Consider the integrodifferential equation \begin{equation}abel{eq1} \frac d{dx}\bigg[x(t)-ıt^t_{t_0}D(t,s)x(s)ds\bigg]=A(t)x(t)+ıt^t_{t_0}C(t,s)x(s)ds, \end{equation} where $A,C,D$ are $n\times n$ matrices continuous for $t_0\leq s\leq t<\infty$. The boundedness and stability properties of $\eqref{eq1}$ are studied.