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Abstract

We define and study the Laplace transformation in the spaces Gaq,
a € A and prove the anaogous properties to classical ones for such
transformation.
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1. Introduction

We define and study the Laplace transformation in the spaces Ga, a € A
via the a-Fourier transformation developed in [3].

The definition is analogous to the distributional definition from [7]. All
the properties of the Laplace transformation of distributions with suitable
adaptations also hold for the Laplace transformation defined in this paper.

The definition are different from the ones used in [4], where the Paley-
Wiener type theorems for compactly supported and tempered generalized
functions are obtained.
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2. Basic Notions

We use a slightly changed notation from [3]. By A,, ¢ € Np, we denote
subsets of D(R™) with the following properties: ¢ € A, if

diam(supp(¢)) = 1, /qﬁ(z)dz =1, /z"‘qﬁ(z)dz =0, a€Ng, 1< |a| <q.

Obviously, Ag O A1 D .... By ¢(-) is denoted by £~"¢(-/¢).

£ is defined as a set of all functions (¢,¢,2) — Fy.(z), (¢,€,2) € Ap X
(0,1) x R™ which are smooth on R" for every fixed (¢,¢). We denote such
a function by Fj ..

Cys is the set of all A4, : Ag X (0,1) — C such that there exist N € Ny
such that for every ¢ € Ay there exist C' > 0 and 1 > 0 such that |4y .| <
Ce™N,e<m.

En is the set of all Gy, € € such that for every compact set K and every
B € NY there exists N € Ng such that for every ¢ € Ay there exist C' > 0
and 5 > 0 such that |0%Gg.(z)] < Ce™N, e <, z € K.

Denote by T’ the family of all increasing sequences which tend to infinity.

Cy is the set of all 4 € Cjpy such that there exist ¢ € I' and N € Ny
such that for every ¢ € Ay, ¢ > N, there exist C' > 0 and 5 > 0 such that
g < CeoDN, ¢ <,

N is the set of all G € £py such that for every 3 € Nf and every compact
set K there exist N € Ng and g € T such that for every ¢ € A;, ¢ > N,
there exist C > 0 and » > 0 such that |8°Gy.(z)] < Ce9D-N ¢ < g,
z € K.

The spaces of Colombeau’s generalized complex numbers and generalized
functions are defined by C = Cjp/Co and G = Epr /N respectively. We will
denote by G or [G4 (| the class of equivalence for G 4.

If g € D/, then by
Goe(z) =< 9(€), T H(E~ 2)/e) >, = € R,

is denoted the representative of the corresponding element in G. Its class is
called Colombeau’s regularization of g is denoted by Cd(g). In this sense,
the inclusions £ C D’ C G are valid.
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Denote by a a function defined on an interval [/, 00), /s, > 0 such that
it is continuous, non-decreasing and

zlim a(z) = oo and a(z) = O(z), = — .

The set of such functions is denoted by A. Note, if a € A, then In(a) €
A, as well.

Let a € A be fixed. Then O4 as the set of all functions & defined
on the interval [0, 00), with the following properties 8 continuous, positive,
increasing, and for every p > 0 there exists v > 0 such that 6(p + a(z)) =
O(z"), z — oo.

€a as the set of all elements G4 € £ with the following property: For
every 3 € Nj there exist N € Ny and 6 € O, such that for every ¢ € An
there exist C > 0 and n > 0 such that |8°Gy(2)] < CO(z)e™N, ¢ < n,
z € R™,

Na is the set of elements G4 . € & with the following property: For every
B € N7 there exist § € ©5, N € Ng and g € T such that for every ¢ € A,,
q > N, there exist C > 0 and n > 0 such that |88G4 (z)| < CO(z)e?@-N,
e<n,r€R" '

It is an ideal of £,. Colombeau’s space of a-generalized functions is

deﬁned by Ga = ga/Na.

For a; > a, £a, C €a, but Ga, ¢ Ga, because the map Gy, + Na, € Gq,
— Gy + Na € Ga is not injective. Because of that we shall define space of

”pseudo”-a; generalized functions g;fl .a as a subspace of Ga.

A net of functions uf,, € > 0, from D(R) is called a one dimensional
unit net related to a if it satisfies the following properties:

1. Ogug,s(:v)gl,:z:ER,€>0.
2. For some b > 0 and 7 > 0,

18 (x) = 1,a(z) < b/e, a8 (z) = 0,a(z) > bfe 41, ¢ > 0.

3. For every [ € Ng there exists ¢; > 0 such that lalpg,e(z)| <¢, z€
R,e>0
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We define the unit net p. related to a (in n-dimensional case) by

p2(z) = pd(z1) - o pf (22), where z = (z1,...,z,) € R".

Let p2 be a unit net related to a, B a measurable subset of R™, and
G € Gy. Then we define

a

“ e .
/ G(z)dz € C by its representative / Gy e(z)p(z)dz € Cpy.
B B

If B = R then the symbol f”a is used. One can easily prove that G4 € M
implies [5 G4 .(z)p2(z)dz € Co. Thus the definition of the integral in the
Ga make sense.

It is said that G € G is equal to H € G in generalized distribution sense,
G=H(gd),ifforeveryp € D, < G- H,yy>=0in C. :

A € C is associated to ¢ € C, A = ¢, if there exists N € Ng such that
lim, 9 Ay = ¢ for every ¢ € An. '

G € G is associated to H € G, G ~ H, if there exists N € Nq such that
for every 9 € D and every ¢ € Ay lim,_,0 < Gy — Hy ., % >= 0.

Let 4 be a unit net related to a. Then the a, u®-Fourier transformation
Faa on G, is defined by

a
u .
Faa(G)(z) = / G(y)e*®¥dy, z € R™.
It can be considered as an element of G,, , for any a; € A because

[Faua(Gse(t))(@) < Ce™,z € R™
The inverse a, u®-Fourier transformation is defined by
a
# -
f;}‘a(G) = (27r)‘"/2/ G(y)e ™¥dy,z € R™.

One can prove that both definitions make sense.

Now, we define a convolution in G,. Let G1,G2 € Ga, and let u2 be a

unit net related to a. Then we define Gy aJc“ (i3 as an element of G by

4
G1 % Gy(z) = / Gi(z — y)Ga(y)dy, = € R™.

The correctness of this definition is proved in [3]
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3. Laplace transformation

Let {2 be an open set in C*. In [2], Colombeau defined G(£) in the standard
way by considering () as an open subset in R*",

A G € G() is called holomorphic generalized function if for every z =
x+iy € 0
0 0
—+i—)G(z)=0,57=1,...
(5o +ig )GV =0, 5= 1 0om
We say that G € G, is pseudo aj-bounded at infinity, a;(z) > a(z),
denoted by G € gal a, if it has a representative G; . such that there exist
61 € Oa, and N € N such that for every ¢ € Ay there exist ¢' > 0 and
1 > 0 such that'

|G c(2)l < COi(Jz)e™, z €R™, € <.

If some operation on G, is well defined (that is, it does not depend on the
representatives), then all representatives of G have the property obtained by

making this operation with the ”"special” representative of G' € Q’;fl a, G .

Let T be a closed convex acute cone in R™ with the vertex at 0. Denote
by I' = {{| £z > 0, z € T’} its conjugate cone. Put C' = intI™ (C is an
open and convex cone) and T¢ = R™ + iC.

It is said that G € Ga is bounded on the side of the cone I if suppG C

'+ K, where K is a compact subset of R™. The space of all such generalized
functions is denoted by Ga(I'+). :

Let a € A, a(z) < In|z|. This means if § € O, then there exists a > 0
such that 8(z) < e®l®l in infinity. Let u? be a unit net related to a. Then
L,a is defined for G € Ga(T'+) by

L,a(G)(2) = Fa,a(G(€)e™*)(2)

pa .
= / G(€)e ¥e™de, x + iy € TC.

For every a; € A and every y € C, one can prove that L,a(G)(-+iy) € Ga,
is well defined. In this paper we consider the case a; = t. Since e % € O,
£ € K++,for a(z) < In|z|, the definition makes sense. In fact, one can easily
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see that the definition makes sense for every y € R™ when G € Ga(R"): Let
G¢.e € Na. Then (because a(z) < Inz)

07 [ Gacteretuzirael < [ (Ga(ElEle% e

Ki<a(1/e)+r

< Ci(a(1/e) + )"  sup 9G(|£|)e|ylfeq—NG
[l<a(1/e)+r

< Cl(y)01(a(1/e) + T)Eq_NG < C(y)eq"NG—Nl )

for ¢ small enough, where #; € 6,4, too. In the same manner we can see
that L,a(Gg ) € & for fixed y.

If G is bounded on the side of cone I' and y € C, then the constant C(y)
is equal to el¥/Cc. Because of its properties, which are similar to the classical
ones, we shall use only definition for such G.

L,a(G)(z) is a holomorphic generalized function in T because
o .0 PN :
. ¢ _ . —yé u:fd
(69:,- + ‘t—ayj )Lua(G)(z) (69:,- + 1——ayj)/ G(f)e € f

= / g G(E)e ¥t e ™o dE +i / g G(€)e™¥(=¢;)e™tdE = 0.

The definition of the generalized Laplace transformation coincide with
classical one ([7]) in the associated sense:

Proposition 1. Let ¢ € S’ be bounded on the side of the cone I'. Let
Cd : 8§’ — G,, for some a € A. Then for every y € C = intI'™ and for every
unit net u® related to a

L(g)(- + iy) = Lua(Cd(g))_-

Proof. Let 9 € §. Let v € C* be equal to one on the support of g and
bounded on the side of cone T'. Then, since F(1p)(£)e ¥v(£) € S, we have

< L(g)(z + 1), ¥(z) >

=< F(g(&)e™¥ ) (=), $(z) >=< g(£), () ¥ F($)(€) >
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and

< La(Cd(9))s.(z +iy), ¥(2) >=< F(g* ¢e(E)e %2 (£))(2), ¥(=) >

=< gx* ¢s(€)“g(£)76_y€f(w)(€) >,

where L and F are classical Laplace and Fourier transformation respectively.
Since

< g% (O (E), 1O HRF(D)(€) > — < g+ ¢:(£),7(E)e ¥ F (9)(€) >
= (BE(€) = 1) < g % 9e(), V)T F(¥)(E) >,
and p2(€)—1—0,as e — 0, .
< g% $(6), 7(O)e T F()(€) >—< 9(6),7(E)e “ F($)(€) >€ C,

and

< g% $(6), V(O F($)(€) > — < 9(€),7(E)e “F($)(€) >— 0,

because ¢ — ¢ * ¢, in §’, when ¢ € An, N large enough, we have proved
the assertion. O

The properties of the Laplace transformation, which are given in the
next proposition, are analogous to the classical ones (see [7]).

Proposition 2. Let G,Gq1,G3 be in Ga. Then:

1.
9% L,a(G)(2) = Laa((i;)°G(€))(2), 2 € T
2.
L,a(3;G(6))(2) = 2iLa 4a(G(E))(2) + Mg jua(2), z € T,
where Mg, ,a = [f Gy,e(€)e*0;2 (£)dE]
3.

L,a(G(6)6*)(2) = L,a(G(E))(z +a), 2 € TC,

for any a € TC.
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La(G(€ = €0))(2) = €79 (La,a(G(O)2) + Mg, ua(2)), z € T,

where Mg g, ,a(2)) = [6760 [ Gy ()€ (U (€ + £0) — u2(€))dE]. for
any & € R™.

5.
L,a(Gy x Gy)(z1,22) = L,a(G1)(21)L,a(G2)(22), z € TC.
6. »
La(Gy % Ga)(z)
= La(G1)(2)La(Ga)(2) + Mg, iy i (2), 2 € T,
where
Ma, coun () = [ [ 61606200
(W2(C + €) = ()2 (€)™ HOded().
Proof.
1. .
H“ .
9 La(G)(2) = 05, / G(E)e ¥ et dE =
u® . TS .
o5 [ ceetae= [ )Gt -
L,a((i;)°G(6))(2).
2.

La@GE)E) = [ o,6(e)de =
[ / 8, 4,o(€)c (€] =

[ / G o (6)(i2;) B (€)dE] + | / G o (£)e0, 12 (€)dE) =

f

2 L,a(GEO)) +| / G o) Du2(€)dE]

a(b/e)<[¢|Sa(b/e)+r
2 L,a(G(€))(2) + Maj,u(2)-
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La(G(E)e™)(z) = / ")t de =
La(G(E))z+ a).

a

La(G(€ - &))(z) = / G(E = Eo)e™ dE =
[ / Gy o (£)E+0) 3 (€ 1 £5)dE] =
[t / G w(€)€™ 2 (€)dE)+

1280 ; zE(, A I 1 _
0 ] erazan CoelCEURE + 60) — u(E)e] =
A(b/e)<[g+églLalbfe)+r

29 (L,a(G(E))(2) + Maigy u(2))-

lua(Gl X Gz)(zl,z‘z) =

ud e _
/ / G1(&)Go(&)e!r8r+2282) ge, de, =

L”a(Gl)(Zl )Lua(GZ)(ZZ)-

La(Gh ¥ Ga)( / / (1(C — €)Gal€)e dedC =
[ [ Griostc - OGO (Oui 0 dedc) =
/ / C1,6,e(O) G2 (E)HR(C + E)pR(€)e™ D ded() =
[ [ GrocQ)Gass@m2(Qua €)=+ Odgacy s

[ [ 6166060002+ - i €) " +Oagc) =

L,a(G1)(2)L,a(G2)(2) + Mo, 6, ,u(2).0
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Corollary 1.

1. If G,G4,G4 have compact supports, then

Mg ja = Mgg, 2 = Mg, q, 2 = 0.

Ga,u

That means that all siz listed properties are the same as in classical
case.

2. If a(z) = In(z) and G, Gy, Gy are in g;”, then Mg ,a =~ Mg ,a

~ Mg, 6,2 = 0 for fized large enough |y|.

Proof. The proof of the first statement is obvious and the second follows
from the fact that for each y and every Gy, € E#’ and ¢ € D(R"),

/ ( / Gpe (€)™ 2 (€)d — / Gpe(€)e " dE (2 )z

< Cy |Gge(E)le™dE < Ci(a(1/e))"
lel>a(1/2)

sup |Gge(€)]e™¥
j€l>a(1/e) é=Ex+ér Ex €K EreT

< 02(3(1/8))ne|y|01((1 + a(l/g))’yg—Ne—lyla(l/a)
< C(a(l/E))7+‘nelylczcgly|—N

and the last term converge to zero as ¢ — 0 when |y| > N (N depends only
on generalized function G.) O

4. Appendix. Tempered Laplace transformation

In the previous section the condition a(z) < In(z) is used, that means that
there are no definition of generalized Laplace transformation for the space of
tempered generalized functions. In this section we introduce such definition,
as we said, different from the one used in {4].

Let us denote by Ga(l') the set of all functions from G, which has a
support inside a cone I'.

Let x* be a unit net related to t. Let [ € ' be a fixed function less or
equal to 1, equal to 1 on the cone I' and there exist a compact set K such
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that suppl C K + I'. Then the tempered Laplace transformation, Lﬂt, is
defined for GG € Gy(I') by

L e(G)(z) = F, 4(G(EE)e ¥)(z)

t,ut .
- / GO " dE € (Ge)x X (Gun)ys (€ G) z + iy € TC.

The definition makes sense, that is, if G4, € Ny, then Lﬂt(G(ﬁ,E) € N, or
more precisely, Lﬂt(G(ﬁ,E) € (M)z X (Mn)y-

For (7, . € Ny we have that for every a € N there exist ¥ > 0 and
N, € N such that for every ¢ € A,, ¢ > N there exist C; >0 and n >0

09G4, ()] < (14 [E)e™™, pe Ay, & < .

With the same notation, for a, 3 € Nj,

9208 / / G o )I(E)U=VEE (€)de|

| / / G (E)I(E)GE)™ (—y)Pe™¥E e ub ()|

< sup Cr(1 + €€y le55 o1/ 4 s
(€11 fetré=€x+Eer €k EK P DT

< Cel¥lCga—r-lot=n=M Celyl(c’“L‘s)eq_N, ¢ € Ag, € <1, for every § > 0.
Here N > v + |a| + » + N; and C is some suitable constant depend on ¢.
This proves that Lﬂt(G)‘j;,g € Ng X My (or in Ay for every y € C). In the
" same way one can prove that Lﬂt(G)dJ,E € & X &, (orin & for every y € (),
when Gy . € &.

The definition does not depend on the function {. Let /; and I3 be two

t
function which satisfy the conditions of the definition. Then [* (I1(£) —
1,(€))G(€)et*¢dE is given by the oridinary integral with bounds where the
representative of G have the bound of the form C(1+ |£])e9~N, so by the

t :
above procedure one can obtain that [* (1;(£) — {2(€))G(€)e**¢dE = 0.
In the same way as it was done in Section 3 one can prove that Lt (G)(=)
is holomorphic function in TC if it was taken Lﬂt(G)(z) € G(R™).

By the property of the tempered Fourier transformation, one can see
that, for fixed y, the tempered Laplace transformation does not depend on
the unit net in (g.t.d.) sense in respect to variable z.
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Remark 1.

1. Proposition [ holds in the case of tempered generalized functions, too.

2. In the Pposition 2 we have the equality in (g.t.d.) sense in all siz

points. For erample, we have

< Mg jp d(z) >= / / G (€)™ 80,1, (€)dE(2)de

- / Gos(£)e ™ F($)(€)Djpe(€)dE € Co,

because F () rapidly decrease to zero in infinity and the j-th projection
of suppO;p. is a subset of B(0,1/¢ + )\ B(0,1/¢).

The similar arguments holds for all other cases in the proposition.
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REZIME

OSOBINE LAPLASOVE TRANSFORMACIJE U KOLOMBOVIM
PROSTORIMA UOPSTENIH FUNKCIJA

U radu definiSemo i proucavamo osobine Laplasove transformacije u pros-
torima Ga, a € A. Dokazali smo analogne osobine klasi¢nim za ovu trans-
formaciju.
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