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Abstract

A partition of type n on a set X is a family II of its subsets, such
that any n elements of X are contained in exactly one subset and every
subset contains at least n elements of X. If X is a Hausdorff space and if
II satisfies certain topological conditions (expressed by the convergence
of nets) then we consider II as a topological space.Some examples of
such partitions are given here. Topological projective and Euclidean
planes appear as special cases of 2-partitions.
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1. Preliminaries

The well-known notion of the n—partition on a set X appears in many
different branches of mathematics. In combinatorics it is investigated as a
block-scheme. In algebra were studied the lattices on n—partitions and the
connection of n—partitions with quasigroups. Geometrist sees an n-partition
as an incidence structure.

The idea to topologize an n—partition is a result of a conversation with
professor J.Usan who considered n—partitions from the aspect of n—ary
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relations and hyperoperations. I am grateful to him for many useful sugges-
tioms.

Finally, something about notation. If X is a set | X | will be its cardi-
nality, P(X) the power set of X and [X]™ the family of subsets of X with
exactly n elements.By N, R and C' we will denote the set of natural, real and
complex numbers respectively. The set of all permutations of {1,2,...,n} will
be denoted with {1,2,...,n}!. If (X, O) is a topological space, letters P and
B will be reserved for the subbase and base for the topology O. At last, the
fact that a net < z, > converges to z will be denoted by < z, >— z.

2. Topological n—partitions

Let X be a set with at least n elements. By [2], a collection II C P(X) is
an n—partition on X iff (i) each p € Il contains at least n elements; (ii) any
n distinct elements of X are contained in some p € II; and (iii) two distinct
elements of II may have at most n — 1 common elements.

According to the definition, n distinct elements z!,...,z™ € X determine
the unique element of II, denoted by p(z!,...,z"), (notation p({z!,...,a"})
or pys1,.. ony would be better but more complicated). Clearly, p(zl,...,z") =
p(z™,...,z™) for every m € {1,2,...,n}!. Also, if ¢, ...,y" € p(z!,...,z") are
distinct, then p(z!,...,z") = p(y,...,y™).

To simplify the following definition, if z!,...,#® € X are not distinct
(that is if | {z!,...,2™} |< n) we define p(z!,...,z") = X. Then, of course,
p(zt,...,z™) € II (exept if Il = {X}).

Definition 1. Let (X, Q) be a Hausdorff space. An n— partition 1l on X
is topological iff it holds: if z',22,...,2",z € X are arbitrary distinct points
and < z! | 0 € ¥ > are nets, such that < 2t >— 2') i = 1,...,n; where
p(zl,...,a%) = p, and p(z',...,x") = p, then

(a) if < 2, > z and z, € p, for all 0 € ¥, then z € p.

(b) if z € p, there is a net < z, | 0 € ¥ > such that < 2, >— z ana
zy € ps for all o € .

The set of all topological n—partitions on X will be denoted by T P,(X).

Since X is a Hausdorff space and nets < 2! > converge to distinct points,
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there is 0g € X such that z!,...,z" are distinct for ¢ > o¢. Therefore, for
o > ag, we have p(zl,....27) € II.

Theorem 1. Elemenis of Il are closed in X.

Proof. Let p€ I,z € p and z', ...,z € p where z!, ..., 2™ are distinct. Then
there is a net < z, | ¢ € ¥ > in p such that < z, >— z. If we define 2! = 2*
fori = 1,...,n and o € ¥, we have < 2% >— z* for i = 1,...,n and for all
o €Y, z, €plz),....,2") = p. According to (a) of the previous definition,
z€p. O

If X is a first countable space, nets can be replaced by sequences.

Theorem 2. Let (X, O) be a first countable, Hausdorff space. Ann—partition
I on X is lopological iff it holds: if z',....z"™, z € X are arbitrary distinct
points and < :EfC | kK € N > are sequences such that < :1:}; >— &' for all
i =1,...,n; where p(z},...,zY) = pr, k € N and p(z',....z™) = p, then

(a’) if < zp >— z and z; € pi for all k € N, then z € p.

(b’) if z € p, there is a sequence < z; | k € N > such that < z, >— z
and zi € pg for all k € N.

Proof. (=) Is obvious because each sequence is a net.

(<) Suppose that z',...,2", 2z € X are distinct points and < z¢ >— 2?
fori=1,..,n. Let B(z") = {B} | k € N} be a monotonous, countable local
base at the point z*, ¢ = 1,...,n and B(z) such a base at the point z.

(a) Let < 2, >— 2z where z, € p,, o € %; and let £k € N. Because of
convergence of the observed nets, there exists U}; such that for ¢ > a};, :L'f, €
Bi, i=1,..,n, and there is 7 such that z, € B for o > of. If we choose
o, € ¥ such that o > U}C,...,U}:,az, then zgk € B}'c for i = 1,...,n and
2o, € Bf. This holds for all £ € N, so < 2}, >— z', i = 1,..,n and
< Zg, >— 2. 5ince z,, € Py, k € N, according to (a’) we have z € p.

(b) Let z € p. Firstly we will prove that
(1) Vne N Jo, €E Vr >0, p, N B, #D.

Suppose that (1) does not hold. Then thereis ng € N such that T = {r € X |
pr N BZ =0} is cofinal in X, so < 2t |7 €T >— gz fori=1,...,n. By the



124 M.S.Kurilié

construction given in (a) we get sequences < .’l?f;.k ke N>—zi i=1,..,n.
Because of (b’) there is a sequence < 2 >— z such that z; € Pr,.- Now, for
B thereis ky € N such that 2, € B} . But z, € Py,

capBZ = 0. A contradiction. '

According to (1) there is o7 € ¥ such that for ¢ > o; we have PsNB; # (.
Then N(o) = {k € N | p, N B # 0} # 0, since 1 € N(o). Since B(z) is a
monotonous local base, N(o) = N or there is mg = max N (o). For ¢ > o,
we define:

B — { po N B, if m, exists
1 {z} otherwise.

If m, exists, then m, € N(o),so B, = p, N BZ,_ # 0, and B, C p,. If
N(o)= N then for all k € N, p, N Bf # 0, that is 2 € p, = p,. (Theorem
2.1), so B, = {2} C p,. Therefore for all ¢ > o1, 0 # B, C p,.

For 0 > 01 we choose 2, € B,. For the rest of o € ¥ we define z, = z}.
Now 2z, € p, for all o € X.

Let n € N. According to (1) for 0 > o, p, N BZ # 0. If m, exists,
then n < m, and B, C B;,s0 2, € B, = p, N B C Bi. If m, does
not exist, then 2, = z € BZ. Hence for each ¢ > 0, 2, € BZ, so we have
< zZg >— 2. 0O

Now, let (X, O) be a Hausdorff space and Il € TP,(X). If for O € O we
define O* = {pe I | pN O # B}, then Py = {O* | O € O} is a subbase
for some topology on II, denoted by Op. From now on we will consider the
space (II,On).

3. Base, local base and density

Lemma 1. Let p € I and let z!,...,2™ € p be distinct points. If B(z’) isa
local base at the point z*, i = 1,...,n, then '

(i) if O € O and p € O*, then there is (By, ..., By) € I B(z') where

pe()Bf coO*

=1

(i) if k € N and O; € O for j = 1,...,k, and p € (Y=, O3, then there is
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(Bi, ..., By) € I, B(z") such that

pe ﬂB*cﬂo*.

=1

Proof. Firstly let us notice that B(a:i), 1t = 1,...,n are directed sets, so
™, B(z*) is directed too. Let B? € B(z*) be arbitrary, but fixed.

(i) Let p € O*. Suppose that for each (By,...,B,) € I, B(z*) there
exists ¢(p,,.. B,) € Il such that ¢, B, € Mizy B* and ¢(p,,.. +Bu) No = 0.
For all < € {1,...,n} and (By,...,B,) € X B(z’) we choose T(By,.\Bn) €
9(B,.,...B,) (1 Bi. Then < z’éBl,---an) > is anet for i = 1,...,n. Let B} € B(z!)
and (By,...,B,) > (B}, BS,.., BY). Then B; C Bj and x%Bl,...,B,,) € By C B].
Therefore < I%Bl,...,Bn) >— z!. Similarly for other sequences. If z € pN O,
then according to (b) there is a net < zgp, . p, >— z and zp,, B, €

q(B,,...,B,)- But O is a neighborhood of z, so there is z(g», .. p»,) € O. Now
Z(B"y,..B") € 4(B";,..,B",) N O = 0. A contradiction.

Thus there exists (B, ..., By) E. ™, B(z*) such that for each ¢ € T, ¢ €
Ni—, BY implies ¢ € O*, that is (=, B C O*.

(ii) Let p € ﬂ;-;l 0% and j € {1,...,k}. Then p € O; and because of
(i) there is (B B}) € I B(a:i) satisfying p € N, B{" C O}. Now
p € My N BJ* c Nk, 03, but Ny Ny BI* = N, Bf where B; =
ﬂjz Bf for 1=1,..,n. EI

Now, we are able to prove:

Theorem 3. Let (X, ) be a Hausdorff space and Il € TP, (X). Then

(1) if B is a base for the topology on X, then B'n = {(;=, B} | (B1,...,Bx) €
B"} is a base for the topology on II.

(1) if w(X) > R, then w(Il) < w(X).

(111) if p € T if z',...,z™ € p are distinct points and B(z*) is a local
base at the point z*, i = 1,...,n, then B(p) = {N1 B! | (B1,-, Bn) €
N2, B(z*)} is a local base at the point p € II.

(iv) if p € TL, then x(p) < min{ITE, x(a") | {z?,....2"} € [p]}.

(v) if D is dense in X, then D = {p(d’, ...,d") | {d},...,d"} € [D]"} is
dense in II.
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(vi) If d(z) > Ro, then d(II) < d(X).

Proof. (i) One base for the topology on Il is By = {ﬂJ =10} |keEN; O;€
O, j=1,...,k}. Obviously B'; C By C Op. Let PE ﬂ ;-', {z!,...,2"} €
[p]™ and let B(z') be a local base at the point z*, i = 1

Accordmg to Lemma, 3.1, there is (By, ..., B,) € I 1B(a: ) such that p €
1 Bf C ﬂj_l 0. Since B is a base, there are B! € B where z* € B! C B;.

Now PEB,C ﬂ1=1 O} where B, = (Y=, Bf* € B'n1, so B’y is also a base.

(ii) If B is a base on X satisfying | B |= w(X), then from (i) we have
w(l) <[ B'n <] B [" =] B |= w(X).

The proofs of the other statements are also direct . O

Corollary 1. If X is a second countable (first countable, separable) space
then I is a second countable (first countable, separable) space.

Proof. See (ii), (iv) and (vi) of the preceeding theorem . O
Theorem 4. If the space X is discrete, then Il is a discrete space too.

Proof. Let p € Il and {z!,...,2"} € [p]" Since X is discrete, {z'} € O for
i =1,...,n. Thus N2, {z'}* = {p} € On, so I is discrete. O

Topological n—partition is defined if (X, ) is a Hausdorff space. So it
‘holds.

Theorem 5. II is a Hausdorff space.

Proof. Let p,q € Il and p # q. Let {z1,...,z"} € [p]*, z"1 €¢qg—p. X
is a Hausdorff space, so there are local bases B(z'), i = 1,...,n, such that
for i # j, and for B; € B(z'), B; € B(2?) it holds B; N B; = 0. Let us
suppose that for every ( By, ... ﬂ_,_l) € H:‘fllB(zi) there exists p(B, ... B,41) €

ﬂ““ B;. Let zzBl y € p(}_;1 "“) N B*, then as in Lemma 3.1 one can

\ n+1
prove that < ztBh___, Bny) > % for all i = 1,...,n + 1. Since x?gll,...,B,,) €

Peli,. 0>, ny) 51 T E TPA(X), the condition (2)gives 41 €
p(z!,...,z™) = p. A contradiction. Therefore there are By, ..., B,y such that
(Ni=1 B*) N Bj,, = 0. These are disjoint neighborhO(?ds of the points p and
g. O :
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4. Topological planes as topological 2-partitions

In [4] Skornyakov investigated topological planes. In the further consider-
~ation the space of lines in a topological plane will be observed as a subset
of the power set of the set of its points, and the incidence relation will be
interpreted -as the relation of membership (€). '

A pair (X,II) where X (the set of points) and II (the set of lines) are
nonempty sets, II C P(X), and where (1) each line contains at least two
points; (2) every two points are contained in some line; (3) two distinct lines
can have at most one common point; (4,) two distinct lines have at least
one common point; is a projective plane.

If, instead of (4,), holds (4g) if the point = does not belong to the line p,
there is a unique line ¢ which contains =z and which is disjoint from p; then
(X,10) is an Euclidean plane.

If X and IT are Hausdorff spaces and if (X, II) is a projective plane such
that it holds: (a)Vz,y € X, Vpe [z #yAz,y € p=> VO € U(p)AV €
U(Z)IW € U(y)V*NW* C O] and (B)Vp,q € Il, Vo € X[p # qAz €
pNqg= VO € U(z)AV € U(p)IW € U(g)(UV)N(UW) C O] then (X,II) is
a topological projective plane.

If (X, II) is a Euclidean plane and, except of (a) and (8) it holds (y)Vp, q €
Il Vze X VU elU(p)[(pnNg=0Vp=q)Az€p| >[IV clU(z)IW €
U(q) Vr(re V*Ads € W rns =0)=r € U] then (X,II) is a topological
Euclidean plane.

Now we are able to prove:

" Theorem 6. If (X,Il) is a topological projective plane, then Il is a topo-
logical 2—partition on X.

Proof. The conditions (1), (2) and (3) are in fact the conditions (i), (ii)
and (iii) in the definition of the n—partition, for n = 2. Let us prove that II
is a topological partition . _

Let z,y,z € X be different points; B(z), B(y) and B(z) their local bases
and < 25, >— z, < Yy >— Y.

(a) Let < 2, > z and z, € p(z,,Ys) for 0 € X. According to
(e)B(p(z,y)) = {B; N By | B: € B(z),B, € B(y)} and B(p(y,2)) =
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{B;n B; | B, € B(y), B, € B(z)} are local bases for p(z,y),p(y,2) € IL. If
B; € B(z), By € B(y) and B, € B(z), from the convergence of the observed
nets if follows that there are 04, 02,03 € X such that for ¢ > 04,2, € B,; for
o > 03,Ys € By and for 0 > 03,2, € B,. Let 013 > 01,03 and 023 > 04, 03.
Now, for 0 > 012,p(%s,9,) € By N By and for 0 > 043, p(Ys, 2,) € B; N B;.
Since B;, B, and B, are arbitrary we have < p(z,,y,) >— p(z,y) and
< p(Yo,20) >— p(y,2). Finally z, € p(zs,9,) imply p(zs,9:) = (Yo, 25)
and, since II is a Hausdorff space, it follows p(z,y) = p(y,z), that is
z € p(z,y).

(b) Let z € p(z,y) and t ¢ p(z,y). Now we define

2 = z if p(za7 ya) = P(t, Z)
7 p(Zo,Ys) Np(t,z) otherwise.

Then for all 0 € X, 2z, € p(z,,¥,). Let U € U(z). B(p(z,y)) from (a) and
B(p(t,z)) = {Bf N B} | B: € B(t), B, € B(z)} are local bases at the points
p(z,y) and p(t, z) of II. According to () and since z € p(z,y)Np(t,z), there
are B, € B(z), By € B(y), B, € B(z) and B, € B(t) such that

(2) Vy[(3re B;nB,, Is€ B;NB;, yerns)=>yeU]

From the proof of (a) we have < p(z,,¥y,) >— p(z,y), so there is 0, € X
such that for ¢ > o1,p(z,,9,) € By N By. Also p(t,z) € By N B}, thus
according to (2) we have that for each o > oy for which p(z,,y,) # p(t, 2)
it holds p(z,, y,) N p(t, z) C U, that is z, € U. Clearly, if p(z,,y,) = p(t, 2),
then z, = z € U. Since U € U(z) is arbitrary we have < z, >— z O

Theorem 7. If (X,II) is a topological Euclidean plane, then II is a topo-
logical 2—-partition on X.

Proof. As in the previous theorem II is a 2-partition on X which satisfies
(a). ,
(b) Let z € p(z,y) and t ¢ p(z,y). According to [4] Lemma 5, since

p(z,y) # p(t, z), these lines have totaly disjoint neighborhoods. Thus there

are B, € B(z) and By € B(y) such that for each ¢ € B} N B; we have
g N p(t,z) # 0. As in the Theorem 4.1, < p(z,,¥,) >— p(z,y) and there is
o1 € ¥ such that for ¢ > 04, p(zs,y,) € By N B;. Then p(z,,y,) and p(t, z)
intersect and for 2, defined as in the Theorem 4.1, because of (3) we have
< 2y >— 2. 0
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5. Other examples

There are some ways to make a new topological n— partition of a given
space from the old one. Here we mention two of them.

Theorem 8. Let X and Y be Hausdorff spaces, f : X — Y a function,
IIx € TPn(X) and Iy = {f(p) I peE Hx}. Then

(i) If f is a bijection, then lly is an n—partition on Y and for distinct
points z',...,z" € X and y',...,y" €Y it holds:

f(p(xl, ooy zn)) = P(f(xl)a ---,f(zn))’
St v™) == p(F7H YY), -0 FHE™))

(i1) If f is a homeomorphism then Ily € TP,(Y) and IIx and Ily are
homeomorphic spaces.

Proof. (i) The proof is completely strajghtforwa.rd.

(ii) Firstly, we will prove that IIy € TP, (Y). Let y!,...,4",t € Y be
distinct points and let < 4} >— ¢ for i = 1,...,n. Then z* = f~V(y),i =
1,...,n and z = f~1(t) are distinct elements of X and, if z} = f~1(y}), we
have < ¢ >— z¢, i = 1,...,n, (because f~! is continuous).

(a) Let < t, > t and t, € p(yl,...y7),0 € . If 2, = f~(t,),
continuity of f~! gives < z, >— z. Also, according to (i), 2z, € p(z},...,z7)
for o € X. Since Iy is a topological n—partition, we have z = p(z!,...,z").
Now (i) gives t € p(y!, ..., y™).

(b) If ¢t € p(y',...,y™), then z € p(z?,...,z™). Now, there is a net <
2, >— z such that 2, € p(zl,...,27), ¢ € X. Since f is continuous, <
ty >— t, where t, = f(z,). Also , by (i), t» € p(y},...,y?) for all ¢ € .

Let us prove IIy = Ilx. We define ¥ : [Ix — Ily, where ¥(p) = f(p) for
all p € Ix. ¥ is obviously a bijection, since f is. Continuity of ¥ and ¥~!
follows from the relation

v (Y B) = (B

where By, ..., B, are basic open sets in Y, continuity of f and f~! and the
Theorem 3.1. (i) O
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In the proof of the following statement we will use the next well-known
fact.

Lemma 2. Let A be a subspace of the space X, < a, |0 € X > anetin A
anda € A. Then < a, >—x a iff < a, >—4 a.

Theorem 9. If X is a Hausdorff space, A C X, where | A|>n and lx €
TPn(X), then

(i) Mg ={pNA|pelly and|pn A|> n} is an n—partition of A.
(i) If A is open, then 114 € TP,(A).

Proof. (i) Obviously.

(i) Let z!,...,z™,2 € A be djstinct points and < z’ | ¢ € £ > nets in A
where<:1: >—>Aa: fori=1,. :

(a) Let < 2z, > be a net in A such that < 2, >—>4 z and 2, €
pa(zl,..,27) = p(zl,...,27) N A, o € . According to the last lemma then
<zl >—x 2z, i=1,.,nand < 2z, >—x 2. Since z, € p(zl,...,27) and
IIx € TP,(X)wehave z € p(z!,...,2™). But z € A,s02 € p(z,...,z")NA =
pa(zl,...,2"). "

(b) Suppose that z € pa(z?,...,z"). Then z € p(z!,...,z™) and because
of that, there is a net < y, > in X such that < 4, >—x 2z and y, €
p(z},...,27), o € . A is open, so there is oy € ¥ such that for ¢ >
o1, Yo € A. We define

zl  otherwise

{yo for 02> o
2y =

Now, z, € A for all & € T and z, € pa(zl,...,z7). Also < 2z, >—x 2, and
by Lemma 5.1, < 2z, >—4 2. O '

Example 1. Let (X, 0) be a Hausdorff space, where | X |> n. Then [X]"
is an n— partition of X. Trivially, it is a topological n— partition (since
z € p(zl,...,2™) would imply | p(z!,...,z™) |> n).

Example 2. Let (X, ]| ||) be a normed vector space. It is easy to check that

I={p(z,9)|z,y€ X, = #y}
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where p(z,y) = {Az + (1 - M)y | A € R} is an one-dimensional manifold, is
a 2-partition on X. For a proof that Il € TP,(X) we will use Theorem 2.2.
and

Lemma 3. Leta, € X, n € N; a,b€ X and A\, € R forn € N. If
< Aplyn >— b and < a, >— a £ 0, then < A\, > is a convergent sequence.

Proof. Since the norm is continuous we have <| A, | {|a.|| >— |[b]| and
< |lanll >— ||a||- Also ||a|| # 0, and it follows:

Mo Llleall 18I _
o lal

For p = 0 the proofis over. If 4 > 0, suppose that < A, > does not converge.
Then there are subsequences < A, a,, >— —pa and < A, a,, >— pa. A
contradiction . 0O

<| An |>=<

Let z,y,z € X be distinct points, < 2, >— ¢ and < y, >— .

(a) Let < z, >— z and 2z, € p(Zn,¥n), n € N. Then A,(y, — z,) =
Zn — Tn. By Lemma 5.2, since < Ap(yn — ) >— 2 —z and < ¢, — &5 >—
y—z #0, <\, > converges. If < A, >— A, then < z, >— z + A(y — z),
that is z € p(z, y).

(b) Let z € p(z,y). Then for some A € R, z =z + A(y—z). If we define
Zn = Tn + AM(Yn — Tn), then z, € p(zn,yn) for n € N and < 2z, >— 2.

Example 3. If in the previous example X = RZ then we have the usual
Euclidean plane. By Theorem 5.1, for each automorphism of R% we get a
topological 2-partition of R%. For example the family of curves cy = (az+5)3,
where a? + ¢ > 0, which consists of cubic paraboles and horizontal and
vertical lines is such a partition.

Also, for every open set G C R?, according to Theorem 5.2, Ilg is a
topological 2-partition.

Example 4. Let (R?,1I) be the Euclidean plane from the last example and
A = [0,1]2 U ([1,2]) x {0}). Then II4 is a 2-partition of A, but it is not
topological although A is compact, connected etc. (The condition (b) is not
satisfied).

Example 5. Let X be the complex plane (or R%, because these two spaces
are homeomorphic). For distinct points z,y,2 € X there is the unique cirsle
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K(z,y,2) = K(¢c,7) = {c + re*? | ¢ € [0,2r]}, where the center ¢ and the
radius r are given by o

1P -a+|yP -2t |z]*(z—y)
o(z,9,2) = 2iIm{(y — z)(z — z)} ’

lz-ylly—zllz—=]

"8 = T Tm{(y— =) — ) |
if 2,y and z are not colinear; or there is the unique line ¢(z,y) = {z + A(y —
z) | A € R}, if these points are colinear. Thus the set of all circles and lines
is a 3-partition of the plane. It is also easy to verify that the points z,y, 2
are colinear iff Im{(y — z)(z — z)} = 0.

Let us show that this partition is topological. Since C is a first countable
space, we can apply Theorem 2.2. Let w,y,z t be distinct points, and <
Tp >0 2, < Yo >— Yy and < 2, >— 2.

Lemma 4. If p(2n,Yn, 2n) is a circle for alln € N, then
(a’) if <t, >>t andt, € p(€n,Yn,2s), n € N, then t € p(z,y,2)

(b°) if t € p(z,y, z), then there is a sequence < t, > such that < t, >—1
and ty, € p(Tn,Ynzn), B € N.

Proof. Assume p(Zn,Yn, 2n) = K(cn, ), Where ¢, = ¢(Zn, Yn, 2,) and r, =
(Zny Yn, 2n), » € N. We divide the proof in two parts:

1° z,y and z are not colinear.

Then p(z,y,2) = K(c,r), where ¢ = ¢(z,y,2), r = r(z,y,2). Since
< (TpyYn,2n) >— (2,9,2), in C? and ¢(z,y,2), 7(z,y,2) are continuous
functions, we have < ¢, >—> cand < 1, >—> 1 < .

(a’) Let < t, >— t and ¢, € p(2n,Ynzn). Then t, = ¢, + rpet?n that is
| tn — ¢ |= 7p for all n € N. By continuity of | . | we have | t — ¢ |= 7, that
ist € K(e,r) = p(z,y, 2).

(b’) If t € p(z,y, 2), then t = c+re'#:. If we define ¢, = ¢, + r,€'%*, then
t, € p(Tn,Yn2zy) and < t, >— 1.

20 2,y and z are colinear
Then Im{(y — z)(z — z)} = 0 and p(z,y,2) = £(z,y). Since

<|wn_yn”yn—zn“zn_wn|>—)Iz_y||y_z||z_z|
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we have < r, >— o00.

(a’) Let < t, >— t and t, € p(2yn,Yn, 2zn). Suppose that t € {(z,y).
Then z,y and t are not colinear. Since < z, >— z, < y, >— ¥y and
< t, >—t, where 2., Yn,t, € K(cn,7s), by 1° we have < r, >—> 7 < 00. A
contradiction. Thus t € £(z,y) = p(z,¥, 2).

(b)LettEp(z ¥,2). Then t = z + A(y — z) for some A € R. If z,, =
Cn + Tne¥n and y, = cp + Tne ’W%, n € N we define

14 iAlEnzznl

I | evn neN.
| 14 dAln—=nl x"|

t, =cn+ 7

Now, since | t, — ¢n |: r,, it holds ¢, € p(zn,yn,zn), n € N. Since

oo (AR Ty
n = Tn Yn — Tn 6
|1+ /\Mll |yn_$n|

and since h’—"r—-x—'l—l — 0, it can be shown that the part in the brackets tends
to ¢A and that | y, — 2z | €% > L2 thus < t, >>z+A(y—z)=t. O

Lemma 5. If p(2n, Yn, zn) is a line for all n E N, then (a’) and (b’) from
the previous lemma hold.

Proof. Since < z, >—> z, < Y, >> ¥y, < 2z, >— 2z and z, € UTpn,Yn),
according to Example 2 we have z € £(z,y) and p(z,y,z) is a line. Now, it
holds the conclusion from Example 2. O

Assume that in the family {p(z,,¥yn,2) | » € N} there are both lines
and circles.

Let p(z,y,2) be a circle. Suppose that infinitely many of p(z.,yn,2n)
are lines. Then they make a convergent subsequence, and according to the
last lemma p(z,y,2) is a line. A contradiction. Thus there is at most finitely
many lines and we can apply Lemma 5.3.

Let p(z,y,2) be a line. For the discussion is interesting the case when
P(Zn, Yn, 2n) are lines for n € N’ and circles for n € N”, where N = N'UN"
and | N’ |,| N |> Ro. But application of Lemma 5.3. and Lemma 5.4. to
these subsequences gives the desired conclusion.
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REZIME

n— PARTICIJE TOPOLOSKIH PROSTORA

n—particija skupa X je familija [] podskupova X, takva da je svakih n
tataka skupa X sadrZano u ta¢no jednom elementu particije i svaki element
particije sadrzi najmanje n tacaka iz X. Ako je (X, O) Hausdorffov prostor
a [] zadovoljava odredjene topoloske uslove, na [] je definisana topologija.
Ispitane su osnovne kardinalne funkcije prostora (I], On). Pokazano je da
su topoloske projektivne ravni kao i topoloSke Fuklidske ravni specijalne
‘topolodke 2-particije. Date su neke konstrukcije novih od starih topoloskih
n—particija kao i primeri ovakvih particija u normiranom linearnom pros-
toru.
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