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Abstract

Systematic methods are presented for obtaining recurrence rela-
tions for coefficients in the Hermite series solution of linear differential
equations with polynomial coefficients. The explicit form for the sec-
ond order equation is given, and the numerical results illustrated by
a fourth order initial value problem. The estimate of the error is ob-
tained, as well.
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1. Introduction

In this paper we shall consider the differential equation

l
(1) > pe(2)y(z) = ¢(z)

r=0

with suitable boundary or initial conditions, where the functions p,(z) are
either polynomials of a sufficiently low degree, or can be accurately approxi-
mated by such polynomials and we shall construct the approximate solution
in the form of the Hermite series.
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Such methods, known as spectral solutions, were recently developed from
Fourier approximations, so that instead of using standard Fourier series, as
in {3], the approximate solution is represented by some other orthogonal se-
ries. Most of the authors deal with the Chebyshev series, i.e: Paskovskij in
[7], Morris and Horner in (5] and [4], Oliver in [6]. Only a few of them treat
the other orthogonal series as well; Caunto in {1] uses Legendre polynomials
and Chang and Wang in (2] the Hermite ones. In all these papers, the appro-
priate series solution is, most often, obtained by the collocation technique.
Here, the direct method, proposed by Horner in {4], when Chebyshev series
were used, will be carried out for the Hermite approximation. By means of
some technical preliminaries we shall obtain the recurrence relation which
can be readily applied to approximate the solution with extreme accuracy
using only a small number of terms in the appropriate series. In this way we
can automate the solution of equations of the given type, but care should be
taken to investigate certain facts, such as the convergence of solution, sin-
gular points and the truncation point which determine the desired accuracy.
The obtained recurrence relation, should also be investigated analytically.

2. The method of solution

Let p.(z), r = 0,1,2 denote the quadratic polynomials. Thus, the equation
(1) for I = 2 becomes

(2) (12 + 2z + c3)y" (2 )+
+(caz? + csz + c6)y'(z) + (c72? + c8z + co)y(2) = g(z).

Assume that the solution of (2) can be presented by an orthogonal series
with respect to the Hermite orthogonal basis, in the form

3) yz) = 3 aHi(z):
k=0

It is well known that Hermite polynomials are generated by the differential
equation
H}(z) —2zH(z)+ 2kHi(z) = 0

and that their explicit form can be obtained from the recurrence relation

4) Hip1(z) —2zHi(z) + 2kHp_1(2) =0, k=1,2,...,
Ho(z) =1, Hi(z) = 2z.
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We, also, assume that g(z) is a continuous function, so that it can, also, be
expressed in the form of the Hermite series as

(5) 9(z) = Z gxHi(z).

k=0

In order to obtain the recurrence relation for the evaluation of the coefficients
ai of the solution (3), we shall have to use the following results:

6) Hi(z) = 2kHy_1(z), k=1,2,..
) H!(z) = 4k(k — 1)Hy_5(z), k =2,3,.
which give -

(®) ¥(2) = 2 3k + Dars1 Ha(2)
and =?

(9) ¥(z) =4 ﬁ(k +2)(k + Dz Hi(2).

For the construction of the approximate solution of the equation (2) we can
state the following theorem:

Theorem 1. The coefficients ay in the solution (3) of equation (2) are de-
termined by the system

k44
(10) > (Zc, "") ai = 4ge, k=0,1,.
i=k—-2 =1
120

where w'(:-) is the element of the i-th row and j-th column of the matriz W(¥),
whose non-zero elements are given in Table 1.

Proof. We shall first substitute (3), (5), (8) and (9) into (2) and then make
use of the formulas

(11) s Hy(z) = %(Hk.ﬂ(z) +2%kHe (), k=1,2,...

and

22Hy(2) = Y(Hysa(z) + (4k +2) Hi(z) + 4k(k — 1)Hyo(2)),
(12) .~ 2,3,...
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Hermite polynomials: The elements of matrix W(*) .

I | a1 l €2 |

i=k —2,0.]‘_2

i=k— l,ak_l

i=kar 4k(k-1)
t=k+1,ak4; " 8k(k+1)
i=k+2ars2 8(2k+1)(k+1)(k+2)

16(k+1)(k+2)(k+3)

t=k+3 043
i=k+4,ap44 || 16(k+1)(k+2)(k+3)(k+4)
[ s 1] 2 [ & ]
2(k-1)
4k
4(2k+1)(k+1)
16(k+1)(k+2) 8(k+1)(k+2)
| Bk 1) (k+2)(k+3)
e [ o | s Jeo
1
2
2(2k+1) 4
8(k+1) 4(k+1)
Ak 1)(k+2)
Table 1

After equating the coefficients of Hi(z), k¥ = 0,1,... we come to the
system

Cc70E.2 + (264(k - 1) + 263)ak_1+
+(4e1k(k — 1) + desk + 2¢7(2k + 1) + 4eg)ar+
(13) +(k + 1)(8czk + 4ca(2k + 1) + 8¢ + 4cg)ak41+
+(k + 2)(k + 1)(8c1(2k + 1) + 16¢5 + 8¢5 + 4cr)appat
+(k + 3)(k + 2)(k + 1)(16¢2 + 8c4)art3+
+16(k + 4)(k + 3)(k + 2)(k + 1)c1ak4q = 49k, k= 2,3,...
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(For k = 1 the first term.is omitted, and for k& = 0 the first two terms.)
The system (13), obviously, has the form (10), which proves the theorem.

a

Once the general form of the recurrence relation is known, a suitable trunca-
tion point in the series (3) is chosen, so that the solution is sufficiently well
represented by the resulting n-th degree polynomial, i.e. the finite Hermite
series. Then the system consisting of the appropriate equations from (10)
and the equations representing the initial or boundary conditions is solved
for ag,ay,...,a,. For the evaluation of the finite Hermite series

(14) va(®) = 3" ayHy(z)
k=0

the following algorithm can be constructed

let foy2 = faq1=0

(15) let fok=an_i+ 2:':fn—k+1 - 2("‘ -k+ l)fn—k+2
for k=0,...,n
let y, = fO-

3. The generalization

The differential equations of a higher order with the second degree polyno-
mial coefficients can be treated in the same manner. For the general case
(1), which can be written in the form

{ 2
(16) > ( cf.jzj) y(z) = g(2),

r=0 \ ;=0
we can state the following theorem:

Theorem 2. The system for evaluating the coefficients ar, k = 0,1,... of
the Hermite approzimate solution (8) of equation (16) has the form

k142

12
(17) Z (chf».‘iwz(,?j)ai=gk k=0,1,...

i=k—2 r=0i=0
i>0
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Proof. Stariing from (16) we come to the equations

(k+r—2)1 (k-}-r—])!
Z 27 ( e Cr 20k pr -2 T+ Torn v G Opir_1+
= 4(k - 2)! 2(k - 1)!
k+r 2k +1 k+r+ 1)
(18) ( i )! S——t(ero + 2 Cr2)lkyr + (—*——E——-}—c,.,lak+,+1+
k4+r42)
+(_'_——L)—’Cr,20k+r+2) = gk k= 0,1,...

k!
which are obtained by using the same technique as in the proof of Theorem
1, only that the generalized formula

. o= (k1)
) W=y e mEw) =0,
k=0 :

is used instead of (8) and (9). It is obvious that (18} can be written down
in the form (17) and, thus, the proof is comleted.

O

()

The explicit form for the elements w;, . of W( ) can be easily found for

a fixed /.

4. The error estimate

When we ask for the approximate solution (14) of the problem described by
the differential equation (16) and ! boundary or initial conditions, we have
to determine the coefficients ay from the system

n
(20) EAk,jaj=§k k=0,1,...,n

=0

where the first n—1+1 equations are of the form (17) and the last / equations
represent boundary or initial conditions. Thus, the system of n + 1 linear
algebric equations is solved instead of the infinite one

o0
(21) EAk,jfij =g k=0,1,...
3=0
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which determines the coefficients of the exact solution (3), which are now
marked as @, to distingwish them from the coefficients in (14).
Our aim is to estimate the error

(22) r(z) = lva(z) - 9(2)],

where we have

n o0

(23) ya(z) —y(2) = D _(ak — ax)Hi(z) - Y @rHi(z).

k=0 k=n+1
We can prove the following theorem, using the idea which Oliver developed
in [6] for the Chebyshev approximation.

Theorem 3. The error (22) for the problem described by (16) and the !
suitable boundary or initial conditions is of the form

(24) rz) =] 3 ra(2)axl-
k=n+1
Proof. Substracting (21) from (20), we get
(25) E A j(a; — @) = Z Agqd;, k=0,1,...
=0 t=n+1

Further, we can define the numbers g;;, § = 0,1,...,n, i =n+1,... such
that they represent the solution of the system

n
(26) Z Ak ;i = Ari, k=0,1,..
j=0
From (25), now, we get

(27) 0j ~&;= Y gjidi,
t=n+1
which, used in (23), gives (24) with
(28) ri(z) = Y g;iH(z) - Hi(z).
=0

O

For the practical use of the error estimate (24) the following requirements
must be fulfilled : the summation must be dominated by the first few terms,
which is indicated by the decrease of ayn+1,an+2,.-., and some estimate for
the order of magnitude of @;, i = =+ 1,... must be available. For these
estimates we can use the values of a; obtained for larger n.
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5. The numerical example ..

As the numerical example we shall construct the approximate solution in
the form (14) for the initial value problem due to Oliver [6].

(29) - yWg — 401y"(z) + 400y(z) = —1 + 200z
(30) ¥(0) = ¥'(0) = ¥"(0) = ¥"(0) = 1,

with the exact solution

2
(31) y(z) =1+ %- + shz.

With respect to the elements of W"fk), the system obtained from (20) is

400a; — 1604(k + 1)(k + 2)ak+2+
(32) 16(k+1)(k+2)(k+3)k+4)akysa =gk, £=0,...,n—4
go=99,g91 = 0,92 = 50,gx = 0, k=3,...,n—4,

and the initial conditions give

Zaka(O) = 1, ZZkaka—l(O) = 1,

k=0 k=1

(33) 4 Z k(k — 1)arHp_2(0) =1 and

k=2

8> k(k — 1)(k — 2)arHi—3(0) = 1,

k=3

with respect to
' 2s)!

(34 10) = ("L, Hya(0)= 0, s=0,1,...

The values for ag,k = 0,...,n are presented in Table 2 for n = 5,7,9. It
is obvious that n = 5 is the smallest possible degree because of the form of
the system (23),(24), and the rapid decrease of the coefficients a; disables
the increase of the accuracy when n takes greater values than the presented
ones.

In Table 3 the error

(35) d(z) = |ya(z) — y(z)|
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and the error estimate -

(36) 7(z) = |rnt1(2)@n4a]
are evaluated in the points

.
(37) I;:Ta, i=0,1,...,10
together with the appropriate values of the exact solution y(z). It can be
easily seen that the error estimate (31) is sufficient, though, when approach-
ing zero, the approximate solution is more accurate than we might expect
referring to (36).

[le ! n=235 I n=17 | n=9 ]
ao 1.25 1.25 1.25
ay 0.643 0.642 0.642
as 0.125 0.125 0.125
a3 | 2.7+1072 { 2.7%10°2 [ 2.7%x10"%
a4 0 0 0
as | 3+#10~% [ 3.3%107%[33+x10°F
as 0 0 0
a7 | 1.8+410°% ] 2%10"° 0
as 0 0
ag 6.5%107° 0

Table 2
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Table 3

C 11 n=5 | n=1 ]
(z Iy(z) l dz) | r(z) | d() l r(z) ]
0 1 0 8x10"14 0 61016
0.1]1.105]1.2%10° 8| 771078 [ 9.3%x10"10| 545108
02]1221[3.7+«1077[31%10°5] 32%10°% | 2.1%10°7
03[1.349 [ 28+10°|68+10"5| 245107 [ 4.6%10~"
0411491 |1.2%107° [1.2%107% ]| 9.7%10°7 | 7.8%10~7
0.5]1.646 | 3.5%107° | 1.8%10~% | 2.9%107° | 1.2%10°°
06[1.817[86%10°|25%10°¢%| 6.8%10°° | 1.5%10°°
0712004 18+1077132%1079 ] 14%10°° | 19%10°°
082208 [3.4%x107%]4.0+107%] 26%10° | 2.2%10°F
09[2432[6.0%10°% [ 471074 43%107°% [ 2.5%10"°
102675 98%10*]53%10~% ] 6.7+10°% | 2.6%10°°
L | n=29 |
Lz [u)]| dz) | r(=) |
0 1 0 2%10°18
0.1 1.105 0 281078
0211221119107 1.1%10°7
03]1.349|1.5%10°8}23%10~7
0.4 1491 16.0%x10°83.8%10~7
0.5]1.646 | 1.7%1077 | 55%10~7
0.6 | 1.817 [ 4.0%10°7 | 7.0+ 107
0.7 | 2.004 | 8.0%x107 [ 82+10"7
0.812208[1.4%10°%[9.0%107
092432123%10~%]9.1%10~7
1012675 |3.4%10°% | 86%10"

-
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REZIME

REKURENTNE RELACLJE ZA HERMITOVO RESENJE
OBICNIH DIFERENCIJALNIH JEDNACINA SA POLINOMNIM
KOEFICIJENTIMA

Prikazan je sistem za dobijanje rekurentnih relacija za nalaZenje pribliznog
reSenja linearnih diferencijalnih jednagina sa polinomnim koeficijentima u
obliku Hermitovog reda. Date su eksplicitne forme za jednacine drugog reda,
a numericki rezultati ilustruju pocetni problem &etvrtog reda. Takodje je
dobijena i ocena greske.
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