Univ. u Novom Sadu Review of Research
Zb. Rad. Prirod.—Mat. Fak. Faculty of Science
Ser. Mat. 22, 1 {1992), 179-193 Mathematics Series

ON TRANSFORMATION OF CONTEXT FREE
GRAMMARS
INTO A FORM SUITABLE FOR USE IN COMPILER
GENERATORS

Mirjana Ivanovié,! Sasa Zivkov, Zoran Budimac
Institute of Mathematics, University of Novi Sad
Trg Dositeja Obradovica 4, 21000 Novi Sad, Yugoslavia

Abstract

Algorithms for transformation of arbitrary context free grammar
into reduced non-circular grammar without empty rules are imple-
mented. Implementation is organized as a preprocessor that takes
arbitrary grammar as an input and produces its equivalent suitable for
usage in compiler generators. Preprocessor can be used as a first step
in many compiler generators, as well as in the various applications in
formal language theory. Some transformation algorithms are restated
and some important implementation issues are described.

AMS Mathematics Subject Classification (1991): 68N20, 68Q50
Key words and phrases: reduced grammars, non-circular grammars,
empty rules, equivalent grammars, compiler generators.

1. Introduction

Compilers are specialized programs that translate high-level program-
ming languages to machine languages of specific computers. First step in

! Work is partially supported by Science Fund of Serbia

179

180 M. Ivanovié, S. Zivkov, Z. Budimac

[Source » Ob;
e -

l FRONT END ‘ ‘ BACK END

Lexical Syntactic .

analyzer aglyzer Semantic Code Code

(scanner) (parser) ™1 analyzer | I generator ™ optimizer
h

»1Data_Structures [*

Figure 1: The structure of compiler

every compiler construction process is the description of the source language
(the language to be translated). Description, as a rule, takes the form of
context free grammar (later on: CF-grammar) over some alphabet.

The common structure of any compiler is displayed in Figure 1. It con-
sists of two parts:

- front-end which performs the analysis of the source program and is
independent of the target machine language, and

- back-end which performs the synthesis of the target (object) program,
and is fully dependent on the target computer and its language.

Both parts share common data structures.

Over the past decade automated compiler generators (or ”compiler-
compilers”) emerged as a standard tool in compiler construction. They au-
tomatically produce almost the whole front-end of a compiler i.e., complete
scanner and parser and some parts of semantic analyzer. Resulting front-
end (the output of compiler generator) is either represented as a source pro-
gram of some high-level programming language, or as an abstract syntax
tree extended with all necessary information for compiler generation. The
latter approach has been especially popular in the last several years [2].

Automatic generation is made based on the specification of a source
language that usually takes the form of CF or attribute grammars. However,
not every CF-grammar is a suitable input for compiler generator. Only non-

On transformation of context free grammars ... 181

circular reduced CF-grammars without empty rules are considered to
be a suitable device for the specification of programming languages and
implementation of compiler generators (see [5]; [1]; [6]).

There are a lot of implemented compiler generators to date. However,
most of them either assume that the input grammar is already non-circular,
reduced and without empty rules, or just check whether the grammar is of
the desired form or not. Very few of them actually involve conversion of
arbitrary input CF-grammar into a desired form. The existence of such tool
would facilitate the preparation of the source language specification and,
consequently, the usage of the whole compiler generator.

This paper describes the implementation of such preprocessor. Prepro-
cessor implements some of the known algorithms for transformation of ar-
bitrary CF-grammar into its equivalent, suitable for compiler generation.
Some of the needed aigorithms are restated (with respect to the versions
given in [6]) in order to reflect implementation issues and stress the more
efficient usage of memory space. Only restated algorithms will be described
in this paper. In the rest of the paper necessary definitions will be given,
followed by all restated algorithms for grammar transformation. The fi-
nal part of the paper will describe important implementation issues of the
preprocessor.

2. Preliminaries

2.1 Basic Definitions

Definition 1. CF-grammar is ordered quadruple G = (V,, V, S,®),
where:

- V, is a finite non-empty set of non-terminal symbols,
- Vi is a finite non-empty set of terminal symbols,
- § € V, is an initial symbol of the grammar,

- & is a finite set of grammar rules of the form a — £, where a € V,,

and 8 € (Vo U V)"

In usual notation, € denotes the empty word, V* denotes the set of all

182 M. Ivanovié, S. Zivkov, Z. Budimac

possible words over the alphabet (finite set) V, V¥ denotes the set of sll
possible words over V except the empty word (i.e. V¥ = V*\¢)and a =* §
denotes that non-terminal a produces word § by applying some grammar
rules from ¢, one or more times.

Definition 2. Non-circular CF-grammar is a CF-grammar in which there
is no a € ¥, such that a =2* a.

Pefinition 3. Reduced CF-grammar is a CF-grammar that satisfies the
following coustraints:

- For every a € V,, there is § € V;* such that a =~

- For every a € V, there is at least one § =~ rjar,;, ,n,72 € (VaUV)*

Definition 4. Empty rule is a grammar rule of the form a — ¢, where
a € V,.

Definition 5. CF-grammar without empty rules is a CF-grammar that
doesn’t contain empty rules (as defined in previous definition).

Consequently, non-circular, reduced grammar without empty rules is
every CF-grammar which satisfied the constraints defined in definitions 2, 3
and 5. Every CF-grammar has its equivalent that is non-circular, reduced
and without empty rules. This assertion is proved by quoting all necessary
steps leading from arbitrary CF-grammar toward the desired one.

In the following two sections of the paper some of the necessary steps will
be shortly described. All the presented algorithms are restated in order to
reflect implementation issues and stress the more efficient usage of memory
space.

2.2 Toward Reduced CF-Grammar

Intuitively, CF-grammar is reduced if it contains only useful symbols
i.e., symbols that produce language constructions. Symbols of the grammar
are useless if they are inactive or unreachable. By removing all such sym-
bols from CF-grammar, its reduced equivalent is produced. Clearly, reduced
grammar will produce the same language as the original one, because only
useless symbols and appropriate rules are removed.

On transformation of context free grammars ... 183

Active symbols -«

Definition 8. a € V, is active if there is at least one 8 € V;*, such that
a =" . Otherwise, the symbol a is inactive.

All inactive symbols and appropriate rules have to be removed from
original grammar. The following algorithm will remove inactive symbols
and their rules from an arbitrary CF-grammar G = (V,,V;, S, %) giving
equivalent CF-grammar G’ = (V,,V;, §,®') with only useful symbols and
corresponding rules. '

Algorithm:
Whew —ala— 3 € ®, BV initial set of active symbols
m «—| Vo |; the number of non-terminal symbols
REPEAT
Wotd += Whew

Wnew — VVOM U {C! | a —* ﬁ € (I’,ﬂ € (‘/t U I'{,f)ld)m}

me—m-—1 .
UNTIL (Wpew = Wag) V (m = 0)
Vn,,*_Wnew
 —{a—-pfe®|lacV, fe(ViUV.)}

Reachable symbols

Definition 6. The symbol is reachable if for every a € V, U V; there is at
least one S =>* Tyary, such that 7,7 € (V5 U Vp)*.

All unreachable symbols have to be removed from the grammar together
with the rules containing unreachable non-terminals. The following algo-
rithm will remove the unreachable symbols and corresponding rules from
CF-grammar with only active symbols G’ = (V,,V, S, ®'), giving the equiv-
alent CF-grammar G = (V, ,Vt', 5,8") containing only reachable symbols.

Algorithm:
W« §; initial set of reachable symbols
m |V, |; the number of non-terminal symbols

REPEAT

184 M. Ivanovié, S. Zivkov, Z. Budimac

VVtemP,‘(_ {C! € (V'r: u ‘/t) l :B — niar; € Q'aﬂ € Wtemp}
W—WwWu VVtemp

me—m-—1
UNTIL (W = Wiemp) V (m = 0)

V, «WnV,
V, «WnYV
" —{a—bcd |a,deWi,,

By applying the above two algorithms (in quoted order) any CF-grammar
will be transformed into the equivalent reduced one. The order of applica-
tion of algorithms is important because some new unreachable symbols can
be introduced into the grammar, after all inactive ones are removed. On
the contrary, the removal of unreachable symbols does not influence the
appearance of inactive ones.

2.3 Toward Non-Circular CF-Grammar

Circular derivations (derivations of the form a =* a, where a € V,,) can
introduce ambiguity into compiler generator and force it into endless loops.
The algorithm that transforms arbitrary CF-grammar into the equivalent
non-circular grammar is based on backtracking algorithm RemoveCirc(a)
which will remove all rules of the form o =2* a, @ € V,. The resulting
set of rules will be designated as ®(«). Initially every rule in the set @ is
unmarked.

Algorithm RemoveCirc(a € V,)

w— a; initial word produced by applying first &
{Find r, such that r — a — 316;...0, € &,

gi e Vau{e}, i=1,...,n, and r is unmarked}

IF such r can be found THEN

mark the rule 7

w=...0... « ,61,62,6“ ;
{replace the occurrence of a in w with the right-hand side of the rule }

IF w = o THEN
b(a) = ®\{6; — &3 | 6; — 62 € ® and is marked }

- On transformation of context free grammars ... 185

STOP ¢
ELSE
FORi=1TOn
RemoveCirce(3;)
END

END
END

Based on RemoveCirc(a), the following algorithm for transformation of
arbitrary CF- grammar G = (V,,V;, S, ®) into the equivalent non-circular
grammar G = (V,,V,, S, ®') is produced. It simply applies RemoveCirc(a)
to every a € V,,.

Algorithm

V — Vy; temporary set of non-terminal symbols
3 — &; resulting set of rules

a— B eVy,; o is any non-terminal from V,,
REPEAT

®(a) — RemoveCirc(a)
3" = ¢\ ®(a)

V=V\a
UNTILV =0

The order in which the above three algorithms will be applied does not
influence the resulting grammar. However, the most efficient sequence can
be established depending on statistical figures over some common cases.

3. Implementation in general and data structure

All the algorithms given here are implemented in programming language
Modula-2 and form a preprocessor that takes as its input an arbitrary CF-
grammar and produces an equivalent non-circular reduced CF- grammar
without empty rules. The resulting grammar can be directly given as an

186 M. Ivanovié, S. Zivkov, Z. Budimac

ogput

Figure 2: A general structure of a preprocessor

input to most compiler generators. The implemented preprocessor is itself a
simple compiler (see Figures 1 and 2). It has to translate the source language
into the target one, applying the above three algorithms. Target language
can be produced immediately after semantic analysis (module Gramm) and
no explicit code generation is needed.

The preprocessor takes as its input an arbitrary CF-grammar. Such
arbitrary CF-grammar must be submitted to the preprocessor in precise
form, that can be described by the following Backus- Naur notation:

<grammar> ::= <rule> {<rule>}

<rule> ::= <non-terminal> ’=’ {<symbol>}
<non-terminal> ::= "<" <gords> '>"

<words> ::= <word> {(" "|"-") <word>}

<word> ::= <char> {<char>}

<char> ::= A’} ... |’2|%a’] ... 1’2’0 ... |’9°
<symbol> ::= <terminal> | <non-terminal>

<terminal> ::= '’" <words> "*"

Module LexAn implements the lexical analyzer of input grammar. It
recognizes the next token in input and its type (’<*, ’=?, ?>? identifiers,
etc.). LexAn is called whenever a new token is needed by the rest of the
modules.

Module Parser implements the syntactic analyzer of input grammar.
Parser is essentially driven by the above description of input grammar form.
It calls LexAn whenever it needs a new token, builds the internal structure

On transformation of context free grammars . .. 187

of one rule and reports any errors that might occur in the specification of
input grammar.

Module Gramm takes the rules from Parser and builds an internal
representation of the whole grammar. Module also contains all necessary
operations over the grammars: for insertion of a rule into the grammar,
for writing the grammar to the external media, for removing the rule(s)
from grammar, ... as well as the implementation of the three mentioned
algorithms.

Module List implements a general list, which is a basic data type for
representation of all other structures - grammar rules, grammar itself and
various sets. Every node of a list contains addresses of elements and elements
themselves and can hold elements of different types. Module List is a central
point of the whole preprocessor, because all other modules depend on its
implementation.

Module STable implements a dictionary of all symbols occurring in
input grammar and module Error reports all errors that occur during the
work of the preprocessor.

A (general) list is defined in the following way:

List = POINTER TO Header;
Header = RECORD
InfoSize: CARDINAL;
First: Elem
END;
Elem = POINTER TO Element;
Element = RECORD
Info: ADDRESS;
Link: Elem
END;

General list defined in this way, can accept only the list elements of the
same size. However, the generality of lists is not much reduced because
in this particular implementation elements of the lists will be always of
the equal size. In that way a lot of memory space is saved because the
information about the size of the elements is saved only in the header node

188 M. Ivanovié, S. Zivkov, Z. Budimac

of the list and not in every list element.

Grammar rule, the whole grammar and the sets are all implemented
as general lists. Elements of grammar rule and sets are pointers to sym-
bol table, and elements of grammar are pointers to rules i.e., another lists.
However, this difference is not "known” to the most of procedures dealing
with lists - they treat the list in a uniform manner, no matter whether it
represents the rule, the set or the grammar.

For example, the following procedure will assign n-th element of list L to
(untyped) variable info. It can be applied to take n-th element of grammar
rule, n-th element of the set, as well as to take n-th rule of the grammar.

PROCEDURE Nth(L: List; n: CARDINAL; VAR info: ARRAY OF BYTE);
VAR
ptr: Elem;
i: CARDINAL;
tmp: POINTER TO BYTE;
BEGIN
ptr := L™ .First;
IF n > O THEN
DEC(n) ;
WHILE (n > 0) AND (ptr <> NIL) DO
ptr := ptr~.Link;
DEC(n)
END;
IF ptr <> NIL THEN
tmp := ptr~.Info;
FOR i := 0 TO a”.InfoSize - 1 DO
infoli] := tmp~;
INC(tmp)
END
END
END
END Nth;

On transformation of context free grammars ... 189

4. Implementation of algorithms

As an illustrative example of the correspondence between the restated
algorithms and their actual implementation, we refer to the following im-
plementation of the algorithm for deletion of all inactive symbols from the
grammar. Operations over grammars involved in this procedure are the fol-
lowing:

Procedure InitList(VAR L: LIST; size: CARDINAL): List creates
an empty list, where all elements will be of the size size.

Function procedure TakeNonTerminals(g: List): List returns the
set (i.e. the list) of all non-terminals of grammar g.

Function procedure TakeTerminals(g: List): List returns the set of
all terminals of grammar g.

Function procedure TakeSymbols(g: List; Set: List): List returns
the following set of symbols {a | a — 8 € &,8 € Set*}.

Function procedure CardNumber(S: List): CARDINAL returns
cardinal number of the set S.

Function procedure Union(S1, S2: List): List returns the set which
is the union of sets 51 and S§2.

Function procedure Same(S1, S2: List): BOOLEAN returns logical
truth value TRUE if sets S§1 and §2 are equal, otherwise returns FALSE.

Function procedure TakeRules(g: List, Set: List): List returns the
following set of rules {a — 8 € ® | @ € Set}.

The following function procedure Active(gl: List): List returns the
grammar where all inactive symbols and corresponding rules are removed.
PROCEDURE Active(gl: List; VAR g2: List);

VAR
m: CARDINAL;
Vn, Vt, Wnew, Wold: List;
BEGIN
InitList(Wnew, TSIZE(Symbol));
Vn := TakeNonTerminals(gl);

190

M. Ivanovié, S. Zivkov, Z. Budimac

Vt := TakeTerminals(gi);

Wnew := TakeSymbols(gi, Vt); Wyew «— {a|a — S € |Psi, B € V*}
:= CardNumber(Vn); m | Vu |

REPEAT

Wold :
Wnew :

Wnew; Woid — Whew
Union(Wold, TakeSymbols(gi, Union(Wold, Vt)));
VVncw b old U {a ' a — ﬂ € Qaﬂ € (V't U Wold)*}

DEC(m) me—m-—1
UNTIL (Same(Wold, Wnew)) OR (m=0); (Whew = Woig) V(m = 0)
g2

:= TakeRules(gil, Wnew);

® —{a—=B€E®|ae Wy, BE€(VilWn)}
END Active; V. — Woew

5. Example

Data structure for grammar representation is displayed in Figure 3. Ad-

ditional pointers placed in symbol table entries are pointing to the first and
last rule of the same non-terminal. These pointers served as a device for
faster manipulation with rules within a grammar. The data structure dis-
played here represents internally the following grammar:

<S>
<A>
<A>
<A>

<C>
<D>

<A> .
‘a? <A>.
£.

<C>.

'b? .
E.

’c? LC>.
'qr.

As a result of transformation of input grammar, the following grammar
is produced.

<NEW>
<NEW>

<S>
<S>

= £,
= <S>.
.
<A>.

On transformation of context free grammars ... 191

<S>

<A> =
<A> =
 =

o ey HOPE S BT P L PR CL
J= 1 ‘A '
;““* E':E mZA
: ‘B
s T = R L B o =

<A>

‘a’.

,al

b’

,b,

Figure 3: Internal representation of the grammar

.

.

.

Resulting grammar is suitable for most compiler generators, because it

is reduced, non-circular and without empty rules.

6. Conclusion

The preprocessor for transformation of an arbitrary CF-grammar into its

reduced non-circular empty-rules- free equivalent is implemented. The im-
plementation is, above all, memory efficient, and can serve as an additional
first step to most of the existing compiler generators.

192 M. Ivanovié, S. Zivkov, Z. Budimac

The implementation is done based on restated algorithms for grammar
transformations. Restated algorithms reflect the implementation issues bet-
ter and lead to better memory usage.

The main advantages of the described implementation are:

- Dynamic nature. Because of that memory requirements of the whole
preprocessor are proportional to the size of input grammar.

- Modular structure. Preprocessor is easy to change and maintain. The
form in which grammars are specified is easily adjusted to suit almost any
compiler generator. It is accomplished by changing only one procedure (for
writing the grammar to external media).

- Uniform data structures. Most of the procedures are common for gram-
mar rules, grammars and sets which reduce the size of preprocessor to one
half of its possible size. That way, there is more memory space available for
grammar processing.

References

[1] Aho, A., Sethi, R., Ullman, J.: , Compiler Principles, Techniques, and
Tools,(1985) Addison-Wesley Publishing Company.

[2] Crelier, R.: OP2: A Portable Oberon-2 Compiler. In Proceedings of
2. International Conference "Modula-2 and beyond”, (Loughborough,
England), (1991), 58-67.

[3] Dobler, H., Pirklbauer, K.: Coco-2 - A new Compiler-Compiler, SIG-
PLAN Notices 25 (1991) 5.

[4] Ivanovié, M.: An Implementation of Parser based on Simple Precedence
Grammars, Master thesis, University of Novi Sad, (1988) Novi Sad (in
Serbian).

[5] McGettrick, A.D.: The Definition of Programming Languages, (1980),
Cambridge University Press, Cambridge.

On transformation of context free grammars ... 193

[6] Tremblay, J.P., Sorenson, P.G.: The Theory and Practice of Compiler
Writing, (1985), McGraw Hill, New York.

[7] Rechenberg, P., Mossenbock, H.: A Compiler Generator for Microcom-
puters, (1989), Prentice Hall, London, UK.

REZIME

O TRANSFORMACLJII KONTEKSTNO SLOBODNIH
GRAMATIKA U OBLIK POGODAN ZA KORISCENJE U
GENERATORIMA KOMPAJLERA

Implementirani su algoritmi za transformaciju kontekstno slobodne gra-
matike u redukovanu, necirkularnu gramatiku bez prazmih pravila. Im-
plemantacija je oblika predprocesora koji uzima gramatiku kao svoj ulaz i
proizvodi njen ekvivalent pogodan za kori§¢enje u generatorima prevodilaca
programskih jezika. Predprocesor se moze koristiti kao prvi korak u mnogim
generatorima prevodilaca, kao i u primenama u teoriji formalnih jezika.
Neki algoritmi koriseni za transformaciju gramatika su preformulisani, a
prikazani su i najvazniji detalji implementacije.

Received by the editors October 16, 1991

