma} \rangle \rightarrow z$ and $z_{\sigma} \in p_{\sigma}$ for all $\sigma \in \Sigma$, then $z \in p$.
- (b) if $z \in p$, there is a net $\langle z_{\sigma} | \sigma \in \Sigma \rangle$ such that $\langle z_{\sigma} \rangle \rightarrow z$ and $z_{\sigma} \in p_{\sigma}$ for all $\sigma \in \Sigma$.

The set of all topological n-partitions on X will be denoted by $TP_n(X)$.

Since X is a Hausdorff space and nets $< x^i_{\sigma} >$ converge to distinct points,

there is $\sigma_0 \in \Sigma$ such that $x^1_{\sigma}, ..., x^n_{\sigma}$ are distinct for $\sigma \geq \sigma_0$. Therefore, for $\sigma \geq \sigma_0$, we have $p(x^1_{\sigma}, ..., x^n_{\sigma}) \in \Pi$.

Theorem 1. Elements of Π are closed in X.

Proof. Let $p \in \Pi$, $z \in \bar{p}$ and $x^1, ..., x^n \in p$ where $x^1, ..., x^n$ are distinct. Then there is a net $\langle z_{\sigma} \mid \sigma \in \Sigma \rangle$ in p such that $\langle z_{\sigma} \rangle \rightarrow z$. If we define $x_{\sigma}^i = x^i$ for i = 1, ..., n and $\sigma \in \Sigma$, we have $\langle x_{\sigma}^i \rangle \rightarrow x^i$ for i = 1, ..., n and for all $\sigma \in \Sigma$, $z_{\sigma} \in p(x_{\sigma}^1, ..., x_{\sigma}^n) = p$. According to (a) of the previous definition, $z \in p$. \square

If X is a first countable space, nets can be replaced by sequences.

Theorem 2. Let (X, \mathcal{O}) be a first countable, Hausdorff space. An n-partition Π on X is topological iff it holds: if $x^1, ..., x^n, z \in X$ are arbitrary distinct points and $\langle x_k^i \mid k \in N \rangle$ are sequences such that $\langle x_k^i \rangle \rightarrow x^i$ for all i = 1, ..., n; where $p(x_k^1, ..., x_k^n) = p_k, k \in N$ and $p(x^1, ..., x^n) = p$, then

(a') if
$$\langle z_k \rangle \rightarrow z$$
 and $z_k \in p_k$ for all $k \in N$, then $z \in p$.

(b') if $z \in p$, there is a sequence $\langle z_k | k \in N \rangle$ such that $\langle z_k \rangle \rightarrow z$ and $z_k \in p_k$ for all $k \in N$.

Proof. (\Rightarrow) Is obvious because each sequence is a net.

- (\Leftarrow) Suppose that $x^1, ..., x^n, z \in X$ are distinct points and $\langle x^i_{\sigma} \rangle \to x^i$ for i = 1, ..., n. Let $\mathcal{B}(x^i) = \{B^i_k \mid k \in N\}$ be a monotonous, countable local base at the point x^i , i = 1, ..., n and $\mathcal{B}(z)$ such a base at the point z.
- (a) Let $\langle z_{\sigma} \rangle \to z$ where $z_{\sigma} \in p_{\sigma}$, $\sigma \in \Sigma$; and let $k \in N$. Because of convergence of the observed nets, there exists σ_k^i such that for $\sigma \geq \sigma_k^i$, $x_{\sigma}^i \in B_k^i$, i=1,...,n, and there is σ_k^z such that $z_{\sigma} \in B_k^z$ for $\sigma \geq \sigma_k^z$. If we choose $\sigma_k \in \Sigma$ such that $\sigma_k \geq \sigma_k^1,...,\sigma_k^n,\sigma_k^z$, then $x_{\sigma_k}^i \in B_k^i$ for i=1,...,n and $z_{\sigma_k} \in B_k^z$. This holds for all $k \in N$, so $\langle x_{\sigma_k}^i \rangle \to x^i$, i=1,...,n and $\langle z_{\sigma_k} \rangle \to z$. Since $z_{\sigma_k} \in p_{\sigma_k}$, $k \in N$, according to (a') we have $z \in p$.
 - (b) Let $z \in p$. Firstly we will prove that

(1)
$$\forall n \in N \ \exists \sigma_n \in \Sigma \ \forall \tau \geq \sigma_n \ p_\tau \cap B_n^z \neq \emptyset.$$

Suppose that (1) does not hold. Then there is $n_0 \in N$ such that $T = \{\tau \in \Sigma \mid p_{\tau} \cap B_{n_0}^z = \emptyset\}$ is cofinal in Σ , so $\langle x_{\tau}^i \mid \tau \in T \rangle \rightarrow x^i$ for i = 1, ..., n. By the

construction given in (a) we get sequences $\langle x_{\tau_k}^i \mid k \in N \rangle \to x^i, i = 1, ..., n$. Because of (b') there is a sequence $\langle z_k \rangle \to z$ such that $z_k \in p_{\tau_k}$. Now, for $B_{n_0}^z$ there is $k_1 \in N$ such that $z_{k_1} \in B_{n_0}^z$. But $z_{k_1} \in p_{\tau_{k_1}}$ cap $B_{n_0}^z = \emptyset$. A contradiction.

According to (1) there is $\sigma_1 \in \Sigma$ such that for $\sigma \geq \sigma_1$ we have $p_{\sigma} \cap B_1^z \neq \emptyset$. Then $N(\sigma) = \{k \in N \mid p_{\sigma} \cap B_k^z \neq \emptyset\} \neq \emptyset$, since $1 \in N(\sigma)$. Since $\mathcal{B}(z)$ is a monotonous local base, $N(\sigma) = N$ or there is $m_0 = \max N(\sigma)$. For $\sigma \geq \sigma_1$ we define:

$$B_{\sigma} = \left\{ egin{array}{ll} p_{\sigma} \cap B_{m_{\sigma}}^{z} & ext{if} \quad m_{\sigma} \quad ext{exists} \\ \{z\} & ext{otherwise.} \end{array}
ight.$$

If m_{σ} exists, then $m_{\sigma} \in N(\sigma)$, so $B_{\sigma} = p_{\sigma} \cap B_{m_{\sigma}}^{z} \neq \emptyset$, and $B_{\sigma} \subset p_{\sigma}$. If $N(\sigma) = N$ then for all $k \in N$, $p_{\sigma} \cap B_{k}^{z} \neq \emptyset$, that is $z \in \bar{p}_{\sigma} = p_{\sigma}$. (Theorem 2.1), so $B_{\sigma} = \{z\} \subset p_{\sigma}$. Therefore for all $\sigma \geq \sigma_{1}$, $\emptyset \neq B_{\sigma} \subset p_{\sigma}$.

For $\sigma \geq \sigma_1$ we choose $z_{\sigma} \in B_{\sigma}$. For the rest of $\sigma \in \Sigma$ we define $z_{\sigma} = x_{\sigma}^1$. Now $z_{\sigma} \in p_{\sigma}$ for all $\sigma \in \Sigma$.

Let $n \in N$. According to (1) for $\sigma \geq \sigma_n$, $p_{\sigma} \cap B_n^z \neq \emptyset$. If m_{σ} exists, then $n \leq m_{\sigma}$ and $B_{m_{\sigma}}^z \subset B_n^z$, so $z_{\sigma} \in B_{\sigma} = p_{\sigma} \cap B_{m_{\sigma}}^z \subset B_n^z$. If m_{σ} does not exist, then $z_{\sigma} = z \in B_n^z$. Hence for each $\sigma \geq \sigma_n$, $z_{\sigma} \in B_n^z$, so we have $\langle z_{\sigma} \rangle \rightarrow z$. \square

Now, let (X, \mathcal{O}) be a Hausdorff space and $\Pi \in TP_n(X)$. If for $O \in \mathcal{O}$ we define $O^* = \{p \in \Pi \mid p \cap O \neq \emptyset\}$, then $\mathcal{P}_{\Pi} = \{O^* \mid O \in \mathcal{O}\}$ is a subbase for some topology on Π , denoted by \mathcal{O}_{Π} . From now on we will consider the space (Π, \mathcal{O}_{Π}) .

3. Base, local base and density

Lemma 1. Let $p \in \Pi$ and let $x^1, ..., x^n \in p$ be distinct points. If $\mathcal{B}(x^i)$ is a local base at the point x^i , i = 1, ..., n, then

(i) if $O \in \mathcal{O}$ and $p \in O^*$, then there is $(B_1, ..., B_n) \in \prod_{i=1}^n \mathcal{B}(x^i)$ where

$$p \in \bigcap_{i=1}^n B_i^* \subset O^*$$

(ii) if $k \in N$ and $O_j \in \mathcal{O}$ for j = 1, ..., k, and $p \in \bigcap_{i=1}^k O_i^*$, then there is

 $(B_1,...,B_n) \in \prod_{i=1}^n \mathcal{B}(x^i)$ such that

$$p \in \bigcap_{i=1}^n B_i^* \subset \bigcap_{j=1}^k O_j^*.$$

Proof. Firstly let us notice that $\mathcal{B}(x^i)$, i=1,...,n are directed sets, so $\prod_{i=1}^n \mathcal{B}(x^i)$ is directed too. Let $B_i^0 \in \mathcal{B}(x^i)$ be arbitrary, but fixed.

(i) Let $p \in O^*$. Suppose that for each $(B_1, ..., B_n) \in \prod_{i=1}^n \mathcal{B}(x^i)$ there exists $q_{(B_1, ..., B_n)} \in \Pi$ such that $q_{(B_1, ..., B_n)} \in \bigcap_{i=1}^n B_i^*$ and $q_{(B_1, ..., B_n)} \cap O = \emptyset$. For all $i \in \{1, ..., n\}$ and $(B_1, ..., B_n) \in \prod_{i=1}^n \mathcal{B}(x^i)$ we choose $x^i_{(B_1, ..., B_n)} \in q_{(B_1, ..., B_n)} \cap B_i$. Then $(x^i_{(B_1, ..., B_n)}) > 1$ is a net for i = 1, ..., n. Let $B'_1 \in \mathcal{B}(x^1)$ and $(B_1, ..., B_n) \geq (B'_1, B^0_2, ..., B^0_n)$. Then $B_1 \subset B'_1$ and $x^1_{(B_1, ..., B_n)} \in B_1 \subset B'_1$. Therefore $(x^1_{(B_1, ..., B_n)}) > 1$. Similarly for other sequences. If $z \in p \cap O$, then according to (b) there is a net $(z_{(B_1, ..., B_n)}) > 1$ and $(z_{(B_1, ..., B_n)}) \in q_{(B_1, ..., B_n)} \in Q$. Now $(z_{(B''_1, ..., B''_n)}) \in q_{(B''_1, ..., B''_n)} \cap O = \emptyset$. A contradiction.

Thus there exists $(B_1, ..., B_n) \in \prod_{i=1}^n \mathcal{B}(x^i)$ such that for each $q \in \Pi$, $q \in \bigcap_{i=1}^n B_i^*$ implies $q \in O^*$, that is $\bigcap_{i=1}^n B_i^* \subset O^*$.

(ii) Let $p \in \bigcap_{j=1}^k O_j^*$ and $j \in \{1, ..., k\}$. Then $p \in O_j$ and because of (i) there is $(B_1^j, ..., B_n^j) \in \prod_{i=1}^n \mathcal{B}(x^i)$ satisfying $p \in \bigcap_{i=1}^n B_i^{j*} \subset O_j^*$. Now $p \in \bigcap_{j=1}^k \bigcap_{i=1}^n B_i^{j*} \subset \bigcap_{j=1}^k O_j^*$, but $\bigcap_{j=1}^k \bigcap_{i=1}^n B_i^{j*} = \bigcap_{i=1}^n B_i^*$ where $B_i = \bigcap_{j=1}^k B_i^j$ for i = 1, ..., n. \square

Now, we are able to prove:

Theorem 3. Let (X, \mathcal{O}) be a Hausdorff space and $\Pi \in TP_n(X)$. Then

- (i) if \mathcal{B} is a base for the topology on X, then $\mathcal{B}'_{\Pi} = \{\bigcap_{i=1}^n B_i^* \mid (B_1, ..., B_n) \in \mathcal{B}^n\}$ is a base for the topology on Π .
 - (ii) if $w(X) \ge \aleph_0$, then $w(\Pi) \le w(X)$.
- (iii) if $p \in \Pi$ if $x^1, ..., x^n \in p$ are distinct points and $\mathcal{B}(x^i)$ is a local base at the point x^i , i = 1, ..., n, then $\mathcal{B}(p) = \{\bigcap_{i=1}^n B_i^* \mid (B_1, ..., B_n) \in \Pi_{i=1}^n \mathcal{B}(x^i)\}$ is a local base at the point $p \in \Pi$.
 - (iv) if $p \in \Pi$, then $\chi(p) \le \min\{\prod_{i=1}^n \chi(x^i) \mid \{x^1, ..., x^n\} \in [p]^n\}$.
- (v) if D is dense in X, then $D_{\Pi} = \{p(d^1, ..., d^n) \mid \{d^1, ..., d^n\} \in [D]^n\}$ is dense in Π .

(vi) If
$$d(x) \geq \aleph_0$$
, then $d(\Pi) \leq d(X)$.

Proof. (i) One base for the topology on Π is $\mathcal{B}_{\Pi} = \{\bigcap_{j=1}^{k} O_{j}^{*} \mid k \in N; O_{j} \in \mathcal{O}, j = 1, ..., k\}$. Obviously $\mathcal{B}'_{\Pi} \subset \mathcal{B}_{\Pi} \subset \mathcal{O}_{\Pi}$. Let $p \in \bigcap_{j=1}^{k} O_{j}^{*}, \{x^{1}, ..., x^{n}\} \in [p]^{n}$ and let $\mathcal{B}(x^{i})$ be a local base at the point x^{i} , i = 1, ..., n.

According to Lemma 3.1, there is $(B_1, ..., B_n) \in \prod_{i=1}^n \mathcal{B}(x^i)$ such that $p \in \bigcap_{i=1}^n B_i^* \subset \bigcap_{j=1}^k O_j^*$. Since \mathcal{B} is a base, there are $B_i' \in \mathcal{B}$ where $x^i \in B_i' \subset B_i$. Now, $p \in B_p \subset \bigcap_{i=1}^k O_j^*$ where $B_p = \bigcap_{i=1}^n B_i^{**} \in \mathcal{B}'_{\Pi}$, so \mathcal{B}'_{Π} is also a base.

(ii) If \mathcal{B} is a base on X satisfying $|\mathcal{B}| = w(X)$, then from (i) we have $w(\Pi) \leq |\mathcal{B}'_{\Pi}| \leq |\mathcal{B}|^{n-1} = |\mathcal{B}| = w(X)$.

The proofs of the other statements are also direct . \Box

Corollary 1. If X is a second countable (first countable, separable) space then Π is a second countable (first countable, separable) space.

Proof. See (ii), (iv) and (vi) of the preceeding theorem.

Theorem 4. If the space X is discrete, then Π is a discrete space too.

Proof. Let $p \in \Pi$ and $\{x^1, ..., x^n\} \in [p]^n$. Since X is discrete, $\{x^i\} \in \mathcal{O}$ for i = 1, ..., n. Thus $\bigcap_{i=1}^n \{x^i\}^* = \{p\} \in \mathcal{O}_{\Pi}$, so Π is discrete. \square

Topological n-partition is defined if (X, \mathcal{O}) is a Hausdorff space. So it holds.

Theorem 5. II is a Hausdorff space.

Proof. Let $p, q \in \Pi$ and $p \neq q$. Let $\{x^1, ..., x^n\} \in [p]^n$, $x^{n+1} \in q - p$. X is a Hausdorff space, so there are local bases $\mathcal{B}(x^i)$, i = 1, ..., n, such that for $i \neq j$, and for $B_i \in \mathcal{B}(x^i)$, $B_j \in \mathcal{B}(x^j)$ it holds $B_i \cap B_j = \emptyset$. Let us suppose that for every $(B_1, ..., B_{n+1}) \in \Pi_{i=1}^{n+1} \mathcal{B}(x^i)$ there exists $p_{(B_1, ..., B_{n+1})} \in \bigcap_{i=1}^{n+1} B_i^*$. Let $x^i_{(B_1, ..., B_{n+1})} \in p_{(B_1, ..., B_{n+1})} \cap B^i$, then as in Lemma 3.1 one can prove that $(x^i_{(B_1, ..., B_{n+1})}) \to x^i$ for all i = 1, ..., n+1. Since $x^{n+1}_{(B_1, ..., B_n)} \in p(x^1_{(B_1, ..., B_n)}, ..., x^n_{(B_1, ..., B_n)})$ and $\Pi \in TP_n(X)$, the condition (a) gives $x^{n+1} \in p(x^1, ..., x^n) = p$. A contradiction. Therefore there are $B_1, ..., B_{n+1}$ such that $(\bigcap_{i=1}^n B_i^*) \cap B_{n+1}^* = \emptyset$. These are disjoint neighborhoods of the points p and q. \square

4. Topological planes as topological 2-partitions

In [4] Skornyakov investigated topological planes. In the further consideration the space of lines in a topological plane will be observed as a subset of the power set of the set of its points, and the incidence relation will be interpreted as the relation of membership (\in) .

A pair (X,Π) where X (the set of points) and Π (the set of lines) are nonempty sets, $\Pi \subset P(X)$, and where (1) each line contains at least two points; (2) every two points are contained in some line; (3) two distinct lines can have at most one common point; (4_p) two distinct lines have at least one common point; is a projective plane.

If, instead of (4_p) , holds (4_E) if the point x does not belong to the line p, there is a unique line q which contains x and which is disjoint from p; then (X, Π) is an Euclidean plane.

If X and Π are Hausdorff spaces and if (X,Π) is a projective plane such that it holds: $(\alpha) \forall x,y \in X, \ \forall p \in \Pi[x \neq y \land x,y \in p \Rightarrow \forall O \in \mathcal{U}(p) \exists V \in \mathcal{U}(x) \exists W \in \mathcal{U}(y) V^* \cap W^* \subset O]$ and $(\beta) \forall p,q \in \Pi, \ \forall x \in X[p \neq q \land x \in p \cap q \Rightarrow \forall O \in \mathcal{U}(x) \exists V \in \mathcal{U}(p) \exists W \in \mathcal{U}(q)(\bigcup V) \cap (\bigcup W) \subset O]$ then (X,Π) is a topological projective plane.

If (X,Π) is a Euclidean plane and, except of (α) and (β) it holds $(\gamma) \forall p,q \in \Pi$ $\forall x \in X$ $\forall U \in \mathcal{U}(p)[(p \cap q = \emptyset \lor p = q) \land x \in p] \Rightarrow [\exists V \in \mathcal{U}(x) \exists W \in \mathcal{U}(q) \ \forall r(r \in V^* \land \exists s \in W \ r \cap s = \emptyset) \Rightarrow r \in U]$ then (X,Π) is a topological Euclidean plane.

Now we are able to prove:

Theorem 6. If (X,Π) is a topological projective plane, then Π is a topological 2-partition on X.

Proof. The conditions (1), (2) and (3) are in fact the conditions (i), (ii) and (iii) in the definition of the n-partition, for n = 2. Let us prove that Π is a topological partition.

Let $x, y, z \in X$ be different points; $\mathcal{B}(x), \mathcal{B}(y)$ and $\mathcal{B}(z)$ their local bases and $\langle x_{\sigma} \rangle \to x$, $\langle y_{\sigma} \rangle \to y$.

(a) Let $\langle z_{\sigma} \rangle \rightarrow z$ and $z_{\sigma} \in p(x_{\sigma}, y_{\sigma})$ for $\sigma \in \Sigma$. According to $(\alpha)\mathcal{B}(p(x,y)) = \{B_x^* \cap B_y^* \mid B_x \in \mathcal{B}(x), B_y \in \mathcal{B}(y)\}$ and $\mathcal{B}(p(y,z)) =$

 $\{B_y^* \cap B_z^* \mid B_y \in \mathcal{B}(y), B_z \in \mathcal{B}(z)\}$ are local bases for $p(x,y), p(y,z) \in \Pi$. If $B_x \in \mathcal{B}(x), B_y \in \mathcal{B}(y)$ and $B_z \in \mathcal{B}(z)$, from the convergence of the observed nets if follows that there are $\sigma_1, \sigma_2, \sigma_3 \in \Sigma$ such that for $\sigma \geq \sigma_1, x_\sigma \in B_x$; for $\sigma \geq \sigma_2, y_\sigma \in B_y$ and for $\sigma \geq \sigma_3, z_\sigma \in B_z$. Let $\sigma_{12} \geq \sigma_1, \sigma_2$ and $\sigma_{23} \geq \sigma_2, \sigma_3$. Now, for $\sigma \geq \sigma_{12}, p(x_\sigma, y_\sigma) \in B_x^* \cap B_y^*$ and for $\sigma \geq \sigma_{23}, p(y_\sigma, z_\sigma) \in B_y^* \cap B_z^*$. Since B_x, B_y and B_z are arbitrary we have $\langle p(x_\sigma, y_\sigma) \rangle \rightarrow p(x, y)$ and $\langle p(y_\sigma, z_\sigma) \rangle \rightarrow p(y, z)$. Finally $z_\sigma \in p(x_\sigma, y_\sigma)$ imply $p(x_\sigma, y_\sigma) = p(y_\sigma, z_\sigma)$ and, since Π is a Hausdorff space, it follows p(x, y) = p(y, z), that is $z \in p(x, y)$.

(b) Let $z \in p(x,y)$ and $t \notin p(x,y)$. Now we define

$$z_{\sigma} = \left\{ egin{array}{ll} z & ext{if} & p(x_{\sigma}, y_{\sigma}) = p(t, z) \ p(x_{\sigma}, y_{\sigma}) \cap p(t, z) & ext{otherwise.} \end{array}
ight.$$

Then for all $\sigma \in \Sigma$, $z_{\sigma} \in p(x_{\sigma}, y_{\sigma})$. Let $U \in \mathcal{U}(z)$. $\mathcal{B}(p(x,y))$ from (a) and $\mathcal{B}(p(t,z)) = \{B_t^* \cap B_z^* \mid B_t \in \mathcal{B}(t), B_z \in \mathcal{B}(z)\}$ are local bases at the points p(x,y) and p(t,z) of Π . According to (β) and since $z \in p(x,y) \cap p(t,z)$, there are $B_x \in \mathcal{B}(x), B_y \in \mathcal{B}(y), B_z \in \mathcal{B}(z)$ and $B_t \in \mathcal{B}(t)$ such that

(2)
$$\forall y[(\exists r \in B_x^* \cap B_y^*, \exists s \in B_z^* \cap B_t^*, y \in r \cap s) \Rightarrow y \in U]$$

From the proof of (a) we have $\langle p(x_{\sigma}, y_{\sigma}) \rangle \to p(x, y)$, so there is $\sigma_1 \in \Sigma$ such that for $\sigma \geq \sigma_1, p(x_{\sigma}, y_{\sigma}) \in B_x^* \cap B_y^*$. Also $p(t, z) \in B_t^* \cap B_z^*$, thus according to (2) we have that for each $\sigma \geq \sigma_1$ for which $p(x_{\sigma}, y_{\sigma}) \neq p(t, z)$ it holds $p(x_{\sigma}, y_{\sigma}) \cap p(t, z) \subset U$, that is $z_{\sigma} \in U$. Clearly, if $p(x_{\sigma}, y_{\sigma}) = p(t, z)$, then $z_{\sigma} = z \in U$. Since $U \in \mathcal{U}(z)$ is arbitrary we have $\langle z_{\sigma} \rangle \to z$

Theorem 7. If (X,Π) is a topological Euclidean plane, then Π is a topological 2-partition on X.

Proof. As in the previous theorem Π is a 2-partition on X which satisfies (a).

(b) Let $z \in p(x,y)$ and $t \notin p(x,y)$. According to [4] Lemma 5, since $p(x,y) \neq p(t,z)$, these lines have totally disjoint neighborhoods. Thus there are $B_x \in \mathcal{B}(x)$ and $B_y \in \mathcal{B}(y)$ such that for each $q \in B_x^* \cap B_y^*$ we have $q \cap p(t,z) \neq \emptyset$. As in the Theorem 4.1, $\langle p(x_\sigma,y_\sigma) \rangle \to p(x,y)$ and there is $\sigma_1 \in \Sigma$ such that for $\sigma \geq \sigma_1, p(x_\sigma,y_\sigma) \in B_x^* \cap B_y^*$. Then $p(x_\sigma,y_\sigma)$ and p(t,z) intersect and for z_σ defined as in the Theorem 4.1, because of (β) we have $\langle z_\sigma \rangle \to z$. \square

5. Other examples

There are some ways to make a new topological n- partition of a given space from the old one. Here we mention two of them.

Theorem 8. Let X and Y be Hausdorff spaces, $f: X \to Y$ a function, $\Pi_X \in TP_n(X)$ and $\Pi_Y = \{f(p) \mid p \in \Pi_X\}$. Then

(i) If f is a bijection, then Π_Y is an n-partition on Y and for distinct points $x^1, ..., x^n \in X$ and $y^1, ..., y^n \in Y$ it holds:

$$\begin{split} f(p(x^1,...,x^n)) &= p(f(x^1),...,f(x^n)),\\ f^{-1}(p(y^1,...,y^n)) &== p(f^{-1}(y^1),...,f^{-1}(y^n)). \end{split}$$

(ii) If f is a homeomorphism then $\Pi_Y \in TP_n(Y)$ and Π_X and Π_Y are homeomorphic spaces.

Proof. (i) The proof is completely straightforward.

- (ii) Firstly, we will prove that $\Pi_Y \in TP_n(Y)$. Let $y^1, ..., y^n, t \in Y$ be distinct points and let $\langle y^i_{\sigma} \rangle \rightarrow y^i$ for i = 1, ..., n. Then $x^i = f^{-1}(y^i), i = 1, ..., n$ and $z = f^{-1}(t)$ are distinct elements of X and, if $x^i_{\sigma} = f^{-1}(y^i_{\sigma})$, we have $\langle x^i_{\sigma} \rangle \rightarrow x^i$, i = 1, ..., n, (because f^{-1} is continuous).
- (a) Let $\langle t_{\sigma} \rangle \to t$ and $t_{\sigma} \in p(y_{\sigma}^{1},...,y_{\sigma}^{n}), \sigma \in \Sigma$. If $z_{\sigma} = f^{-1}(t_{\sigma})$, continuity of f^{-1} gives $\langle z_{\sigma} \rangle \to z$. Also, according to (i), $z_{\sigma} \in p(x_{\sigma}^{1},...,x_{\sigma}^{n})$ for $\sigma \in \Sigma$. Since Π_{X} is a topological n-partition, we have $z = p(x^{1},...,x^{n})$. Now (i) gives $t \in p(y^{1},...,y^{n})$.
- (b) If $t \in p(y^1, ..., y^n)$, then $z \in p(x^1, ..., x^n)$. Now, there is a net $z_{\sigma} > 0$ such that $z_{\sigma} \in p(x_{\sigma}^1, ..., x_{\sigma}^n)$, $\sigma \in \Sigma$. Since f is continuous, $z_{\sigma} > 0$, where $z_{\sigma} = f(z_{\sigma})$. Also, by (i), $z_{\sigma} \in p(y_{\sigma}^1, ..., y_{\sigma}^n)$ for all $z_{\sigma} \in \Sigma$.

Let us prove $\Pi_Y \cong \Pi_X$. We define $\Psi : \Pi_X \to \Pi_Y$, where $\Psi(p) = f(p)$ for all $p \in \Pi_X$. Ψ is obviously a bijection, since f is. Continuity of Ψ and Ψ^{-1} follows from the relation

$$\Psi^{-1}(\bigcap_{i=1}^n B_i^*) = \bigcap_{i=1}^n (f^{-1}(B_i))^*$$

where $B_1, ..., B_n$ are basic open sets in Y, continuity of f and f^{-1} and the Theorem 3.1. (i) \Box

In the proof of the following statement we will use the next well-known fact.

Lemma 2. Let A be a subspace of the space X, $\langle a_{\sigma} | \sigma \in \Sigma \rangle$ a net in A and $a \in A$. Then $\langle a_{\sigma} \rangle \rightarrow_{X} a$ iff $\langle a_{\sigma} \rangle \rightarrow_{A} a$.

Theorem 9. If X is a Hausdorff space, $A \subset X$, where $|A| \ge n$ and $\Pi_X \in TP_n(X)$, then

- (i) $\Pi_A = \{p \cap A \mid p \in \Pi_X \text{ and } | p \cap A | \geq n\}$ is an n-partition of A.
- (ii) If A is open, then $\Pi_A \in TP_n(A)$.

Proof. (i) Obviously.

- (ii) Let $x^1, ..., x^n, z \in A$ be distinct points and $\langle x^i_{\sigma} \mid \sigma \in \Sigma \rangle$ nets in A where $\langle x^i_{\sigma} \rangle \rightarrow_A x^i$ for i = 1, ..., n.
- (a) Let $\langle z_{\sigma} \rangle$ be a net in A such that $\langle z_{\sigma} \rangle \rightarrow_{A} z$ and $z_{\sigma} \in p_{A}(x_{\sigma}^{1},...,x_{\sigma}^{n}) = p(x_{\sigma}^{1},...,x_{\sigma}^{n}) \cap A$, $\sigma \in \Sigma$. According to the last lemma then $\langle x_{\sigma}^{i} \rangle \rightarrow_{X} x^{i}$, i = 1,...,n and $\langle z_{\sigma} \rangle \rightarrow_{X} z$. Since $z_{\sigma} \in p(x_{\sigma}^{1},...,x_{\sigma}^{n})$ and $\prod_{X} \in TP_{n}(X)$ we have $z \in p(x^{1},...,x^{n})$. But $z \in A$, so $z \in p(x^{1},...,x^{n}) \cap A = p_{A}(x^{1},...,x^{n})$.
- (b) Suppose that $z \in p_A(x^1,...,x^n)$. Then $z \in p(x^1,...,x^n)$ and because of that, there is a net $< y_\sigma >$ in X such that $< y_\sigma > \to_X z$ and $y_\sigma \in p(x^1_\sigma,...,x^n_\sigma)$, $\sigma \in \Sigma$. A is open, so there is $\sigma_1 \in \Sigma$ such that for $\sigma \geq \sigma_1, y_\sigma \in A$. We define

$$z_{\sigma} = \left\{ egin{array}{ll} y_{\sigma} & ext{for} & \sigma \geq \sigma_1 \ x_{\sigma}^1 & ext{otherwise} \end{array}
ight.$$

Now, $z_{\sigma} \in A$ for all $\sigma \in \Sigma$ and $z_{\sigma} \in p_A(x_{\sigma}^1, ..., x_{\sigma}^n)$. Also $\langle z_{\sigma} \rangle \rightarrow_X z$, and by Lemma 5.1, $\langle z_{\sigma} \rangle \rightarrow_A z$. \square

Example 1. Let (X, \mathcal{O}) be a Hausdorff space, where $|X| \ge n$. Then $[X]^n$ is an n- partition of X. Trivially, it is a topological n- partition (since $z \in p(x^1, ..., x^n)$ would imply $|p(x^1, ..., x^n)| > n$).

Example 2. Let (X, || ||) be a normed vector space. It is easy to check that

$$\Pi = \{ p(x,y) \mid x, y \in X, \ x \neq y \}$$

where $p(x,y) = \{\lambda x + (1-\lambda)y \mid \lambda \in R\}$ is an one-dimensional manifold, is a 2-partition on X. For a proof that $\Pi \in TP_n(X)$ we will use Theorem 2.2. and

Lemma 3. Let $a_n \in X$, $n \in N$; $a, b \in X$ and $\lambda_n \in R$ for $n \in N$. If $\langle \lambda_n a_n \rangle \to b$ and $\langle a_n \rangle \to a \neq 0$, then $\langle \lambda_n \rangle$ is a convergent sequence.

Proof. Since the norm is continuous we have $<|\lambda_n| ||a_n|| > \rightarrow ||b||$ and $<||a_n|| > \rightarrow ||a||$. Also $||a|| \neq 0$, and it follows:

$$<|\lambda_n|> = <\frac{|\lambda_n| ||a_n||}{||a_n||}> \to \frac{||b||}{||a||} = \mu.$$

For $\mu=0$ the proof is over. If $\mu>0$, suppose that $<\lambda_n>$ does not converge. Then there are subsequences $<\lambda_{n_k}a_{n_k}>\to -\mu a$ and $<\lambda_{n_m}a_{n_m}>\to \mu a$. A contradiction . \square

Let $x, y, z \in X$ be distinct points, $\langle x_n \rangle \rightarrow x$ and $\langle y_n \rangle \rightarrow y$.

- (a) Let $\langle z_n \rangle \to z$ and $z_n \in p(x_n, y_n)$, $n \in N$. Then $\lambda_n(y_n x_n) = z_n x_n$. By Lemma 5.2, since $\langle \lambda_n(y_n x_n) \rangle \to z x$ and $\langle y_n x_n \rangle \to y x \neq 0$, $\langle \lambda_n \rangle$ converges. If $\langle \lambda_n \rangle \to \lambda$, then $\langle z_n \rangle \to x + \lambda(y x)$, that is $z \in p(x, y)$.
- (b) Let $z \in p(x, y)$. Then for some $\lambda \in R$, $z = x + \lambda(y x)$. If we define $z_n = x_n + \lambda(y_n x_n)$, then $z_n \in p(x_n, y_n)$ for $n \in N$ and $\langle z_n \rangle \to z$.

Example 3. If in the previous example $X = R^2$, then we have the usual Euclidean plane. By Theorem 5.1, for each automorphism of R^2 we get a topological 2-partition of R^2 . For example the family of curves $cy = (ax+b)^3$, where $a^2 + c^2 > 0$, which consists of cubic paraboles and horizontal and vertical lines is such a partition.

Also, for every open set $G \subset \mathbb{R}^2$, according to Theorem 5.2, Π_G is a topological 2-partition.

Example 4. Let (R^2, Π) be the Euclidean plane from the last example and $A = [0, 1]^2 \cup ([1, 2]) \times \{0\}$). Then Π_A is a 2-partition of A, but it is not topological although A is compact, connected etc. (The condition (b) is not satisfied).

Example 5. Let X be the complex plane (or R^2 , because these two spaces are homeomorphic). For distinct points $x, y, z \in X$ there is the unique circle

 $\mathcal{K}(x,y,z)=\mathcal{K}(c,r)=\{c+re^{i\varphi}\mid \varphi\in[0,2\pi]\},$ where the center c and the radius r are given by

$$c(x,y,z) = rac{\mid x\mid^2 (y-z) + \mid y\mid^2 (z-x) + \mid z\mid^2 (x-y)}{2iIm\{(y-x)(z-x)\}},$$
 $r(x,y,z) = rac{\mid x-y\mid \mid y-z\mid \mid z-x\mid}{2\mid Im\{(y-x)(z-x)\}\mid}$

if x, y and z are not colinear; or there is the unique line $\ell(x, y) = \{x + \lambda(y - x) \mid \lambda \in R\}$, if these points are colinear. Thus the set of all circles and lines is a 3-partition of the plane. It is also easy to verify that the points x, y, z are colinear iff $Im\{\overline{(y-x)}(z-x)\} = 0$.

Let us show that this partition is topological. Since C is a first countable space, we can apply Theorem 2.2. Let x, y, z, t be distinct points, and $\langle x_n \rangle \to x, \langle y_n \rangle \to y$ and $\langle z_n \rangle \to z$.

Lemma 4. If $p(x_n, y_n, z_n)$ is a circle for all $n \in N$, then

(a') if
$$\langle t_n \rangle \to t$$
 and $t_n \in p(x_n, y_n, z_n), n \in N$, then $t \in p(x, y, z)$

(b') if $t \in p(x, y, z)$, then there is a sequence $\langle t_n \rangle$ such that $\langle t_n \rangle \to t$ and $t_n \in p(x_n, y_n z_n), n \in \mathbb{N}$.

Proof. Assume $p(x_n, y_n, z_n) = \mathcal{K}(c_n, r_n)$, where $c_n = c(x_n, y_n, z_n)$ and $r_n = r(x_n, y_n, z_n)$, $n \in \mathbb{N}$. We divide the proof in two parts:

 1^0 x, y and z are not colinear.

Then $p(x,y,z) = \mathcal{K}(c,r)$, where c = c(x,y,z), r = r(x,y,z). Since $\langle (x_n,y_n,z_n) \rangle \rightarrow (x,y,z)$, in C^3 and c(x,y,z), r(x,y,z) are continuous functions, we have $\langle c_n \rangle \rightarrow c$ and $\langle r_n \rangle \rightarrow r \langle \infty$.

- (a') Let $\langle t_n \rangle \to t$ and $t_n \in p(x_n, y_n z_n)$. Then $t_n = c_n + r_n e^{i\varphi_n}$ that is $|t_n c_n| = r_n$ for all $n \in N$. By continuity of $|\cdot|$ we have |t c| = r, that is $t \in \mathcal{K}(c, r) = p(x, y, z)$.
- (b') If $t \in p(x, y, z)$, then $t = c + re^{i\varphi_t}$. If we define $t_n = c_n + r_n e^{i\varphi_t}$, then $t_n \in p(x_n, y_n z_n)$ and $t_n > \to t$.

 2^0 x, y and z are colinear

Then
$$Im\{\overline{(y-x)}(z-x)\}=0$$
 and $p(x,y,z)=\ell(x,y).$ Since
$$<\mid x_n-y_n\mid\mid y_n-z_n\mid\mid z_n-x_n\mid>\to\mid x-y\mid\mid y-z\mid\mid z-x\mid$$

we have $\langle r_n \rangle \to \infty$.

- (a') Let $\langle t_n \rangle \to t$ and $t_n \in p(x_n, y_n, z_n)$. Suppose that $t \notin \ell(x, y)$. Then x, y and t are not colinear. Since $\langle x_n \rangle \to x$, $\langle y_n \rangle \to y$ and $\langle t_n \rangle \to t$, where $x_n, y_n, t_n \in \mathcal{K}(c_n, r_n)$, by 1^0 we have $\langle r_n \rangle \to r < \infty$. A contradiction. Thus $t \in \ell(x, y) = p(x, y, z)$.
- (b') Let $t \in p(x,y,z)$. Then $t=x+\lambda(y-x)$ for some $\lambda \in R$. If $x_n=c_n+r_ne^{i\varphi_n^x}$ and $y_n=c_n+r_ne^{i\varphi_n^y}$, $n \in N$ we define

$$t_n = c_n + r_n \frac{1 + i\lambda \frac{|y_n - x_n|}{r_n}}{|1 + i\lambda \frac{|y_n - x_n|}{r_n}|} e^{i\varphi_n^x}, \quad n \in \mathbb{N}.$$

Now, since $|t_n - c_n| = r_n$ it holds $t_n \in p(x_n, y_n, z_n)$, $n \in N$. Since

$$t_n = x_n + \left[\left(\frac{1 + i\lambda \frac{|y_n - x_n|}{r_n}}{|1 + i\lambda \frac{|y_n - x_n|}{r_n}|} - 1 \right) \frac{r_n}{|y_n - x_n|} \right] |y_n - x_n| e^{i\varphi_n^x}$$

and since $\frac{|y_n-x_n|}{r_n} \to 0$, it can be shown that the part in the brackets tends to $i\lambda$ and that $|y_n-x_n| e^{i\varphi_n^x} \to \frac{y-x}{i}$, thus $\langle t_n \rangle \to x + \lambda(y-x) = t$. \square

Lemma 5. If $p(x_n, y_n, z_n)$ is a line for all $n \in N$, then (a') and (b') from the previous lemma hold.

Proof. Since $\langle x_n \rangle \to x$, $\langle y_n \rangle \to y$, $\langle z_n \rangle \to z$ and $z_n \in \ell(x_n, y_n)$, according to Example 2 we have $z \in \ell(x, y)$ and p(x, y, z) is a line. Now, it holds the conclusion from Example 2. \square

Assume that in the family $\{p(x_n, y_n, z_n) \mid n \in N\}$ there are both lines and circles.

Let p(x, y, z) be a circle. Suppose that infinitely many of $p(x_n, y_n, z_n)$ are lines. Then they make a convergent subsequence, and according to the last lemma p(x, y, z) is a line. A contradiction. Thus there is at most finitely many lines and we can apply Lemma 5.3.

Let p(x, y, z) be a line. For the discussion is interesting the case when $p(x_n, y_n, z_n)$ are lines for $n \in N'$, and circles for $n \in N''$, where $N = N' \cup N''$ and $|N'|, |N''| \ge \aleph_0$. But application of Lemma 5.3. and Lemma 5.4. to these subsequences gives the desired conclusion.

134 M.S.Kurilić

References

[1] Engelking, R., General Topology. Warszawa: PWN - Polish Scientific Publishers 1977.

- [2] Hartmanis, J., Generalized partitions and lattice embedding theorems. In: Proc. of Symposia in Pure Mathematics, Vol II, Lattice theory. pp. 22-30. Amer. Math. Soc. 1961.
- [3] Picket, H.E., A note on generalized equivalence relations. Math. Notes, 860-861 (1966).
- [4] Skornyakov, L.A., Topological projective planes. Trud. Mosk. Mat. Obc. 3, 347-373 (1954).

REZIME

n- PARTICIJE TOPOLOŠKIH PROSTORA

n-particija skupa X je familija Π podskupova X, takva da je svakih n tačaka skupa X sadržano u tačno jednom elementu particije i svaki element particije sadrži najmanje n tačaka iz X. Ako je (X,\mathcal{O}) Hausdorffov prostor a Π zadovoljava odredjene topološke uslove, na Π je definisana topologija. Ispitane su osnovne kardinalne funkcije prostora (Π,\mathcal{O}_{Π}) . Pokazano je da su topološke projektivne ravni kao i topološke Euklidske ravni specijalne topološke 2-particije. Date su neke konstrukcije novih od starih topoloških n-particija kao i primeri ovakvih particija u normiranom linearnom prostoru.

Received by the editors August 12, 1992