Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 21, 1 (1991), 95-104 Review of Research Faculty of Science Mathematics Series

THE SEQUENCE SPACE Ces(p, s) AND RELATED MATRIX TRANSFORMATIONS

F.M. Khan and M.A. Khan

Department of Mathematics, Aligarh Muslim University,

Aligarh, India, 202002

Abstract

In the paper, the main purpose is to define and to investigate the sequence space Ces(p,s) and to determine the matrices of classes $(Ces(p,s), \ell_{\infty})$ and (Ces(p,s), c) where ℓ_{∞} and c are respectively the space of bounded and convergent complex sequences and for $p = (p_r)$ with inf $p_r > 0$, the space Ces(p,s) is defined for $s \ge 0$ by

$$Ces(p,s) = \{x = (x_k) : \sum_{r=0}^{\infty} (2^r)^{-s} (\frac{1}{2^r} \sum_{r} |x_k|)^{p_r} < \infty\},$$

where \sum_r denotes a sum over the ranges $2^r \le k < 2^{r+1}$. These spaces i.e. Ces(p, s) can be viewed as Ces(p) spaces with weights, generalizing Ces(p) spaces.

AMS Subject classification (1980): 46A45
Key words and phrases: Köthe-Toeplitzdual, Ces*(p, s), Matrix transformations.

1.

Let $A = (a_{n,k})$ be an infinite matrix of complex numbers $a_{n,k}(n,k = 1,2,...)$ and V,W be two subsets of the space of complex sequences. We

say that the matrix A defines a matrix transformations from V into W and denote it by $A \in (V, W)$, if for every sequence $x = (x_k) \in V$ the sequence $A(x) = A_n(x)$ is in W, where $A_n = \sum_{k=1}^{\infty} a_{n,k} x_k$.

The main purpose of this note is to define and to investigate the sequence space Ces(p,s) and to determine the matrices of classes $(Ces(p,s), \ell_{\infty})$ and (Ces(p,s), c), where ℓ_{∞} and c are respectively the space of bounded and convergent complex sequences and for $p = (p_r)$ with inf $p_r > 0$, the space Ces(p,s) is defined for $s \ge 0$ by

$$Ces(p,s) = \{x = (x_k) : \sum_{r=0}^{\infty} (2^r)^{-s} (\frac{1}{2^r} \sum_{r} |x_k|)^{p_r} < \infty\},$$

where \sum_{r} denotes a sum over the ranges $2^{r} \le k < 2^{r+1}$.

Obviously, the sequence space

$$Ces(p) = \{x = (x_k) : \sum_{r=0}^{\infty} (\frac{1}{2^r} \sum_r |x_k|)^{p_r} < \infty \}, \text{ where inf } p_r > 0,$$

which has been investigated by K.P. Lim ([3], [4]) is a special case of Ces(p,s) which corresponds to s=0. And $Ces(p,s)\supset Ces(p)\supset \ell(p)$ for $p_r\geq 1$.

With regard to notation, the dual space of Ces(p,s), i.e. the space of all the continuous linear functionals on Ces(p,s), will be denoted by $Ces^*(p,s)$. We write $A_r(n) = \max_r |a_{n,k}|$ where for each n the maximum is taken for k in $[2^r, 2^{r+1}]$.

Troughout the paper the following well-known inequality (See[1]) will be used frequelntly.

For any C > 0 and any two complex numbers a, b:

(1)
$$|ab| \le C(|a|^q C^{-q} + |b|^p) \text{ where } p > 1 \text{ and } \frac{1}{p} + \frac{1}{q} = 1.$$

To begin with we can show that the space Ces(p, s) is paranormed by

(2)
$$g(x) = \left(\sum_{r=0}^{\infty} (2^r)^{-s} \left(\frac{1}{2^r} \sum_{r} |x_k|\right)^{p_r}\right)^{1/M}$$

if $H = \sup_r p_r < \infty$ and $M = \max(1, H)$. Clearly $g(\Theta) = 0$ and g(x) = g(-x), where $\Theta = (0, 0, \ldots)$. Take any $x, y \in Ces(p, s)$. Since

 $p_r \leq M$ and $M \geq 1$, using Minkowski's inequality we obtain that g is subadditive. Finally, we have to check the continuity of scalar multiplication. For any complex λ , we have

$$g(\lambda x) = \left[\sum_{r=0}^{\infty} (2^r)^{-s} \left(\frac{1}{2^r} |\lambda x_k|\right)^{p_r}\right]^{1/M}$$

$$\leq \sup_{r} |\lambda|^{p_r/M} \cdot g(x).$$

Now let $\lambda \to 0$ for any fixed x with $g(x) \neq 0$. Since $\sum_{r=0}^{\infty} (2^r)^{-s} (\frac{1}{2^r} \sum_r |x_k|)^{p_r} < \infty$, there exists an integer $m_0 > 1$, for $|\lambda| < 1$ and $\epsilon > 0$, such that

$$\sum_{r=m_0}^{\infty} (2^r)^{-s} \left(\frac{1}{2^r} \sum_r |\lambda x_k|\right)^{p_r} < \epsilon.$$

Taking $|\lambda|$ sufficiently small such that $|\lambda|^{p_r} < \epsilon/g(x)$ for $r = 0, 1, \ldots, m_0 - 1$, we then have

(4)
$$\sum_{r=0}^{m_0-1} (2^r)^{-s} (\frac{1}{2^r} \sum_r |\lambda x_k|)^{p_r} < \epsilon.$$

(3) and (4) together implies that $g(\lambda x) \to 0$ as $\lambda \to 0$.

It is quite routine to show that (Ces(p,s),d) is a metric space with the metric d(x,y) = g(x-y) provided that $x,y \in Ces(p,s)$, where g is defined by (2). And using a similar method to that in [2] one can show that Ces(p,s) is complete under the metric mentioned above.

2.

Now we are going to give the following theorem by which the Köthe-Toeplitz dual of Ces(p, s) will be determined.

Theorem 1. If $1 < p_r \le \sup_r p_r < \infty$ and $\frac{1}{p_r} + \frac{1}{q_r} = 1$, r = 0, 1, 2, ... then

$$Ces^{+}(p,s) = \{a = (a_k) : \sum_{r=0}^{\infty} (2^r)^{s(q_r-1)} (2^r \max_{r} |a_k|)^{q_r} E^{-q_r} < \infty$$

$$for some integer E > 1\}, s \ge 0.$$

Proof. Let $1 < p_r \le \sup_r p_r < \infty$ and $\frac{1}{p_r} + \frac{1}{q_r} = 1$, for $r = 0, 1, 2, \ldots$. Then take

(5)
$$\mu(q,s) = \{a = (a_k) : \sum_{r=0}^{\infty} (2^r)^{s(q_r-1)} (2^r \max_r |a_k|)^{q_r} E^{-q_r} < \infty$$

for some integer E > 1, $s \ge 0$.

We now want to show that $Ces^+(p,s) = \mu(q,s)$. Let $x \in Ces(p,s)$, $a \in \mu(q,s)$. Therefore using inequality (1), we get

$$\sum_{k=1}^{\infty} |a_k x_k| = \sum_{r=0}^{\infty} \sum_r |a_k x_k|$$

$$\leq \sum_{r=0}^{\infty} 2^r \max_r |a_k| (2^r)^{s/p_r} \cdot \frac{1}{2^r} (2^r)^{-s/p_r} \sum_r |x_k|$$

$$\leq E(\sum_{r=0}^{\infty} (2^r \max_r |a_k|)^{q_r} (2^r)^{sq_r/p_r} E^{-q_r} + \sum_{r=0}^{\infty} (2^r)^{-s} (\frac{1}{2^r} \sum_r |x_k|)^{p_r}).$$

So $\sum |a_k x_k|$ is convergent, which implies that $\sum a_k x_k$ is convergent i.e. $a \in Ces^+(p,s)$. In other words $Ces^+(p,s) \supset \mu(q,s)$. Conversely, let us suppose that $\sum a_k x_k$ is convergent and $x \in Ces(p,s)$, but $a \notin \mu(q,s)$. Then we write that

$$\sum_{r=0}^{\infty} (2^r)^{s(q_r-1)} (2^r \max_r |a_k|)^{q_r} E^{-q_r} = \infty \text{ for each } s \ge 0$$

and for every E > 1. So we can find a sequence $0 = n(0) < n(1) < n(2) < \dots$ such that for $\nu = 0, 1, 2, \dots$

$$M_{\nu} = \sum_{r=n(\nu)}^{n(\nu+1)-1} (2^r)^{s(q_r-1)} (2^r \max_r |a_k|)^{q_r} (\nu+2)^{-q_r/p_r} > 1.$$

Now define a sequence $x = (x_k)$ as follows: for each ν ,

$$x_{N(r)} = 2^{rq_r} |a_{N(r)}|^{q_r-1} sgn \ a_{N(r)} (2^r)^{s(q_r-1)} (\nu+2)^{-q_r} M_{\nu}^{-1},$$

for $n(\nu) \le r \le n(\nu+1) - 1$, and $x_k = 0$ for $k \ne N(r)$ where N(r) is such that $|a_{N(r)}| = \max_r |a_k|$, the maximum is taken for k in $[2^r, 2^{r+1}]$.

Therefore,

$$n(\nu+1)-1$$

$$\sum_{\substack{n(\nu)\\k=2}}^{2} a_k x_k = \sum_{\tau=n(\nu)}^{n(\nu+1)-1} (2^{\tau} |a_{N(\tau)}|)^{q_{\tau}} (2^{\tau})^{s(q_{\tau}-1)} (\nu+2)^{-q_{\tau}} M_{\nu}^{-1} =$$

$$= M_{\nu}^{-1}(\nu+2)^{-1} \sum_{r=n(\nu)}^{n(\nu+1)-1} (2^{r}|a_{N(r)}|)^{q_{r}} \cdot (2^{r})^{s(q_{r}-1)}(\nu+2)^{-q_{r}/p_{r}} =$$

$$= (\nu+2)^{-1}.$$

It follows that $\sum_{k=1}^{\infty} a_k x_k = \sum_{\nu=0}^{\infty} (\nu+2)^{-1}$ diverges. Moreover

$$\sum_{r=n(\nu)}^{n(\nu+1)-1} (2^r)^{-s} \cdot (\frac{1}{2^r} \sum_r |x_k|)^{p_r} =$$

$$=\sum_{r=n(\nu)}^{n(\nu+1)-1} (2^r)^{-s} (2^{r(q_r-1)p_r} |a_{N(r)}|^{(q_r-1)p_r} (\nu+2)^{-q_r p_r}.$$

$$M_{\nu}^{-p_r}(2^r)^{s(q_r-1)p_r}$$

$$\leq (\nu+2)^{-2}M^{-1}\sum_{r=n(\nu)}^{n(\nu+1-1)}(2^r)^{s(q_r-1)}2^{rq_r}|a_{N(r)}|^{q_r}(\nu+2)^{-q_r/p_r}$$

$$=(\nu+2)^{-2}$$

Hence, $\sum_{r=0}^{\infty} (2^r)^{-s} (\frac{1}{2^r} \sum_r |x_k|)^{p_r} \leq \sum_{\nu=0}^{\infty} (\nu+2)^{-2} < \infty$ i.e. $x \in Ces(p,s)$. And this contradicts our assumption. So $a \in \mu(q,s)$ i.e. $\mu(q,s) \supset Ces^+(p,s)$. Then combining these two results we get

$$Ces^+(p,s) = \mu(q,s).$$

Let us now determine the continuous dual of Ces(p, s) by the following theorem.

Theorem 2. Let $1 < p_r \le \sup_r p_r < \infty$. Then $Ces^*(p,s)$ is isomorphic to $\mu(q,s)$ which is defined by (5).

Proof. It is easy to check that each $x \in Ces(p, s)$ can be written as $x = \sum_{k=1}^{\infty} x_k e_k$ where $e_k = (0, 0, \dots, 1, 0, 0 \dots)$, where 1 appears at k-th place.

Then for any $f \in Ces^*(p,s)$

$$f(x) = \sum_{k=1}^{\infty} x_k f(e_k) = \sum_{k=1}^{\infty} x_k a_k,$$

where $f(e_k) = a_k$.

By theorem 1, the convergence of $\sum_{k=1}^{\infty} a_k x_k$ for every x in Ces(p, s) implies that $a \in \mu(q, s)$.

If $x \in Ces(p, s)$ and if we take $a \in \mu(q, s)$ taken by Theorem 1, $\sum_{k=1}^{\infty} a_k x_k$ converges and clearly defines a linear functional on Ces(p, s). Using the same kind of argument to that in Theorem 1, it is easy to check that

$$\sum_{k=1}^{\infty} |a_k x_k| \le E(\sum_{r=0}^{\infty} (2^r)^{s(q_r-1)} (2^r \max_r |a_k|)^{q_r} E^{-q_r} + 1) g(x)$$

whenever $g(x) \leq 1$. Hence $\sum_{k=1}^{\infty} a_k x_k$ defines an element of $Ces^*(p,s)$. Obviously, the map $T: Ces^*(p,s) \to \mu(q,s)$ given by $T(f) = (a_1, a_2, \ldots)$ is linear and bijective. Hence $Ces^*(p,s)$ is isomorphic to $\mu(q,s)$.

3.

In the following theorems we are going to characterize the matrix classes $(Ces(p,s),\ell_{\infty})$ and (Ces(p,s),c).

Theorem 3. Let $1 < p_r \le \sup_r p_r < \infty$. Then $A \in (Ces(p, s), \ell_{\infty})$ iff there exists an integer E > 1 such that $U(E) > \infty$ where

$$U(E) = \sup_{n} \sum_{r=0}^{\infty} (2^{r} A_{r}(n))^{q_{r}} (2^{r})^{s(q_{r}-1)} E^{-q_{r}} < \infty$$

and

$$\frac{1}{p_r} + \frac{1}{q_r} = 1, \quad r = 0, 1, 2, \dots$$

Proof. Sufficiency. Suppose there exists an integer E > 1 and consider the hypothesis. Then by inequality (1), we have

$$\begin{split} \sum_{k=1}^{\infty} |a_{n,k}x_k| &= \sum_{r=0}^{\infty} \sum_{r} |a_{n,k}x_k| \\ &\leq E(\sum_{r=0}^{\infty} (2^r A_r(n))^{q_r} (2^r)^{sq_r/p_r} \\ E^{-q_r} &+ \sum_{r=0}^{\infty} (2^r)^{-s} (\frac{1}{2^r} \sum_{r} {}^n x_k|)^{p_r}) < \infty. \end{split}$$

Therefore $A \in (Ces(p, s), \ell_{\infty})$.

Necessity. Suppose that $A \in (Ces(p, s), \ell_{\infty})$ but that

$$\sup_{n} \sum_{r=0}^{\infty} (2^{r} A_{r}(n))^{q_{r}} (2^{r})^{s(q_{r}-1)} E^{-q_{r}} = \infty \text{ for every integer } E > 1.$$

Then $\sum_{k=1}^{\infty} a_{n,k} x_k$ convergences for every n and for every $x \in Ces(p,s)$, whence $(a_{n,k})_{k=1,...} \in Ces^+(p,s)$ for every n.

By Theorem 1, it follows that each A_n defined by $A_n(x) = \sum_{k=1}^{\infty} a_{n,k} x_k$ is an element of $Ces^*(p,s)$. Since Ces(p,s) is complete and since $\sup_n |A_n(x)| < \infty$ on Ces(p,s), by the uniform boundedness principle there exists a number L independent of n and x and a number $\delta < 1$ such that

$$(6) |A_n(x)| \le L$$

for every $x \in S[\Theta, \delta]$ and every n, where $S[\Theta, \delta]$ is the closed sphere in Ces(p, s) with centre the origin Θ and radius δ .

Now choose an integer Q > 1 such that

$$Q\delta^M > L$$
.

Since

$$\sup_{n} \sum_{r=0}^{\infty} (2^{r} A_{r}(n))^{q_{r}} (2^{r})^{s(q_{r}-1)} Q^{-q_{r}} = \infty,$$

there exists an integer $m_0 > 1$ such that

(7)
$$R = \sum_{r=0}^{m_0} (2^r A_r(n))^{q_r} (2^r)^{s(q_r-1)} Q^{-q_r} > 1.$$

Define a sequence $x = (x_k)$ as follows:

$$x_k = 0 \text{ if } k \ge 2^{m_0 + 1}$$

and

$$x_{N(r)} = 2^{rq_r} \delta^{M/p_r} (sgn \ a_{n,N(r)})$$
$$|a_{n,N(r)}|^{q_r-1} R^{-1} Q^{-q_r/p_r} (2^r)^{s(q_r-1)}$$

 $x_k = 0 \ (k \neq N(r), \text{ for } 0 \leq r \leq m_0) \text{ where } N(r) \text{ is the smallest integer such that } |a_{n,N(r)}| = \max_r |a_{n,k}|. \text{ Then one can easly show that } g(x) \leq \delta \text{ but } |A_n(x)|^r > L, \text{ which contradicts to (6).}$

This completes the proof of the Theorem.

Theorem 4. Let $1 < p_r \le \sup_{r} p_r < \infty$. Then $A \in (Ces(p, s), c)$ if

- $(4.1) a_{n,k} \to \alpha_k(n \to \infty, k \text{ fixed })$
- (4.2) there exists an integer E > 1 such that $U(E) < \infty$, where U(E) is defined as in Theorem 3.

Proof. Suppose $A \in (Ces(p,s),c)$. Then $A_n(x)$ exists for each $n \leq 1$ and $\lim_n A_n(x)$ exists, for every $x \in Ces(p,s)$. Therefore, by a similar argument to that in Theorem 3, we have condition (4.2). The condition (4.1) is obtained by taking $x = e_k \in Ces(p,s)$, where $e_k = (0,0,\ldots 1,0,0,0,\ldots)$ where 1 appears at k-th place.

For the sufficiency the conditions of the Theorem imply that

(8)
$$\sum_{r=0}^{\infty} (2^r \max_r |\alpha_k|^{q_r} (2^r)^{s(q_r-1)})$$

$$E^{-q_r} \leq U(E) < \infty.$$

By using (8), it is easy to check that $\sum_{k=1}^{\infty} \alpha_k x_k$ is absolutely convergent for each $x \in Ces(p,s)$. Moreover, for each $x \in Ces(p,s)$, there exists an integer $m_0 \ge 1$, such that

$$g_{m_0}(x) = \sum_{r=m_0}^{\infty} (2^r)^{-s} (\frac{1}{2^r} \sum_r |x_k|)^{p_r} < 1.$$

If $g_{m_0}(x) \neq 0$ the by the proof of Theorem 2 and by inequality (1) we have

(9)
$$\sum_{m_0}^{\infty} |a_{n,k} - \alpha_k| |x_k| \le E(\sum_{r=m_0}^{\infty} (2^r)^{s(q_r-1)})$$

$$k = 2$$

$$(2^r B_r(n))^{q_r} E^{-q_r} + 1) g_{m_0}(x)^{1/M},$$

where $B_r(n) = \max_r |a_{n,k} - \alpha_k|$.

Cleraly (9) holds if $g_{m_0}(x) = 0$. Since

$$\sum_{r=m_0}^{\infty} (2^r)^{s(q_r-1)} (2^r B_r(n))^{q_r} E^{-q_r} \le 2 \ U(E) < \infty,$$

from (9), it follows immediately that $\lim_{n\to\infty} \sum a_{n,k}x_k = \sum \alpha_k x_k$. This shows that $A \in (Ces(p,s),c)$ which proves the Theorem.

Remark. To be able to get the necessary and sufficient confition for $A \in (Ces(p,s),c_0)$, where c_0 is the space of null sequences, it would be enough to take $\alpha_k = 0$ in the above theorem.

Finally we are grateful to the referee for his suggestions and some useful remarks.

References

- [1] Maddox, I.J.: Continuous and Köthe-Toeplitz dual of certain sequence spaces. Proc. Camb. Phil. Soc. 65 (1969), 431-435.
- [2] Maddox, I.J.: Elements of Functional analysis. University Press, Cambridge, 1970.
- [3] Lim, K.P.: Matrix transformation in the Cesaro sequence spaces. Kyungpook Math. J. 14 (1974), 221-227.
- [4] Lim, K.P.: Matrix transformation on certain sequence spaces. Tamkang J. of Mathematics 8, No.2 (1977), 213-220.

REZIME

NIZOVNI PROSTOR Ces(p, s) I ODNOSNE MATRIČNE TRANSFORMACIJE

Glavna svrha rada je da se definiše i ispita nizovni prostor Ces(p, s), te da se odrede matrice klasa $(Ces(p, s), \ell_{\infty})$ i (Ces(p, s), c) gde su ℓ_{∞} i c prostori ograničenih, odnosno konvergentnih kompleksnih nizova, a za $p = (p_2)$ sa inf $p_2 > 0$, prostor Ces(p, s) je definisan za $s \ge 0$ sa:

$$Ces(p,s) = \{x = (x_k) : \sum_{r=0}^{\infty} (2^r)^{-s} (\frac{1}{2^r} \sum_r |x_k|)^{p_r} < \infty\},$$

gde \sum_{r} označava sumu po svim k:

$$z^r \le k \le 2^{r+1}.$$

Prostori Ces(p, s) se mogu posmatrati kao Ces(p) prostori sa težinama, koji uopštavaju Ces(p) prostore.

Recived by the editors May 5, 1989.