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Abstract

Consider the integrodifferential equation

(1) %[z(t)— [ D(t, s)z(s)ds] = A(t)=(t) + f‘ C(t, 5)z(s)ds,

where A, C, D are n x n matrices continuous for tg < s <t < oo. The
boundedness and stability properties of (1) are studied.
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‘In papers [1,2,3,4,5] the ‘a.uthofsv _ha.ve used fhé Liapuhov functipnal..fo
give sufficient conditions for the stability and boundedness of a system of
Volterra integrodifferential equations

2 (1) = g(t,a(t)) + / K(t,5,2(s))ds.

In this paper we shall give conditions for which solutions of equation (1)
have boundedness and stability properties. We consider the problem based
on the modified Liapunov method contained in the construction of some
function and the stability of some inequality. S s
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1. Introduction

In this paper, we shall concentrate on a system of Volterra integrodifferential
equation

(2) [z(t) / D(t, a)z(a)ds] A(t)z(t)+/ C(t 3)z(s)ds, z(to) = 29

in which A,C,D are n X n matrices continuous for {; < s <t < ™ and
z :< tg,00) — R™.

The following notation will be used throughout the paper:

R -denotes the set of real numbers, and R™ the set of real n-tuples,
J-denotes the interval < p,),(to > 0), and || - || denotes the matrix
~ norm, and |- | the vector norm. Troughout this work, z(-, to,zo) will denote
. the unique solution of (1), satisfyng the initial condition z(tq,%p,20) = Zo
and continued to t = +00. By a solution of (1) with the initial condition
z(to) = 2o we mean a function z : J — R" such that z(tp) = xo, z(t) —
fto D(t, 8)z(s)ds is continuously differentiable for te J and z(t) satisfies (2)
forallt e J.

Definition 1. The trivial solution of (2) is stable if for a given € > 0 there
ezists a § = 6(e,to) such that |zo| < &, implies that every solution z(+,t9,20)
of (2) is defined for teJ and satwﬁes

jz(t,to, 20l < € fOf't €J.
Definition 2. The solution of (2) is asymptot:cally stable if it is stable and

if for to > 0 there is an 1 > 0 such that fzol <7 :mphes Iz(t to,zo)l —0
ast — 00.

Definition 3. The zero solution of

® 1260 =)~ [ Dl Ie)ds] S S(8,(t0) = 7o

forte J; f J—R woontmuoua and nonnegatwe, tssmd tobe _
a)f-stable:fforeverye>0thenczutsa6>00uchﬂwlfbrdltel

[lzo) < 6 A f(t) < 8] = |y(t,to,20)f S &,



Stability Theory for Volterra Equations 177

b) asimptotically f-stable if it is f-stable and
Jim I.y(t, to, o)l =0

for every |zo| < 6, and every f(t) — 0 as t — o0,

c) f-bounded if for every bounded function f : J — R there ezists a
bounded solution y(t,to,zo) of (3).

2. Stability and boundedness

Let
12(t, y(&))] = |o(t) - / D(t,s)y(s)ds| < f(2), for all t € J.

Let V(t) = V(¢,2(-), Z(t, a:())) be a scalar functional defined and con-
tinuous fort € J and z € § :c :J — R™,|z] < p = const.} , zis
continuous for t € J. We denote by Y- the derivative of V (¢, z(t), Z(t, z(t)))
along any solution of (2).

Theorem 1. Assume that
1° there ezist continuous and strictly increasing functions w;i(-),(1 = 1,2,3),w; :
J —< 0,00) such that w;(0) = O0,wi(r) > 0 forr > 0 and w,(r)

oo as r — 00,(i = 1,2,3),

2° there ezists a functional V( ) continuous fort € J sattsfymg the follow-
ing properties:

8) wi(|Z(¢,z(2))]) < V() < aws(]Z(2,2(2)]),
dv »
B L < —pw12( ),
Jor every solution z(t) = z(t,t0, z0) for (2) and some constants u > 0 a> 0
3° the zero solution of (3) is f-stable, : .

then the solution z(t) = 0 of (2) i8 asymptotwally stable

Proof. Let 0 < € < p and ty > 0 be given. The f-sta.bnhty of the tnv1a.l
solution of (3) implies that for a given ¢ > 0 there exists a 6, > 0 such that
for every solution of integral inequalities

12,2 = [o(6) - | Dt,s)a(e)l < 1), 200 = 2o
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we have
|z(t,t0,20) < € for t € J,

provided that |zo| < 6; and f(t) < 6; for t € J. Choose §; = 62(6;) > 0
such that 0 < 62(61) € 6; < € and awy(s) < wy(6) for 0 < s < 62(61).
Then, using 2° for |z¢| < 8, we obtain

wi(|Z(t,2(2))]) < V() < V(to) < awz(|2o]) < wi(é).

Hence |Z(t,z(t))] = f(t) < 6;. From this and f-stability, it follows easily
that |z(t,%0,20)] < € for t € J and |zo] < 6;.

Next, integrating both sides of b) from ¢ to t we obtain
t

/t wa(|Z(s,2(s))|)ds < —p V(1) - V(1)) < p~ 1V (to) < ap™ wy(6)),
1]

so that 2° a) implies
t t :
V($)ds < o [ wa(1Z(s,2(8)))ds < a*u~ wa(61).
to to

On the other hand, as V/(t) is decreasing, we have

/t “Vis)ds > V)t - to),

so that, by 2° a), it follows that

wi(|Z(t, 2N S V() < (- to)"/t:V(S)ds < (t=to) ' p" e’ wa(61)

and hence
1Z(t, 2(t))] < wy([u(t - to)) " aPws(61).

From this we have the asymptotic stability. The proof is now completed.

Theorem 2. Assume that
1° condition 1° of Theorem 1 is satisfied, ’
2° there exists a functional V(t) satisfying the followmg properties:

0) wi(lZ(tz(®)) < V(D) S awallZ(t 2O)) +
[ w1206, 2(s)Nds

B S < (12020 + (),
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for every solution z(t) = z(t,to,z0) of (2) and some constants p > 0,a >
0,a1 > 0 and continuous, nonnegative function v : J — R such that
v(t) < N = constant for allt € J, [’ v(s)ds < B = constant,

3° the zero solution of (3) is f-bounded,

then the solutions of (2) are bounded.

Proof. Let H > 0 and |zq <H. We show that |Z(t,z(t))| < constant for
allte J. ' '

Let V(t) < V(to) for all t € J. Then by a), we have
wi(|Z(t, 2()]) < V() € V(to) < wa(lzol) < walH).
Thus, |Z(t,2(t))] < wi*(wa(H), and z(t, %, Zo) is bounded.

Let V(t) > V(to) for some ¢t > to. We choose t > to so that V() =
maXs<s<t V(8). Then by b) . - :

/t: Vi(s)ds < —p /t: wa(|Z(s, z(s))|)ds + /t: tf(;)ds.

Thus ] ) ’
u/to w3(|Z(s,z(s))|)ds <V(tg) + B.

By 2) V (to) < auy(Jzol). Thus,
[ s(12(s,2(6)ds < 5™ @ua(lzal) + B)

Also,

V() < auwnl|Z(ta()) + o | ws(1Z(s,a(6))ds <
< awy(|Z(t,2(1))]) + c1p~ (aws(Jzol) + B).

Since ws3(r) — oo as. # — 00, then there is L > 0 such that

N .
w3(L) = —; -
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By b), if |Z(t,2(t))| > L for t € J, then & < 0.
Thus any maximum of V(¢) must occur when |Z(t,z(t))| < L.
Hence, whenever V(?) is maximum, we have

wi(|2(¢, 2(t))}) < V(t) < awa(1Z(t, 2())))+
+aip~" (aws(lzo]) + B) <
< awy(L) + ayu~Y awy(H) + B).
Consequently,

1Z(2,2(t))| < Wi [awy(L) + oy p~(aws(H) + B)).

Hence by f-boundedness we have
|z(t)| < constant for all t € J.

This completes the proof.

The next results extend Theorem 2.

Theorem 3. Assume that

1° the condition 1° of Theorem 1 is satisfied

2° there emts a real-valued continuous function ®(t;s) fortg <5<t < o0
- with®>0,5 <0, 5 >0,

t
®(to, %) < ‘I’o,/ ®(t,8)ds < B
to

Jor some constants B and &,
3° there ezists a functional V(t) continuous for t € Jand satisfying the
Jollowing properties:

a) w(|Z(t,z(®))]) < V() < awy(12(¢, 2(t))]) +
t -
o /t B(t, 8)wa(|Z(s,%(s))))ds, /

b = S —pws(|2(tz())) + K
for every solutioh z(-) of (2) and some constants y > 0,a > 0,a; > 0, and
K >0,
4° the zero solution of (3) is f-bounded,
then the solutions of (2) are bounded.
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Proof. We shall proceed as in: the proof of Theorem 2. I V() < V(#) for
all t > to, it is trivial. Let V(t) > V(o) for some t > to, we choose t > tp so
that V(t) = sup, ¢,<: V(8).-

We multiply both sides b) by &(¢,s) and integrate from s = ¢p to s = ¢
to obtain

’ ‘ t ’
[ V'8, 9)de <~ [ 806, o125, 2(s)))ds + KB.
to to ‘ '
An integration by parts of the left integral yields

b [ 8 sun(1Z(a, (o )M < V(EB(EL) + Vito)8(, to)+

/‘: V(s)®,(t,s)ds + KB.
Since Q.(t,‘s) > 0,, then
p / B(t,$)us(12(s, (e’ < -V (R0, 1+

+V (to)®(t,t0) + V(£)(9(t,t) — ®(t, to)) + KB < V(to)®0 + K B.

By a) V(to) < aws(]zol).
Thus,

p [ #(t,sws(1Z(e,2(o)))ds < apows(lzol) + KB.
Hence by a) we obtain ‘ T
V(@) < aws(]2(t, z(t))l) + alp"l[a‘bowz(H) + KB]

. The rest of the proof is the same as that of Theorem 2.

We shall illustrate Theorem 2 by. considering the scalar. eqna.tion

@) - / D(t,)a(s)ds] = AW)s(t) + / C(t $)a(a)ds

where A(t) is a continuous function for 0 <t < ooand D(t, s),C(t a) are
continuous for 0 < s <t < o0. : :
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Suppose there exists m > 0,m; > 0 and M > 0 such that. .
2t < m'Z2(t,z) iflz] <M,teJ

and ' ~
[A(t)D(t, 8)] £ m1|C(t,s)| for0 < s <t < 0.

We define
Vit 2(), Z(t, 2())) = %z’(t,z(;)) +k /o ’ /: *1C(u, $)|duz?(s, 2(s))ds,

(0 < k = constant) so that a.lbng with a solution z(-) of (4) w have

Vio(t:2(), 2(t,2()) = Z2(t,2())Z (t,2(-))+
+k /too |C(u,t)|duZ?(t,z(t))ds — k /Ot |C(t, 3)|Z2(s,z(s))d.§ <
o g L
<[A() + & /z Cu,Dldu + 5 ]o |A(t)D(t, 8) + C(1, 5)|ds]Z3(t, z())+
+(%mm1 - k) /Ot |C(t,s)|Z’(s,z(s))d‘s =

= at, ) Z%(t,2(0)) + (grms ) [ 1C(6, )12, 2(s))ds,

where
00 t e - ,
a(t,k) = A() + & [ 1C(u,Dldu+ 5 [ |A®D(E,9) + C(t,5)lds.
t o T
Ifa(t,k)< —a< Ofort € J and
t . .
/ IC(t, )| 2%(s,2(s))ds < b < oo forall t € J,|z| < M,
0

/ “( / |C(t, 8)1Z%(s, 2(s))ds)dt < € < 00, (Lmmy — k) > 0,
o Jo ; ; 2

the solution z(t) = z(t;to; zo) satisfies 2° of Theorem 2: -
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REZIME
TEORIJA STABILNOSTI ZA VOLTERRA JEDNACINE
Posmatra se integrodiferencijalna jednatina

gt-[x(t) - /t: D(t,s)z(s)ds]) = A(t)z(t) + /t: C(t,s)z(s)ds,

gde su A,C, D n x n matrice neprekidne za tp < s < t < . Izuéavane su
ogranicenost i stabilnost te jednacine.
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