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Abstract

The aim of this paper is to generalize the main idea of [1] where we
prove that the class of semigroup-relation algebras is not axiomatizable.
In the present paper we give some conditions for non-axiomatizability
of some classes of cylindric algebras and generally, for any class of
universal algebra.
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1. Introduction

Algebraic logic in the modern sense began 1935, with Tarski’s paper on the
foundations of the calculus of systems. In this paper Tarski introduced the
algebra of propositional formulas. He defined a relation = on the set of
all propositional formulas and asserted that = forms what we now call a
congruence relation on the algebra of formulas, and that the corresponding
quotient algebra is a Boolean algebra. Subsequently, a number of differ-
ent logics were algebraized in this or a similar way. Cylindric and relation
algebras are two different algebraizations of the first-order logic.

Cylindric algebras are Boolean algebras enriched with some constants
and some unary operations such that these new constants and unary oper-
ations satisfy some additional equations.
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120 R. Sz. Madardsz

Definition 1.1. Let a be any ordinal number. By a cylindric algebra of
dimension a we mean an algebraic structure

A= (As +,-,—,0, l»cmdn,\)n,,\<a

such that 0,1 and d,) are distinguished elements of A ( for all kK,A < a),
— and ¢, are unary operations on A ( for all k < a ), + and - are binary
operations on A and such that the following postulates are satisfied for any
z,y€ Aandany s, \,p< a:

1. The structure (A,+,+,—,0,1) is a Boolean algebra (BA);
c0 = 0;

T+ T = ciT;

cx(Z - €xY) = CxT - CxY;

CxCAZ = CACKZ;

dew = 15

if £ # A p then dyy = cx(dig - dyy);

if K # A, then cc(dey - 2) - cx(der - —z) = 0.

S S A T R

The class of all the cylidric algebras is denoted by CA, and the class of all
the cylindric algebras of dimension a by CA,.

Relation algebras were historically the first algebraic version of a portion of
first-order logic. They appeared by the abstraction of some concrete algebras
of binary relations. In [6] one can find the realization of building the whole
of mathematics inside relation algebras - the realization of the idea of Tarski
and Chin.

Definition 1.2. Let A = (4,+,-,—,0,1,0,1',71) be an algebra of type (2, -
2,1, 0 0 2 0, 1). It is called a relation algebra (RA) if the following
azioms are satisfled:

1. (A,+,-,—,0,1) is a Boolean algebra;

2. (A,0,1) is a monoid;
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8. Operation ~! is an involution of the semigroup (A,0), i.e.
(Vz)(Vy)zoy) ' =yt oz}
(Ve)a ) = o
4. Operations ~! and o are distributive over + i.e.
(Vz)(Vy)(z + )"t =27 +y7,
(Vz)(Vy)(Vz)z o (y + 2) = (z0y) + (z 0 2);

5. (V2)(Vy)(=™" o (F57)) -y = 0.

There is a very close connection between RA and CA . Here we shall
introduce the standard method of associating an RA with a CA,, according
to Henkin and Tarski. First, we shall introduce some notions and notations.
Let A€ CA,, and z € A. Then

Az = {K<a:cez#z).
If I' C o, then we define
ClrA={z€e A:AznT = 0}.
Let 8 < a. Then,
RégA = (A, +,,—,0,1,¢xr,dex ) p<cs-

So, algebra Rég.A is the B-reduct of the algebra A. Algebra nrgA is defined
as a special subreduct of A :

nTﬁA =B < R&ﬁA,

such that

In other words, the carrier of the algebra nrgA is the set of such elements
z € A which has the property

if A € a\B then cyz = z.
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The carrier of nrg.A will be denoted by NrgA. ‘
Let A € CAs,z € A, and k,A € a. We define the unary operations s§ in

following way:
. _ ) Z if k=2A
AT = { cx(der - z) if K # A

Ifk,\,u €axand z € A, then
uS(K,A)z = sﬁsf\‘sﬁz.
Definition 1.3. Let A€ CA,,a > 3. We define the algebra
RaA = (Nry A, +,,—,0,1,0,do1,”})
such that for all z,y € Nr, A we have
z oy = cy(siz - sJz)

7= s2(0,1).

So, the carrier of algebra RaA is the set of all the elements z € A which
has the property:

for all A < a,if A# 0 and A # 1, then cyz = z.
The following theorem can be proved:
Theorem 1.1. (see [3]) If A€ CA,,a > 4, then RaA ‘E RA.
Something more holds. Namely, any relation algebra can be obtained

from a cylindric algebra of dimension 3, via the correspondence Ra. More
precisely, let M be the following class of cylindric algebras of dimension 3:

M ={A€SNrCAs: A=og*{z € A: Az C2}},

where for X C A, 0¢2X denote the subalgebra of A generated by X.

Remark 1.1. In the rest of the present paper M will always denote this
class of cylindric algebras.

The following can be proved:
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Theorem 1.2. (see [3]) .

1. Ra*M = RA (i.e. Ra maps M onto RA).

2. Ra induces a one-to-one mapping of isomorphism types of members
of M onto isomorphism types of RA’s.

2. Ultraproducts and the mapping Ra

Since the mapping Ra : M — RA is onto, this means that for any relation
algebra A there exists (up to isomorphism a unique) a cylindric algebra
B € M C CAj such that Ra(B) = A. Hence, we can define for any K C RA
the class

Ra Y K)={B € M:Ra(B)€ K}.

We shall call this class the corresponding class of cylindric algebras (relative
to K). Also, because of T1.1. (i.e. RaA € RA | for any A € CA,,a 2 4),
we can define for any K C RA and a > 4, the corresponding class Ra;!(K)
of cylindric algebras of dimenston a:

Ra;'(K) = {B € CA, : Ra(B) € K}.

In this paragraph we shall give some conditions, under which the property
"to be not elementary” is preserved by the mappings Ra~! and Ra;! .(In
the sequel, K will always be an abstract class, i.e. K will be closed under
isomorphisms). '

Proposition 2.1. Let K C RA be a class of relation algebras which is not
closed under the ultraproducts. If for all the ultraproducts [];c; Ai/ D,(A; €
Ra~Y(K)) it holds that

(1) Ra([] Ai/ D) = [ RaAi/ D,
el el

then the corresponding class Ra~(K) is not an elementary class.

Proof. Since the class K is not closed under ultraproducts, there exist
B; € K (i € I) and an ultrafilter D over I, such that

@ [[5:/D ¢ k.
I
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Since we have that Ra*M = RA, then for all z € I there is A; € M such
that Ra(A;) = B; . We shall prove that []; Ai/D ¢ Ra"1(X).

Suppose the opposite, i.e. []r.Ai/D € Ra“1(K) . This is equivalent to
Ra(J1A:) € K. But , from assumption (1) of this proposition, we have

Ra([[ Ai/D) 2 [[ReA;/D = [ B:/D € K,

which is in contradiction with (2). Hence, [JAi/D ¢ Ra"!(K) and Ra™!(K)
is not an elementary class.

The condition (1) speaks about the permutability of operator Ra and
the operator of the ultraproduct Up. We already know (see (3]) that the
operator Ra commutire with the operator of direct products P :

Ra*P(K) = PRa"(K), for K C CA,, a> 3.
Similarly, (see [3]) it holds that
Ra*S(K) = SRa*(K), for K CSNr3CA4 C M.

We wonder if
Ra"Up(K) = UpRa*(K), for K C M?

We are going to prove the folowing:

Theorem 2.1. Let A; € CA,,t € I,a > 3. Then, for any ultrafilter D over
I it holds that [[; RaA;/D is isomorphic to a subalgebra of Ra[l; Ai/D.

Proof. The carrier of the algebra Ra.A; is the set Nry.A4; . Let us deﬁne the
mapping ¥ : NryA;/D — Nry([] Ai/ D) in the following way:

Y(z/D) = {yEH.A,' :{iel:z; =y} € D}.

Notice, that ¥(z/D) is the class containing the element z € [] Nr2.A; in the
algebra [].Ai/D. The proof of the theorem will be divided into four steps.

1. First we are going to prove that ¥(z/D) € Nro([][Ai/D). Because
of the definition of operator Nr; it is true if and only if

ex(¥(z/D)) = ¥(z/D), forall A > 2 (A < a).

According to the definition of the operations on an ultraproduct, we know
that the operation c) "works” on some class of elements in the following
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- way: we have to choose a representative z of given class, apply operation c)
on this representative, and finally the result is the class of elements which
contains the element cyz.

Because of the definition of the mapping ¥,we have that z € ¥(z/D).
So, in Nr3(J].Ai/D) we have:

cx(¥(z/D)) = exz/D = z/D, for A > 2,

because for all z € Nry.A; we have that cyz = z for all A > 2.

2. We shall prove now that ¥ is well-defined i.e. if z/D = y/D in
[ Nr2A;/D, then ¥(z/D) = ¥(y/D) . Now we have that

V¥(z/D)={z €[ Ai:{i:z=z}e D},
¥(y/D) = {ue [ Ai:{i: 9 =w}e D}
Let us prove that ¥(z/D) C ¥(y/D). Let z € ¥(z/D), then
{iel:z;=%}=D,€D.
Since z/D = y/D in [[ Nr2A;/ D, then
{iel:z;=y;}=D,€D.
Because of the property of ultrafilters, we have that D, (Y Dy € D i.e.
{iEI:x;=y;=z;}=DlﬂD2€b.

But {i € I : y; = z;} = Dy D, and again because of the properties of the
ultrafilters, we have that

{tel:yi=2z}eD

and consequently z € ¥(y/D).

3. Now, we shall prove that ¥ is a one-to-one mapping. Let z/D,y/D €
[1NryA;/D and ¥(z/D) = ¥(y/D). This means that

xE{uEH.A;:{i:a:,-:u,-}eD}:{zeH.A;:{i:y,-:z,-}ED}=>

ze{zeJ[A:{i:yi=x)eD}=
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{i:y.-=:r:.'} e D= a;/D =y/D in H.NTz.Ai/D-

4.¥ is a homomorphism, because if z € [] Nr;.A; then ¥ maps the
class containing z in [[ Nr3A;/D to the class containing z in Nr,[] A;/D,
and the operations on an ultraproduct are defined via repesentatives of the
corresponding classes. O

Of course, if D is a principal ultrafilter on I, then
1[I RaA:/D = Ra]] Ai/D.
I I

Suppose that D is non-principal. For this case we can prove the following:

Corollary 2.1. Let A; € CA,, (i € I),a > 3,D a non-principal ultrafilter
over I. Then, []; RaA;/D = Ra[]; Ai/D if for all z € NroILA; there is an
element y € Il A;, such that

(i)erxy=y, foralla> A > 2,

(ii){iel:z; =y} €D.

Proof. Conditions (i) and (ii) imply that for all z/D € Nr,IlA;/D there
exists an element y/D from IINryA;/D such that ¥(y/D) = z/D, and this
means that ¥ is "onto”. O

Conjecture 2.1. There are algebras A; € CA,(i € I),a > 3, such that for
some (non- principal) ultrafilter D over I it holds

[IRaA;/D % Ra]] Ai/D.
I I

In Proposition 2.1. we have a sufficient condition to transfer the property
of being not elementary from class K C RA to the corresponding class
Ra ‘K. Using T2.1. we can give an other sufficient condition.

Proposition 2.2. Let K C RA be a class closed under the taking subalge-
bras, which is not closed under ultraproducts. Then, the corresponding class
Ra"'K is not elementary.

Proof. Since the class K is not closed under ultraproducts, there are B; €
K,i7 € I, such that for some ultrafilter D over I it holds that

(3) [I8:/D ¢ K. _
I
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Let A; € M,i € I, such that .

4) Ra(A;) = B;,i € 1.

( Of course, A; € Ra"1(K).) Then, because of T2.1. we have
MRaA;/D = A< Rall4;/D.

Suppose ILA;/D € Ra~'(K). This means that Ra(IlA;/D) € K and be-
cause of S(K) = K we obtain IIReA;/D € K, a contradiction to (3) and
(4). So, Ra~1K is not an elementary class. O

3. The case of semigroup-relation algebras

In [2] and {4] we introduced and studied a new class of relation algebras,
namely the class of semigroup relation algebras (53). The ” construction $”
used there enables us, among other things, to show, how we can ” transfer”
the result about the unsolvability of the word problem from the class of
semigroups to the class of relation algebras, and give a new proof of the
undecidability of the equational theory of relation algebras ( Tarski, 1953 ).
It is well known that every Boolean algebra can be "enriched” to be a relation
algebra. But, for semigroups the situation is different. Namely, for any
cardinal number A > 3 there exists a semigroup S, cardinality A, such that
S is not a semigroup reduct for any relation algebra ( see [2] ). But, it is
easy to see that we can embed any semigroup into the semigroup reduct of
some relation algebra. For example, we can do the following (see [4] ):

Let S be a semigroup. Every semigroup is embeddable into a semigroup
with an identity element, so we can suppose that S has an identity. The
semigroup & can be represented as a semigroup of transformation 7(S) in
the following way: every element s € S is represented as the right translation
ps = {(z,z-s) : s € §}, and the operation - of § is represented as the
composition of functions. Of course,

T(S5) = {ps : s € 5} C P(5?).

The relation algebra ®(S) is defined as the subalgebra of the full relation
algebra R(S) = (P(5?%),U,Nn,—,0,52,0,A5,7) generated by the elements
of 7(S). Of course, § is a subreduct of ®(S). For a relation algebra A we
say that it is a semigroup relation algebra if there is a semigroup S such
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that A = ®(S5). In [4] we gave a characterization of a proper RA to be
a semigroup relation algebra. However, this characterization is not in the
first order language. In [1] it is proved that the class Sg of all the relation
algebras which are isomorphic to some semigroup relation algebra is not first
order axiomatizable. Can we say something about the corresponding classes
of cylindric algebras CAp = Ra~!(§¢) and CAg = Ra;!(Ss) ?

Note first that the class Sg is not closed under the subalgebras (see [4]),
so, in general case, we cannot use the criteria for non elementarity given
in Proposition 2. Starting from Proposition 1. and from the proof of non-
elementarity of the class S¢, we can prove three sufficient conditions for the
non-elementarity of the class CAg.

Corollary 3.1. Class CAp = Ra~(Ss) is not elementary if one of the
following conditions holds:

(i) Let B be an infinite Boolean group, A € M C CAj such that Ra(A) =
®(B). Then there is a non-principal ultrafilter D over w, such that Ra([],, A/ D)
is not a semigroup relation algebra.

(is) For every A € CAp and any ultrafilter D over w it holds that

Ra(J[A/D) = H RaA/D.

(iit) For every infinite Boolean group B and any non-principal ultrafilter D
over w it holds that if Ra(A) = ®(B), then

Ra(J]A/D) = [[RaA/D.

Proof. (i) Follows from Lemma 3. and Proposition 1. in [1] and the definition
of the class CAs.

(ii) Follows from Proposition 2.1.

(iii) Follows from Proposition 2.1. (in the present paper) and Lemma 3.,
Proposition 1. from [1] . O

4. Generalization to classes different from Sz

The aim of this paragraph is to generalize the main idea of 1] , and to
obtain some similar criteria for being non-elementary in the case of any
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class of universal algebra. The notions connected with labelling are almost
the same as the case of relation algebras. Let L be a first order universal
algebraic language (i.e. with no relation symbols). By 7l we shall denote
the set of all the terms in this language. In the sequel we shall fix the
language L, so instead of 7 we can simply write .

Definition 4.1. Let © be the set of all the terms in the language L. We call
the family {r, : n € w} C P(r) a labelling of the set «,if

I.an<<m=n, Cmy,

2. U ma:n€Ew}=m.

Example 4.1. Let 7, be the set of those terms belonging to = which have
at most n variables. Then, {7, : n € w} is a labelling of «.

Example 4.2. Let @, be the set of terms from 7 which have at most n
function symbols. Then, {7, : n € w} is a labelling of 7.

Let A be a universal algebra (of the language L), and X C A. Then,
as in the case of relation algebras, by m,(X) we denote the set of all the
elements from A, which are values of terms from 7, over the set X.

Lemma 4.1. Let {r, : n € w} be a labelling of the set of all the terms «
of the language L, A a universal algebra of the same language, and G C A.
Then, G generates A iff A = {J, ¢, 7n(G).

Proof. It follows from the definition of the generating set of some algebra
and from D4.1. O

In literature we can find several ”variations” of the following definition.

Definition 4.2. Let A be a universal algebra of the language L. For the set
B C A we say that it is definable in A if there is a formula ¢(z) in L, such
that for allbe A

b € B iff A =z— 6(2).
In this case we say that B is definable with ¢(z) in A.

Example 4.3. Let 2 = (Z, +) be the additive group of integers. Then the
set of even numbers E is definable in Z because

acFEiffZ #::a (3!/)(?/ +y= z)'
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Example 4.4. Let AN = (w\{0},+,1), and - is the usual multiplication. The
set of prime numbers P is definable in this monoid because

a€ PN Erza 2 Z1AVy)((3k)k-y=2)= (y=1Vy=2)).

Let A be an algebra, ¢(z) a formula on the language of .A. Denote by
¢{A} the set of all elements a € A such that A E;=, ¢(z). So, if A is a
universal algebra of the language L, then B C A is definable in A iff there
is a formula ¢(z) in L, such that B = ¢{A}.

Theorem 4.1. Let K be a class of universal algebras of the language L, 7
the set of all the terrns on the same language, and {7, : n € w} a labelling
of m. Let ¢(z) be a formula on L such that

(i) every algebra A € K is generated by ¢{A};

(ii) there ezist A € K such that (Vn € w)(Ja, € A)(an & m(¢{A})).

Then class K is not aziomatizable.

Proof. Let A be an algebra from condition (ii) of the present theorem and
D some non-principal ultrafilter over w. We shall prove that the ultrapower
B =T],A/D is not in K. Because of (ii) we have that

a=(a,:n€w)/DE€B.

Suppose B € K. Then, because of (i) and Lemma 4.1. we conclude that
there is n such that

a € m,(¢{B}).

This means that a = t{f!, f?,..., f¥] for some term ¢ € 7, and 71, f?,..., f¥ €
¢{B}. Because of the definition of ultraproducts,

Dy ={icw:a; =tfl,f},..ffl} € D.

Since B |, =4 ¢(z), for j = 1,2,...,k, and ¢ is a first order formula, then
because of the theorem of Los we have

{icw: AR ¢[fi]} € D.

In other words,
A ={icw:fled{A}} €D,

Ay={icw: fled{A}} €D,
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€

Ar={icw: fFe¢{A)} e D.
Because of the properties of ultrafilters,
n{A, S 1,2,...,k} =D, € D,

and since D; € D, then D, N D, € D. D is a non-principal ultrafilter, so
every X € D is infinite. This means that there are infinitely many indices
J € w, such that

jl’ _-,'27"'af;c€¢{-A}aaj=t[f}, J?a'"aff]°

So, a; € mn(¢{A}) for infinitely many indices j . However, by assumption
(ii) from the present theorem we have

a, € 7s(#{A}), for s > n.
Since 7, C 7, this implies
as € 7o(¢{A}), for all s > n,

which is a contradiction. So, B ¢ K and K is not an elementary class. O

Note, that assumption (i) in the previous theorem is not ”too strong”,
because for any algebra A there is a formula ¢(z) such that ¢#{A} generates
A. Namely, for ¢(z) we can always take the formula z = z . In the case of
semigroup-relation algebras, for the formula ¢(z) we can take

((z7loz)-U'=2z"loz)A((z0z71) -1 =1'),

so Proposition 1. in [1} is in some sense a corollary of T4.1. in the present
paper.
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REZIME

NEKI REZULTATI O AKSIOMATIZABILNOST1

Cilj ovog rada je da se uopsti glavna ideja iz rada [1], gde je dokazano da
klasa semigrupnih relacionih algebri nije aksiomatizabilna. U ovom radu
su dati uslovi pod kojima su neke klase cilindri¢nih algebri takodje ne-
aksiomatizabilne. Takodje su dati kriterijumi pod kojima je neka proizvolj-
na klasa univerzalnih algebri ne-aksiomatizabilna.
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