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Abstract

In this paper a study of the d-connection transformations on the
total space E of a vector bundle £ = (E,n, M) is given. Is 2. the 7 -
and Q(p) - systems of tensor equations on E are obtained, general so-
lutions and some particular solutions are obtained, using the method
given in [3]. Starting from these equations in 3. a general study of
the connection transformations 7 : D — D on E is developed. Fur-
thermore, special formulas of the classical projective transformations,
which preserve the class of linear d-connections on E are given. In 4.
the transformations which preserve the torsion are studied.

The study will be continued in the second paper (II) in which the
transformations of linear d-connections with the invariants of Schouten
and Weyl! type will be studied.
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1. Introduction

In the present paper the notions and notations of R. Miron {1] and P. Stavre
[3] are used. Let § = (E,x,M) be a vector bundle, with an n-dimensional
base manifold M, type ﬁbre F = R" and a total space E of dimension
(n 4+ m). Let N be a fixed non-linear connection whose existence is assured
for example when M is paracompact, since in this case E is also paracom-
pact. Then the tangent bundle 7, F in u € E has the unique decomposi-
tion T,E = H,E ® V,E and the tangent bundle to E is the Whitney sum
TE = HE®VE, where the horizontal bundle HE — F is considered as the
horizontal distribution H : v € E — H,F and the vertical bundle VE — E
as the vertical distribution V : u € E — V,E. If N is fixed, then (H,V) is
also fixed. We denote by h the horizontal projector and by v the vertical pro-
jector, determined by a fixed N. Let X'(E) be the module of vector fields on
E.Then X € X(E) can be decomposed uniquely in the form: X = hX +vY,
where hX is the horizontal part and vY is the vertical part, respectively.
There also exists the dual decomposition: Ty F = (H,E)* & (VL E)*, con-
sequently for any l-form field p on E we have the unique decomposition
p = hp + vp, where hp(X) = p(hX);vp(X) = p(vX).

Local coordinate transformatlons on E are given by:

11) 2 = 2 (21,22, ..., 2"); rank( ) = n,

¥ = MZ(z)y% . rank(M{'(z)) = m

(37 =1,. : a,a’ = 1,..m), where M%'(z) is the matrix of the linear
appllcatlon (gbaogaa (), deﬁned by the change of the vectorial maps and
of the maps on M, which define the maps on E, gy, being the structural
functions. The local basis defined by §/s5,i = tp/‘p',.' — Nf¢[oys, where
Ng(z,y) are the coefficients of the non-linear connection N, permits the
existence of the dual basis (dz‘,&y“ = dy® + N?dz'). These local bases are
the adapted bases for N and they play a prominent part in the study of
linear d-connections, as is shown by R. Miron {1].



The study of linear d-connections ... 93

2. Systems of tensor equations on the total:space
E of the vector bundle ¢ = (E, 7, M) N

‘Let h and v be the horizontal and the vertical projector determined by the
non-linear connection N. : B

Definition 2.1. System:

(2.1) hr(X,vY) = 0
VX,Y € X(E)
(2.2) vr(X,hY) =0

where T is an unknown tensor field of the type (1.2) on E, is called a homo-
geneous T-system of tensor equations on E. :
)

Definition 2.2. System
(2.3) hQ(X,vY) = p(vY)hX VX,Y € X(E)

(2.4) WX, hY) = p(hY JoX

where §} is an unknown tensor field of type (1.2) on E and p is an 1 from
on E, is called an Q(p)-system of tensor equataons on E.

Such systems are studied in (3] as tensor-algebra.lc problems on E. In
this section some special cases are studied, those which are necessary in the
theory of d-connection transformations on the total spa.ce E of the vector
bundle £ = (E, 7, M).

Proposition 2.1. A homogeneous T— system cannot have solﬁtions of the
form: )
(2.5) T(X,Y) = p(X)Y = p(Y)X;p # o.

Proof. We admit that system (2.1), (2.2) has a solution of the form {2.5).
In this case it follows from (2.1), (2.2) and (2.5) that p(vY) = 0,p(RY) =

0,VY € X(F). Consequently vp = 0 and hp = 0. Since we have the unique
decomposition p = hp + vp, it follows that p = 0. This is a contradiction.
Therefore a solution of a homogeneous 7-system cannot be of the form (2.5).

This result is very important in the theory of d-connections on E.
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Proposition 2.2. A special solution of a homogeneous T— system (2.1),
(2.2) is:
(2.6) 7(X,Y) = p(X)Y :VX,Y € X(E).

Proof. We have: 7(X,vY) = p(X)v(Y) and analogously 7(X,hY) = p(X)hY,
VX,Y € X(E). It follows that: hr(X,vY) = 0 and v7(X,hY) = 0. Conse-
quently 7 given by (2.6) is a solution of a r-system (2.1), (2.2).

We shall see when a solution 7 of a 7— system (2.1), (2.2) can be of the
form:

(2.7) (X, Y)=p(X)Y + p(Y)X - QUX,Y); Q#0
We have:
Theorem 2.1. The necessary and sufficient condition that T given by (2.7)

be a solution of a homogeneous T— system (2.1), (2.2), is that Q be a solution
of an Q(p)— system (2.3),(2.4).

Conversely: let Q1 be the general solution of an Q(p)— system (2.3),(2.4)
and 7 defined by (2.7) associated to this solution, we obtain:

(2.8) (X,vY) = p(X)vY + p(vY)X - QX,vY)
(2.9) T(X,hY) = p(X)RY + p(hY )X — Q(X,vY).

From (2.3) and (2.8) it follows that: hr(X,vY) = 0. From (2.4) and
(2.9) it follows that v7(X,hY) = 0. Q.e.d.

Consequently, if we look for solution of the form (2.7) for a homogeneous
T— system, then for any given p it follows that the arbitrarity degree of  is
given by its generality as the solution of an Q(p) system.

Theorem 2.2 is proved in [3].
Theorem 2.2. The general solution  of an Q(p)— system can be written
in the form:

QUX,Y) = p(vY)hX + p(hY JvX + RP(AX,RY ) + vP(hX,vY)
+h2(vX,RY) + vP(vX,vY); VX,Y € X(E)

where : hP(hX,RY );vP(RX,vY); KD (vX,hY) + vP(vX,vY), are arbitrary
d-tensor fields on E of the types: ( :1! g ),( (1) 1 ) ;( 1o ),( 01 )

(2.10)

11 0 2
respectively.
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We can also give other equivalent forms of (2. 10), which are necessary
in the applications.

Following easily is :

Proposition 2.3. A particular solution of an $2(p)- system is given by N
defined by:

(2.11) UX,Y) = -p(X)Y +p(Y)X; VX,Y € X(E)
By substituting (2.11) in (2.7) it follows that:
(2.12) (X,Y) = 2o(X)Y

is a solution of the form (2.7) of a 7-system. Noting 2p = o, we obtain:

Proposition 2.4. Solution :
(2.13) r(X,Y) = o(X)Y; VX,Y € X(E)

of a homogeneous 7-system is of the form (2.7),where 2p a and ) is given
by (2.11).

Using the decomposition p = hp + vp a.nd the relation (2.10), from (2.7)
follows:

Theorem 2.3. The most general solution T of the form (2.7) for a T-system
with symmetric Q, i.e. YX,Y). = UY,X);VX,Y € X(E), is given by:

r(X,Y) = p(hX)RY + p(KY)hX + p(vX )oY + p(vY v X~

(2.14) ~hD(hX,hY) - vP(sX,vY);VX,Y € X(E)
where: '

(2.15) RP(RX,RY) = KP(RY,hX)

(2.16) v2(vX,vY) = v2(vY,vX).

We can consider P =0 and P = 0.

Especially important is the solution r of the form (2.7) with the property
UX,Y) = Y, X), i.e. where 2 a X(E)-valuted 2-form. There follows:
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Theorem 2.4. The 7 solution of a T-system of the form (2.7) with Q(X,Y) =
~Q(Y, X) has the form:

7(X,Y) = p(hz)hY + p(hY)hX + p(vX)vY + p(vY )o X +
(217)  42p(hX)vY + 2p(vX)RY) — AP (RX,hY) = 2 (vX,vY)

VX,Y € X(E)
where: .
(2.18) hID(hX, hY) = —h{’(hY,hX)
) ¥X,Y e X(E)
(2.19) vP(vX,vY) = —vP (vY, vX)

We can consider ? =0 and D = 0.

3. Connection transformations on the total space
E ‘ |

Using the differential manifold structure induced on E, the differential man-
ifold structure of M and the vector bundle structure £ = (E,xr, M), we can
study in the usual way the geometry of the (n + m) dimensional differen-
tiable manifold E. But in the case when there exists a non-linear connection
N (for example if M is paracompact, then E is also paracompact and there
exists N), then we obtain some remarkable results in the geometry of the
total space E of the vector bundle £ = (E,x, M).

In the case above specified, there exist distinguished connections on E,
with special geometrical properties, i.e. those which preserve the horizontal
distribution H and the vertical distribution V. These connections are called
by R. Miron [1], linear d- connectxons on the total spa.ce FE, and their theory-
is developed in [1]. -

If D is a linear d-connection on E, then equivalenly we have the condi-
tions: . .

(3.1) vDxhY = 0;hDxvY = 0;YX,Y € X(E).

Let D be a fixed linear connection on E, then we call E 4, = (E,D) a .
linear connected space as in the general theory. If D is symmetric, it is known
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that: T(X,Y) = T(Y, X), where T is the torsion of the connection D, i.e.
T(X,Y) = DxY — Dy X — {X,Y},VX,Y € X(E). Then the most general
connection transformations 7 : D — D, which preserve the autoparallel
curves of the space E,;m = (E, D), are the Weyl projective transformations:

(3.2) DxY = DxY + p(X)Y + p(Y)X;VX,Y € X(E).

I Dis d-linear, a necessary condition for the existance is that the dis-
tribution H be integrable. '

In the following we consider (3.2) in the more general case, when D not
symmetric and we call the transformations 7; D — D given by (3.2), clasical
Weyl projective transformations of linear connections.

Proposition 3.1. The projective connection transformations (3.2) do not

preserve the class of linear d-connection on F.
*

Proof. We denote: 7(X,Y) = p(X)Y + p(Y)X. Imposing the condition
that D and D satisfy (3.1), we obtain the tensorial system (2.1.), (2.2).
According to Proposition 2.1. this system does not admit solutions of the
form (2.5). Consequently transformations (3.2) not preserve the class of
linear d-connections.

There do not exist classical projective transformations (3.2) of symmetric
linear d-connections, [3].

Corollary 3.1. Let D and D be two symmetric linear connections on E,
which preserve, by parallelism, the horizontal distribution H and the vertical
distribution V on E. Then the spaces (E,D) and (E,D) cannot have the
same autoparallel curves. If these spaces have the same autoparallel curves,
then D = D.

Definition 3.1. The most general projective transformations, which pre-
serve the autoparallel curves of the space, namely the transformations ©; D —
D given by:

DxY = DxY + p(X)Y + p(Y)X — Q(X,Y);s
VX,Y € X(E)

where Q(X,Y) = -Q(Y, X), are called general projéctive transformations
and are denoted by 71n;(p).

(33)
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Theorem 3.1. The most general projective transformations, which preserve
the class of linear d-connections on E are of the form:

DxY = DxY + p(hX)RY + p(RY )hX + p(vX)vY + p(vY )vX +

(B4 7 L 9p(AX )oY + 20(2X)RY — hP(hX,hY) — P (vX, vY)

where the tensorial d-fields kP (hX,hY),vP(vX,vY) satisfy the relations:

(3.5) hP(hX,hY) = —hP(hY, hX)

VX,Y € X(E).
(3.6) v2(vX,vY) = —vP(vY,vX)
Proof, If we denote;
(3.7) r(X,Y) = p(X)Y + p(Y)X - X, Y)

in (3.3) and put the condition that D and D be d-linear, we obtain sys-
tem (2.1), (2.2), which admits necessarely a solution of the form (2.7) with
QUX,Y) = -Q(Y,X) or equivalently system (2.3),(2.4) admits the solution
2 # 0 with the property Q(X,Y) = —Q(Y, X). According to Theorem 3.3,
it follows that r is of the form (2.17), (2.18) and (2.19). Consequently we
obtain (3.4).

We shall denote transformations (3.3) by 7|gj(p). In applications it is
more confortable to write these transformations in another form and so
there follows:

Theorem 3.2. The transformations 1q)(p) which preserve the class of lin-
ear d-connections on E are of the form:

(3.8) DuxhY = DyxhY + p(hX)hY + p(RY)hX — hP(hX,RY)

DixvY = DpxvY + 2p(h X )vY

(3.9) VXY € X(E)

(3.10) D.xhY = DyxhY + 2p(vX)hY
(3.11) DyxvY = DyxvY + p(vX WY + p(vY )X — v2(vX,vY)
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where P and D satisfy (3.5) and (3.6). If we consider:

(3.12) hP(hX,hY) = p(hY )hX — p(hX)hY
(3.13) 2 (vX,vY) = p(vY)vX — p(vX )oY
there follows the Weyl transformations:

(3.14) DypxhY = DyxhY + a(hX)hY
(3.15) DpxvY =Vl))(h§,vY + a(hX )oY

, Y € X(F)

(3.16) DoxhY = D,xhY + a(vX)hY
(3.17) D,xvY = DyxvY +a(vX)vY

where we denote a = 2p. Or, considering (X,Y) = p(Y)X — p(X)Y, we
have Q(X,Y) = —Q(Y,X) and  is a solution of an Q(p)-system. Conse-
quently we obtain the Weyl transformations:

(3.18) DxY = DxY + o(X)Y YX,Y € X(E)

which preserve the class of linear d-connections. We have:

Theorem 3.3. The Weyl transformations are a special case of transforma-
tions (3.4).

Obviously if we put p = 0 in (2.3) and (2.4) there follows a homogeneous
T-system, with the solutions of the form:

3.19 (X,Y) = hP(hX,hY) + vP(hX,vY)+
(3.19) +h2(vX,hY) + WP (vX,VY)

which is the general solution of a homogeneous 7- system. There follows:

'Theorem 3.4. The most general connection transformations T : D — D,
which preserve the class of linear d-connection on E are of the form:

DxY = DxY + h{(hX,hY) + v{(hX,vY)+

(3.20) +h{(vX,hY) + vA(vX,vY)
VX,Y € X(E)

where h{{(hX,RY ), v{(hX,vY), h{(vX,hY ), v{(vX,vY) are arbitrary d-tensor
fields on E.



100 ‘ P.Stavre, C.F. Klepp

Theorem 3.5. Let N be a fized non-linear connection on § = (E,x,M)
and D a linear d-connection relative to N. Then the set of all linear d-
connections relative to N on E, is given by (3.20).

Their group is a group isomorphic with the aditive group of the tensor
fields of the form (3.19), relative to the composition of transformations.

We denote by AT(E) = @ DT;; the algebras of the d-tensor fields on

E, where DT;? is the module the d-tensor fields of the type ; : and

AT(E) is endowed with the tensorial product T} @ T; of the d-tensor fields.
The fact that the AT (F) algebra can be locally identified with the tensor
algebra A = @ ;] of the vector bundle HE@QVE — E [1], leads to an
elegant theory of the above introduced notions by the use of a local adapted
basis (§/6z° = 8/8z* — N?3/Oy®; 0/0y®; i=1,..,n, a,b=1..m), where
NZ(z,y) are the coefficients of the non-linear connection N.

If we denote (X; = 6§/6z',; Xp4a = B/By ) = {Xo},a =1,..,n,n+
1,...,n 4+ m) and :

(3.21) Dx,Xo =TopXs:(a,f,0=1,..0,n+1,..,0+m)

then, if D is a linear d-connection, we have :

I\n+¢:(x y) - 0 rk+a1(x y) - 0

I‘"+°,,+b 0; Pn.{.an-{-b 0
(i,7,k = 1..n; a,b,c = 1..m). Consequently, remain four coefficients, T,
generally different from zero.

(3.22)

From the unique decomposition X = hX + vX, X € X(E) we have :
hX = X'§/6z', vX = X"*°3/0y°, which are d-tensor fields of the type

( (1) g ) and g 0 respectively, on E. If we denote T = hp,;0 = vp,

00 00
from the unique decomposition p = hp + vp, locally we can write: T =
1idz', 0 = On4aby*(t = 1,2,..,m, a = 1,2, «.,m) relative to the basis
(dz*,6y* = dy® + N?dz*) which is the dual basis of the adapted basis.

We denote: .
(3.23)  h{(Xp,Xa) = ALpb/bz’; vi(Xp, Xa) = BoE°0/0y".

which are tensdria.l d- fields of the type ( 10 ) and ( 01 ) respectively
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There follows:

520 (K, ) = Ao,

vf(Xn‘Hn Xn+a) = B:i§n+ba/3y°.

According to the above indicated identification we obtain the d-tensor
fields A, B € A of the form :

(3.25) A = Aj6/62' Q) do? Q) da*
(3-26) = Bp}ents8/0y° @ 8y Q 8y
From Theorem 3.2, with these notations there follows :

Theorem 3.8. The most general 7'[91(27) transformations, which preserve
the class of linear d-connections are of the form:

(3:27) Tk =Ty + b} + 7364 Bk,f"‘“ = I

(3.28) Tote & =Tofs o+ 2mbnfsi T k= I‘;‘“ k

(329) Tints = Thngs + 20m 4068 Ty nps = T4,
+

(3.30) Totanss = Dntanss + ongpfnte+

where Tk,O‘k,Aj'k and B;:k are d-tensor fields of the typ'e"( (1] g) ,( g ' (1)) , ( 10

and ( g :.12 ) respectively, which satisfy the relations:

(3.31) Aj'k = -Aij; B:I:M-b = ’—B:tgﬂ"l’d

Theorem 3.7. Let D be a fized linear d-connection on E with the local
coefficients T in the adapted basis; and D dn arbitrary d-connection with the

coefficients T' relative to the same adapted basis. Then D is obtained from D
by a general projective transformation nay(p), if and only if between T' and
T the following relations hold: :

(3.32) T = Ty + b} + 701 — .
(3.33) Tota s =T0tS o +2n80te
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(3.34) Tintt = Dings + 200446}

(335)  Totonss = Toinrs + OnssblhS + Curalits = Bitnss
where A and B satisfies (3.31) .

We can consider A=90, B=0.

Very important are also the transformations (3.3) with the property
UX,Y) =AY, X),VX,Y € X(E), which will be called r(q}(p)— transfor-
mations. We have:

Theorem 3.8. The most general linear connection transformation Tq)(p)
on E, which concerves the class of linear d—connections, is of the form:

(3:36PXY = DxY + p(hX)RY + fKY )hX + p(uX )oY + p(u¥ JvX
- h?(hX, hY) — vg P(vX,vY) VX,Y € X(E)

where
(3.37) hP(hX,hY) = KP(hY,hX); VYX,Y € X(E)
(3.38) v (vX,vY) = v2 (vY,vX).

Proof . If we denote 7(X,Y) = p(X)Y +p(Y)X —Q(X,Y), since (X, Y) =
Q(Y,X) we have equivalently r(X,Y) = 7(Y,X). From these and form
Theorem 3.2 there follows (3.36), (3.37) and (3.39). Equivalently we have:

Theorem 3.9. The most general T(q}(p) transformation, which preserves
the class of linear d— connections on E, is of the form:

(3.39) DipxhY = DixhY + p(hX)RY + p(hY)hX — hP (R X,RY)
(3.40) ﬁhxvY = DyxvY; VX,Y € X(E)
(3.41) ~ DyxhY = D,xhY

(342) D,xvY = D,xvY + p(vX )Y + p(vY)vX — vP(vX,vY)
with the conditions (3.37) and (3.38) .

Definition 3.2. A r{n}(p) transformation with P =0 and? = 0 is called
a projective (hh — vv)— transformation.
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With the local notations we have:

Theorem 3.10. The most general 7(qy— transformations, which preserve
the class of d— connections on E is given locally by:

(3.43) T = Tig + bl + 1564 — Al Tie =T
+ ' ]

(3.44) Tee=To 6 Tk =Thias

(3.45) Tints = Dingsi T3 caps =T THonth

=4t
(3-46) Fn+an+b = FZIE’H’IJ + "'n+b6:i: + Un+adzif - ,:tsvwb;

"I_"' _
ntanth = lnpantd

where the arbitrary d—tensor fields A and B of the type ( ; g ) and
?

01 . .
0 2 respectively are symmetric:

(3.47) A;k = A;BJ; B:Izn-{-a = B:I:ﬂ‘l-a'

We can consider A = 0 and B = 0 and we obtain the local form of the
(hh — vv)—projective transformations.

4. Linear d—connection transformations with in-
variant T =T

In this paragraph transformations which preserve the class of linear-d—connections
and have some invariants associated to the torsions of these connections are
determined. Firstly we consider the transformations r : D — D,

(4.1) DxY = DxY + 7(X,Y); VX,Y € X(E)
where r is of the form
(X,Y) = p(X)Y + p(Y)X - QX,Y).

Let T be the torsion of D and T the torsion of D. There follows:
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Theorem 4.1. The most general transformations rq(p) which preserve the
torsion and the class of linear d—connections on E are the 1(qy(p)— trans-
formations.

Proof. Wehave T = T and equivalently 7(X,Y) = 7(Y, X) and (X,Y) =
(Y, X). It follows from Theorem 3.9 that these transformations are r¢g}(p)-
transformations.

Let D be a fixed linear d— connection on E and T its torsion. Since
T(X,Y) = =T(Y,X) and D is linear, we have (3.1), and it follows that T
is characterized by the following d—tensor fields [1]:

(4.2) AT(hX,RY) = DyxhY — Dy hX — h[hX, kY]
(4.3) vT(hX,hY) = X,Y)

(4.4) RT(hX,vY) = —DyhX — h[hX,vY] VX,Y € X(E)
(4.5) vT'(hX,vY) = DpxvY — v[hX vY)

(4.6) hT(vX,vY) =

(4.7) vT(vX,vY) = DyxvY — DyyvX — v[vX,vY]

where Q is the curvature 2-from of the non-linear connection. Since the
vertical distribution v is mtegrable, we have h[vX,vY] =0 and v[vX vY] =
[vX,vY]. ~

Proposition 4.1. Let D be a fired linear d— connection on E. A necessary
and sufficient condition that any lmear d-connection on E with the proper-
ties:

(45) RT(hX,vY) = hT(hX,vY);

vT(hX,vY) = vT(hX,vY); VX,Y € X(E)
has the same torsion with D(T = T) and be obtained fmm D by a mq(p)-
transformation, is that the relations:
(4.9 D(hX,vY) = kD(hX,hY) + p(hX)RY + p(hY)hX hA(hX,hY)
(4 10155(1:X, vY) = vD(vX,vY) 4 p(vX)oY + p(vY )X — vB(vX,vY)
) VX,Y € X(E)
hold, where the d—tensor fields on E satisfy the relations:

hA(hX,RY) = hA(RY,hX);

(4.11) vB(vX,vY) = vB(vY,vX).
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Proof. Since D and D are linear d—connections, from (4.9) and (4.10) it
follows (3.39) and (3.42). From (4.8), (4.4) and (4.5) applied to D and D it
follows (3.40) and (3.41). Consequently D is obtained from D by a Ty (P)-
transformation, which is a 7q(p)— transformation which preserves T = T.

Otherwise from (4.9) and (4.10) it follows that :

(12) hT(hX,hY) = hT(hX,RY);
: vT(vX,vY) = vT(vX, vY); VX,Y € X(E)
Since D and D are linear d—connections from (4.8), (4.12) and (4 3) (4.7)
it follows that T = T and we have (3.39)-(3.42). :

We can observe, that if D and D are linear d—connections on E, with
the properties (4.8), (4.12), then T = T. From (4.8) it follows (3.40), (3.41),
but not necessary also (3.30) and (3.33). In these conditions from (3.20) it
follows
(4.13) vA(hX,vY) =0, hf(vX,hY) =

There follows :

Theorem 4.2. The most general transformations v : D — D, which pre-
serve the class of linear d—connections on E and the torsion T = T are
given by:

4.14) DxY = DxY + h{(hX,RY) + v{(vX,vY); VX,Y € X(E
1 4 ,

where the d—tensor fields {! and §! satisfy (4.13), but are otherwise arbitrary.

Relative to a local basis adaptated to N, Theorem 4.1 can be written in
the form:

Proposition 4.2. Let D be a fixed linear d—connection on E with the
coefficients T'. A necessary and sufficient condition that any other linear
d—connection D on E with the coefficients T and the property (4. 8) has the
same torsion T = T with D and be obtained from D by a tq(p)— transfor-
mation, is that we have:

(4.15) Dl = Dl + 76} + 7561 — ALy 6,5,k = 1,..,n)

ry e b= ) By nte + o 56
4.16 ‘n+an+ 7:1.+a'n+b n+4 n+a.
( ) 0n+a5:_t§ B; +° r‘_H,(a b,c = 1...m)

+a
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where A and B satisfy (3.47) and T = hp, o = vp. Particularly we can
have also A=0, B=0.

A special case is that of the transformations 7 : D — D which preserve
the linear d—connections on E and are symmetric (T' = 0, T = 0.) There
exists a symmetric linear d—connection on E only if the H distribution
is integrable, i.e. the curvature 2-form of the non- linear connection N
vanishes (2 = 0). But H is integrable when vT'(AX,hY) = 0 for any linear
d—connection D on E. There follows:

Theorem 4.3. Let £ = (E,x,M) be a vector bundle and N a fired non-
linear connection with integrable H distribution. Then the most general
ra(p)— transformations, which preserve the class of linear d— connections
and the torsion T are the T(g)(p)— transformations.

If D is d—linear symmetric (T = 0), then D is also d—linear symmetric
(T = 0).

The above given Theorems and Properties can be written analogously
also for the conservation of symmetric linear d—connections, but the condi-
tion that H is integrable will be increased.

For a symmetric linear d—connection on £ it follows from (4.4) and (4.5):

(4.17) DpxvY = v[hX,vY); D,xhY = h[hY,vX]; VX,Y € X(E)
Consequently we have:

Proposition 4.3. Let { = (E,n, M) be a vector bundle and N a fired non-
linear connection with integrable H distribution. Then for every two sym-
metric linear d-connection on E we have relations (3.40) and (3.41).

There_ follows

Theorem 4.4. Let £ = (E,x,M) be a vector bundle and N a fized non-
linear connection with integrable H distribution. The most general T(p)—
transformations of symmetric linear d—connections on E are of the form
(4.9), (4-10), (4.11) or locally of the form (4.15), (4.16), where A and B
satisfy the condition (3.47).
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But these transformations are 7(g}(p)— transformations. Consequently a
7¢q)(p)— transformation of symmetric linear d—connections on E is charac-
terized by the transformations (4.9),(4.10) and (4.11) or locally by (4.15),(4.16)
and (3.47).

Particularly we can consider A = 0 and B = 0 and we obtain the pro-
jective (hh — vv)—transformations of symmetric linear d—connections:
(4.18) T% = Ty + 6] + bl

(4.19) Trde s = T0ECnts + Ontal™Ls + onpp 6048

where 7 = hp and 7 = vp and D is a fixed symmetric linear d—-connection
~on E.

Consequently the projective (hh — vv)—transformations are r(ny(p)—
transformations with P = 0 and £ = 0, or locally of the form (3.43),(3.44),(3.45)
and (3.46) in which we considler A =0, B=0and 7 = hp, o = vp. It
follows that there are mq(p)— transformations (DxY = DxY + 7(X,Y)),
where 7 is of the form (2.7) with Q of the form:

¢ .
(1), Y) = p(vX)hY + p(hX)vY + p(hY JvX + p(vY)hX; VX,Y € X(E)
where we denote 7 = hp, o = vp, which are d—tensor fields of the type

( (; g ) and g 2 ) respectively on E. These can be obtained also as

a special case from (4.14).
If in (4.14) we choose:

(4.21) h{(RX,RY) = 7(X)RY + 7(Y)hX — hA(hX,RY)
(4.22) v (vX,vY) = a(X)vY 4 o(Y )X — vB(vX,2Y)
VX,Y € X(E) i

without requiring that the d—tensor fields 7 of the type ( (1) g ) and o

g (1) , be of the form 7 = hp and o = vp, but completly
arbitrary, we obtain the transformations:

DxY = DxY + r(X)hy + 7(Y)hX + o(X)0Y + o(Y )vX -
~hA(hX,RY) — vB(vX,vY) VXY € X(E).

of the type

(4.23)
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Definition 4.1. Transformations (4.23) with A = 0 and B = 0 will be
called (hh — vv)—transformations and will be denoted by T(hp_yy)-

Following next is:

Proposition 4.4. Transformations (4.23) preserve the class of linear
d—connections and its torsions. Particularly the (hh—vv)— transformations
T{hh—wv) Preserve the class of linear d—connections and its torsion. They are
of the form:

(DB4Y = DxY +(X)hY + 7(Y)hX +o(X WY +o(¥)0X; VXY € X(E)

where T and o are arbitrary d—tensor fields on E of the type‘( 2 g ) and
( 00 ) respectively | |
01 ;

Proposition 4.5. Let { = (E,n, M) be a vector bundle and N a fized non-
linear connection, with integrable horizontal distribution H. For every two
symmetric linear d— connections D and D on E, D is obtained locally from
D by a T{pp_yy)— transformation if and only if between the local coefficients
T and T there ezist the relations (4.18),(4.19) where 7; = 7(§/627); Tp4qa =

a(d/dy°)-

Corollary 4.1. If in ({.24) we teke T = hp and ¢ = vp we obtain the
projective (hh — vv)— transformations.

In a paper which is to follow we will study the transformations which
preserve the linear d—connections on E and have invariants of Schouten type
and some invariants associated to the curvature of the connection.
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REZIME

STUDLJA LINEARDNE d-KONEKSIJE NA TOTALNOM
PROSTORU VEKTORSKOG SNOPA ¢ = (E, 7, M)(I)

U ovom radu se ispituje transformacija d-koneksije na totalnom prostoru £
vektorskog snopa £ = (E,x,M). U 2. su dobiveni 7 i (p) sistemi ten-
zorskih jednaéina na E kao i njihova opsta i partikularna resenja (koristeéi
metode iz [3]). Polazeéi od ovih jednatina u 3. je dato kompletno ispitivanje
transformacija koneksija 7 : D — D definisano nad E. Date su specijalne
formule klasi¢ne projektivne transformacije koje ne menjaju klasu linearne
d-koneksije nad E. U 4. su date transformacije koje ne menjaju torziju.

Ispitivanje ée se nastaviti u radu (II) u kojem ée se ispitati one transfor-
macije linearne d-koneksije koje imaju invarijante tipa Schoutena i Weyla.
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