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1. Preliminaries

We assume familiarity with very basic notions of graph theory. Non-defined
notions can be found in [2]. By a graph” we shall always mean a simple
non-oriented graph.

A bipartite (m, n)-—gra.ph is a gra.ph G thh the property that the
vertex-set of G can be partitioned into two (basic) vertex-sets M and N
of cardinality m and n respectively, such that eéach edge of G has one
vertex in M and the other one in N. The graph G can'b sidered at
the same time as the reversed bipartite (n,m)—graph, which is obtained by
interchanging the roles of the sets M and N in the representation of G.

1This research was supported by Science Fund of Serbia
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We restrict our construction to connected bipartite graphs. Non-isomor-
phic disconnected bipartite graphs can be easily enumerated by applying
the formulae given in our last section.

We proceed with two algorithms (both sketched in pseudoPascal), which
are based on two different representations of bipartite graphs. In both cases
we primarily define the canonicity conditions for the representations, pro-
vided that m # n (a canonical representation is the unique representative
of a class of mutually isomorphic bipartite graphs). The case m = n re-
quires an additional test, since the reversed bipartite (n,m)—graph should
be also taken into accoupt when determining canonicity (exactly one of the
two possibly different mutually reversed representations should be kept).

Sets are denoted without brackets and commas.

2. The first algorithm'

2.1. Representation

Given a bipartite (m,n)—graph G ( m < n ), let the vertices of the
smaller basic vertex-set M be denoted by 1,...,m respectively. The graph
G is represented by the family F = {S[l], ~yS[n]} of subsets of the set
{1,...,m}, such that the subset S[j], 1 < j < n, consists of those vertices
of M, which are adjacent to the j—th vertex of the (possibly) larger basic

vertex-set N.

Such a representation of a bipartite graph is called standard if it is
”triply sorted”, ie.,if the following three conditions hold:

a) Each subset 5[j] (= a combination mthogt repetmons) is an increasing
sequence of integers.

b) Let F(i), 1 < i £ m, denote the subfa.lmly of F consisting of subsets
8[4] of cardinality i. The families F(z) are listed ope after another
in decreasmg order of i.

¢) The sets within each F(i) are listed in the dﬁ‘ual'l'exicogra.phic order.

A standard representation F' is called minimal if there does not exist
a permutation p of {1,...,m}, such that p(F) after standardization (i.e.,



A construction of non-isomorphic ... 163

after the sorting in accordance with the rules a), b),c))is lesucographlcally
LESS than F.

The representation of the same bipartite graph @, considered as the
reversed bipartite (n,m)-—graph, is the family F’ = {511),...,5'[n]} of
subsets of the set {l1,...,n}, where the i—th vertex of M belongs to the
set S[j] if and only if the j—th vertex of N (denoted by j) belongs to
the set §'[i],for 1 <4 <m andfor 1 <j<n.

Given m < n, the repreeentatwn of a bipartite graph is canomoal if
“and only if it is a minimal standard.  m = n, then special attention
“should be paid to the bipartite graphs with self-reversable representations.

A family F is a self-reversable represestation if it remains invariant after
application of the operations "reverse the representation” and "find the cor-
responding minimal standard representation” to F. All the other bipartite
(n,n)—graphs have two different minimal standard representations. Thus
the exact number of non-isomorphic bipartite (n,n)—graphs is equal to

5 . ( the number of generated minimal standard representations
+ the number of self-reversable among these representations).

2.2, Algorithm

(* main *) .
READ (m, n); (m < n)
Generate Group of all the permutahons of the get {1,. ,m},
FOR each combination Comb with repetltmns, of length =,
composed of elements 1,...,m b1} BEGIN
Let Frequency (i), 1< i< m, denote
the number of appearances of element i in the combination Comb;
Construct_i ( m, n, Group )
END;

(* The elements of the combination Comb are the cardinalities of the
~ sets S[i] in the representations of bipartite graphs. The above call of
-the recursive procedure Construct_l generates all non-isomorphic bi-
partite (m,n)—graphs with the same combination Comb. The procedure
Construct_1i handles the parameters Comb - and the therefrom derived
Frequency by using the side effect *)
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PROCEDURE Construct_i ( Maxcard, Remaisc, Temporary_goup );
(* Let Family denote a combination WITH repeiitions of iength
Frequency(Card) of combinations WITHOUT repetmoﬂs of

length Card of elements 1,..,m )
BEGIN (* Conmstruct.i *) :
IF Remains >0 THEM BEGIN
FOR each Card (*inality*)
-  from Maxcard downto 1 DO
IF Frequency (Card) >0 THEN
FOR each Family DO -
IF Femily is lexicographically the first with
respect to Group THEN -BEGIN
Append Family to Great_family;
Cut Temporary_group on the basis of Family
(the result is  Cut_group);
New_remains := Remains - Frequency(Card);
Construct_i ( Card, New_remains, Cut-group )
(* the recursive call *)-
‘ ERD (» IF Family ... #)
END '
ELSE (*if Remains =0 *)
IF the bipartite (m,n)—graph represented by
Great_family is connected THEN
IF m<n THEN
print( Great_family )
ELSE (*if m=n *) BEGIN
Generate Reversed_comb ; '
(* Reversed_comb stands instead of Comb
after the roles of the basic vertex-sets
M and N are interchanged *)
IF Comb is lexicographically LESS than
Reversed_comb THEN
print( Great tan:lly )
-IF Comb = Reversed, co-b THEN = BEGIN
Generate Reversed_great_family;
. (* the minimal standard representation
of the reversed variant of the same
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bipartite (n,n)— graph *) )
IF  Reversed_great_family coincides -
with Great_family
(* the self-reversable case *) OR
OR Great_family is lexicographically
LESS than Reversed_great_family
THEN .
print( Great_family )
END (* Comb = Reversed_comb *)
END (* m=n *)
END; (* Construct.l *)

2 3. Remarks and hmte

Great_family is unnalued separately for eu:h combination of set car-
dinalities. The recursive calls of the procedure . Construct_1 on deeper
levels change only the ”tail”. (= the last several sets) of Great. ~family.

”?Cutting a group on the buﬁ ofa fumly means the extraction of merely
those permutations from the group, which fix the family (i.e., the automor-
phisms of the family). The subfamilies consisting of equicardinal sets may
be treated mdependently during cnttmg the anwmpr?hmm group. The au-
tomorphism of Great_family is the mtersecucm of the automorphism
groups of such subfamilies.

We proceed with some hints w]nch have reduced the necessary computmg
time: :

The main saving of the compnter time is gained by chooeing the SMAL-LER
of the two basic vertex-sets of a bipartite graph to be the ground-set of the
representing family. As a consequence, the bipartite graphs on at most 11
vertices can be constructed by using the  permutation groups of maximal size
not greater than 5! = 120. ,

The lexxcograplncal test within the procedure Conltruct 1 is consid-
erably shortened by applying the cutting of the automorphism group. Thus
we should apply very few permutations in he last stages of recursion.

The lexicographical test should be completely avoided when maxcard =
nay, The family of sets of cardinality m is neoessanly lexxcogra.phlcally the
first.
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The connectivity test can be completely avoided when the representing
family contains a set of cardinality m. The a.ﬂirma.tlve a.nswer is guaranteed
in that case.

Most of the superfluous bipartite (n,n)—graphs are eliminated at the
”combination level”. The same bipartite graphs tonsidered as reverse bipar-
tite graphs are effectively constructed merely in the cases when some two
mutually reversed combinations coincide.

2.4. Example

Let m =n =4 and Comb = 1123, which implies that Frequency =
2110 (there should be two sets in Great_family of cardinality 1 and
one set of cardinalities 2 and 3 respectively).. Suppose-that the first two
sets chosen to Great_family are 123 and 14 respectively. Note that
Group is reduced from 24 permutations to 6 permutations after addi-
tion of the set 123 to the empty Great_family and to only 2 permu-
tations (the identical permutation and the transposition (23)) after addi-
tion of the set 24. Now there are 7 lexicographically minimal (w.r.t. the
last Group) possibilities for Family consisting of two one-element sets:
{1,1}, {1,2}, {1,4}, {2, 2}, {2,3}, {2,4)} and {4,4}. If m were different
from n, then we would test the corresponding Great_family only w.r.t.
connectivity. However, in this case we should also consider the reversed
representation (obtained by interchanging the sets M and N).

We give a list of the corresponding 7 representations of bipartite graphs,
- each of which is followed by its Comb and Reversed_comb (these combi-

nations can be viewed as the degree sequences of the verticesin M and N

respectively). All these representa.txms ha.ve ah'eady passed. the connectwnty
test. .

num. representation Comd Revornd conb
1) (123-14-1-1] 1123 1114
2) (123-14-1-2} 1123 1123
3) (123-14-1-4} 1123 : 1123 -~
4) (123-14-2-2}| 1123 | - . 1123 .
5)..1123-14-2-3| 1123 | 1222 .
6) [123-14-2-4| 1123 1222

7)) |128-14-4-4 1123 | - 1123

The represénta.tion 1) is rejected at » combination level”, since
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Reversed_comb is lexicographically less than Comb. Due to the opposite
reason, our algorithm decides that representations 5) and 6) should be kept
in the final catalogue of non—isomorphic bipartite graphs.  The temaining
four representations, which ‘satisfy that Comb = Reversed_combd, should
be reversed and lexicographically minimized w.r.t. the rules a),b),c).-If we
adopt that the vertices of the set N are numerated by 1,2,3,4 in an order
‘which is in accordance with the order of sets in . Great_family, then we
have: : ‘

, minimalstanda.td'
initial reversed - Tepresentation
family family . after reversing

2)|123-14-1-2|123-14-1-2[123~14-1-2
3)[128-14-1-4]123 - :—1-24{128-14 -2 -2
4)1123-14-2-2(12-134-1-21123-14-1~=4°
7)1123-14-4-4|12-1-1-234 123—14—4-—4

It follows that the representations 2) and 7) are self- reversable (thus both
of them should be kept), while the representations 3) and 4) correspond to
isomoprhic bipartite graphs (we keep 3, since it is lexicographically less-). As
a conclusion, there are five non-isomorphic bipartite graphs with Comb = -
1123,

s{1] =123, s[2] = 14. Their representa.tlons are mlmerated above by
2), 3), 5), 6), 7) respectively.

3. The second zalgorithm

3.1. Representation

A bipartite (m,n)- gra.ph G (m< n) is reptesented by the mxn 0-1
matrix G[i,j] satisfying ,

G[i,jl = 1 if and only if the i—th vertex of the basic vertex-set
M is adjacent to the j—th vertex of the basic vertex-set N.

The representation of G considered as the reversed bipartite (n, m)—graph
is obtained by transposing the matrix G[i,j] .

The matrix code associated to the matrix G[i,j} is the natural num-
ber with the binary expansion 6[1,1],...,6[1,n3,G[2,1],...

.,GIm,1],...,GIm;n] . The matrix code C 'is called mazimal if

,G[2,n],...
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there does not exist any permutation of rows and columns of the matrix such
that the code of permuted matrix is GREATER than - F. Given m # n,
the representation of a bipartite (m,n)—graph is canonical if and only if
its code is maximal. If m = n, then we should keep that one of the two
mutually transposed matrices, which has the larger code (or arbxtra:y one
if the codes are equal). :

Construction of bipartite graphs takes place for m and n (cardinal
numbers of M and N, respectively) and arrangement of edges adjacent to
vertices of N. Arrangement is of the form r;, r3, ...,rp, where 7y > 15 >

.. 2> Tm. Arrangement shows that the k—th vertex of M is adjacent to
the 7, vertices of N, where k=1,...,m

3.2. Algorithm

READ (m,n); (m <n)
FOR e := m+n-1to m-n DO
(* e denotes the number of edges *)
FOR each (non-ordered) partition Part of the number e
~ into m summands DO
Construct_2 ( m, n, Part, 1 );
(* observe that the partitions Part used here coincide
with the combinations Comb used with the first algorithm *)
PROCEDURE Construct_2 (m, n, Part k);
(* the natural number k is the serial number of the matrix
row to which the current call of Construct_2 is applied *)
BEGIN (* Comstruct.2 ¥)
FOR each arrangement of Part[k] 1’sand n-— Pu't[k]
0’s in the k—th matrix row DG BEGIN
Let Temporary_matrix denote the partial representation
of a bipartite graph, consnstmg of the first k rows;
IF k>2 THEN
IF*- NOT Canonical( k, Tenporary_natnx ) THEN
EXIT
IF k<m THER
(* the representation is not yet constructed *)
IF Temporary_matrix cannot be completed with
m — k rows so that a representation of a connected
bipartite (m,n)—graph is produced THEN EXIT
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ELSE (* the representation is completed *)
IF the bipartite graph represented : .
by . Temporary.matrix is connected THEN
print(- Temporary_matrix )
END (= FOR »)
END; (= Construct_ 2 =)

(* The canonicity test for the constructed partial and complete represen-
tations is performed by calling the function Canonical, which takes into
account the transposed representing matrix as well *)

FUNCTION Canonical ( k, Matrix ): boolean;.
FUNCTION Can ( k, Matrix ): boolean;
BEGIN (* Can *)
' Can := false; _
FOR each permutation of columns of Matrix DO
FOR each permutation of rows of Matrix, which
preserves the sequence Part[1],...,Part[m] non-
increasing DO
IF Code_of_Permuted_matrix >
Initial_code THEN EXIT; _
(* the canonicity test ceases immediately after-
the first permutation with larger code is found *)
Can := true
END; (* Can ¥)
BEGIN (* ' Canonical *)
Canonical := true;
Initial_code := Code_of_Matrix;
IF NOT Can (k, Matrix) THEN BEGIN
Canonical := false;
EXIT
END;
IF (n=m) AND (k=m) THEN BEGIN
(* this is the only case with canonicity test when
the transposed matrix is necessary *)
Transpose (Matrix) ;
Canonical := Can(k, Transposed_matrix)
(* now the canonicity depends on whether there exists a :
permutation with larger code with Transposed_matrix *)
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ENvu
END; (* Canonical =)

3.3. Some hints

We shall proceed with some hints which have reduced (or will reduce) the
computing time of the algorithm:

— When arranging the first row of the matrix ( k¥ = 1 ), there is always
only one canonical arrangement: the first r, positions of the row are
filled with r; 1’s — the other pesitions are filled with 0’s.

— In order to reduce computing time, e’very’ partially constructed matrix
(for k > 3)is tested. If it cannot produce a connected matrix (graph)
in the following steps, it is rejected immediately.

— Function Canonical is the most time-consuming one, because of its nested
permutations. However, it is possible to cut short every loop from m!
executions to no more than m,!. my! - ma! - m,! executions, where
m)+ma+ma+my = m. In every partial constructed matrix with more
than two rows ( k > 2 ) is possible to determine at. most four successive
classes of columns which can be permut.ed for themselves and combined
with permutations in other classes. This feature radically reduces the
computing time of the function, especially for m > 6.

4. Example

Let m =3, n=4 and e (the number of edges) = 8. The only partitions
of (e =) 8 into ( m =) 3 summands are: 4—3—1, 4~2-2 and 3—-3-2.

Every partition i—j—k (of the above three), represents all the canonical
matrices with ¢ 1’s.and 4 — ¢ 0’ in the first row, 7 1’sand 4—~3j 0sin
the second row and k& 1’sand 4—k 0’ m the third row.

The matrix will be represented as its code combmed with ’—’ showing
the ends df the rows.

For the sake of simplicity we shall assume that the first and the second
row of every matrix are constructed so that they are already canonical; and
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, ‘
that only the third row is the subject of every possible arrangement and
canonicity test.

4-3-1: The part of the code which is "fixed” (i.e. constructed) is
1111-1110— and one 1 and three 0’s have to be arranged in the third
row.

Arrangement 0001 is tke first one gerzrated and it gives the maximal
code because no other permutation of columns will produce a greater
code than 1111-1110-0001.

Arrangements 0010 and 0100 will not produce the maximal code be-
cause there is such a permutation of columns which "preserves” the
constructed part of the matrix and gives a greater code. For instance,
1111-1110—-1000 is such a code for both cases.

Arrangement 1000 of the thfrd row gives the maximal code
1111-1110-1000.

4—2-2: The part of the code which is constructed is 1111-1100— and
two 1’s and two 0’s have to be arranged in the third row.

All the possible arrangements can be displayed as follows:
1111-1100—0011 maximal, accepted

1111-1100-0101 rejected, 1111-1100—0110 is greater
1111-1100-1001 rejected, 1111-1100—1010 is greater
1111-1100—-0110 rejected, 1111-1100—1010 is greater
1111-1100—-1010 maximal, accepted ‘
1111-1100-1100 maximal, accepted

3-3-2: The first part of the code which we shall assume constructed is
1110—1101- and two 1’s and two 0’s have to be arranged in the third
row. '

All the possible arrangements can be displayed as follows:

1110—-1101-0011 maximal, accepted
1110—-1101-0101 rejected, 1111—-1101-0110 is greater
1110-1101-1001 rejected, 1111-1100—1010 is greater
1111-1100-0110 rejected, 1111-1100—-1010 is greater
1110-1101-1010 maximal, accepted
1110—-1101-1100 maximal, accepted
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The part of the code which we shall assume constructed is 1110—-1110—
and two 1’s and two 0’s have to be arranged in the third row.

All the possible arrangements can be displayed as follows:

1110—-1110—-0011 rejected, 1110-1110-0110 is greater
1110-1110—-0101 rejected, 1110—1110—-1001 is greater
1110-1110-1001 maximal, accepted

1110-1110-0110 rejected, 1110~11106~1010 is greater
1110-1110-1010 rejected, 1110~1110~1100 is grea.ter
1110—1110—-1100 rejected, it is disconnected

5. Results

We primarily give the table of the number of non-isomorphic connected
bipartite (m,n)—graphs, for m<n, m+n < 11:

m/n|2 3 4 5 6 7 8 9 10
1 J1 1 1 1 1 1 1 1 1t
2 4 6 9 12 16 20 25
10 3¢ 76 155 290 510
93 558 1824 5375
1897 19687

O e W N

Thus the total number c(k) of‘non-iéomorphic connected bipartite
graphs on k vertices is for k between 1 and 11 given by:

kK |1 2 3 45 6 7 8 9 10 1
k) JO 1 1 3 5 17 44 182 730 4032 25598

The number t(k) of general (both connected and disconnected) non-
isomorphic bipartite graphs on < 11 vertices, which ‘have no isolated ver-
tices, can be easily ca.lcula.ted by applying the followmg well-known formula

((1]):

t(k) = ) BIe ( <(3) +dzit_()t)—1 ) ’
(d(1),...,d(k)) i=1

where (d(1),...,d(k)) is a k—tuple, which uniquely determines a partition
of the natural number k by

d(1) +2-d(2) + ... + k-d(k) =
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(such a formula may be applied to any graph property, which is hered-
itary to its connected components; the property "to be bipartite” is such a

property).
Thus we obtain the following table of the number t(k):

k|1 2 3 45 6 7 8 9 10 11
t(k)[o 1 1 4 6 22 53 215 816 4360 26824

Finally, if the isolated vertices are also allowed, then the total number
u(k) of general bipartite graphs on k vertices can be easily calculated as :

Cu(k) = HR)+Hk=1)+ .. +E2)+1

This gives the following table:

k|1 234 5 6 7 8 9 10 11
w(k) [1 2 3 7 13 35 88 303 1119 5479 32303
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REZIME .

JEDNA KONSTRUKCIJA NEIZOMORFNIH "MALIH”
BIPARTITNIH GRAFOVA

Konstruisani su svi neizomorfni bipartitni grafovi sa najvise 11 évorova. Pri
konstrukeiji su koris¢ena dva nezavisna algoritma zasnovana na dve razlicite
reprezentacije ovih grafova.

Recetved by the editors January 19, 1990



