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Abstract

In the paper, the main purpose is to define and to investigate
the sequence space Ces(p,s) and to determine the matrices of classes
(Ces(p,8),fx) and (Ces(p,8),c) where £, and c are respectively the
space of bounded and convergent complex sequences and for p = (p,)
with inf p, > 0, the space Ces(p,s) is defined for s >0 by

Cestp ) = (= = (=) : 32V (g T el < o),

r=0

where Y, denotes a sum over the ranges 2" <k < 2741,
These spaces i.e. Ces{p,s) can be viewed as Ces(p) spaces
with weights, generalizing Ces(p) spaces.
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1. ’

Let A = (a,&) be an infinite matrix of complex numbers a,x(n,k =
1,2,...) and V,W be two subsets of the space of complex sequences. We
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say that the matrix A deﬁnes a matrix transformations from V into W and
denote it by A € (V,W), if for every sequence z = (z;) € V the sequence
A(z) = Ap(z) isin W, where A, =3 32, GniZk.

The main purpose of this note is to define and to investigate the sequence
space Ces(p,s) and to determine the matrices of classes (Ces(p,s),l)
and (Ces(p,s),c), where £, and c are respectively the space of bounded
and convergent complex sequences and for p = (p,) with inf p, > 0, the
space Ces(p,s) is defined for s >0 by

o0
ry—3 1
Ceslpos) = o = (20): L) 7 L leal)™ < oo,
r= T
where Y., denotes a sum over the ranges 2" < k < 27+1,
Obviously, the sequence space '
Ces(p) = {z = (z) : 2(; zr:lzo:kl)Pr < 0o}, where inf p, > 0,

which has been investigated by K.P. Lim ([3], [4]) is a special case of
Ces(p,s) which corresponds to s = 0. And Ces(p,s) D Ces(p) D {(p)
for p, > 1.

With regard to notation, the dual space of Ces(p,s), i.e. the space
of all the continuous linear functionals on Ces(p,s), will be denoted by
Ces*(p,s). We write A.(n) = max, |a, | where for each n the maximum
is taken for k in [27,27t!].

Troughout the paper the following well-known inequality (See[1]) will be
used frequelntly. .

For any C > 0 and any two complex numbers a, b:

(1) lab| < C(|a|*C* + [b|) where p > 1 and % + % ~1.

To begin with we can show that the space Ces(p,s) is paranormed by

(2) g(z) = (i(Qr)—s 51;2 Izkl)pr)I/M

r=0

if H=sup,p, <oo and M = max(l,H). Clearly ¢(©) =0 and
g(z) = g(—z), where O = (0,0,...... ). Take any z,y € Ces(p,s). Since
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p, <M and M > 1, using Minkowski’s inequality we obtain that g is
subadditive. Finally, we have to check the continuity of scalar multiplication.
For any complex A, we have

9(Az) = [E("') (5 lf\z Digghad

r=0

< sup [AP™M - g(2).
u

Nowlet A — 0 for any fixed z with g(z) # 0. Since 3724(27)~*(3 L,
|zx])Pr < oo, there exists an integer mo > 1,for |[A]<1 and €>0,such
that

@) T G T bl <o

r=myo
Taking |A| sufficiently small such that |A|Pr < ¢/g(z) for r =
0,1,...... mg — 1, we then have

mo—1

(4) S @) z|/\x,.|)”' <e€

r=0

(3) and (4) together implies that g(Az) — 0 as A — 0.

It is quite routine to show that (Ces(p,s),d) is a metric space with
the metric d(z,y) = g(z — y) provided that =z,y € Ces(p,s), where g is
defined by (2). And using a similar method to that in [2] one can show that
Ces(p, 8) is complete under the metric mentioned above.

2.

Now we are going to give the following theorem by which the Kéthe-Toeplitz
dual of Ces(p,s) will be determined.

Theorem 1. If 1< p, <sup,p, < o0 and

++=1r=0,12,...
then

1
Pr

Ces"'(p, 3)={a= (ak) : E(2r)a(qr-l)(2r mjlxlakl)q'E_q' < 00
r=0

Jor some integer E > 1}, s> 0.
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Proof. Let 1< p, < sup,p, < o0 and -51:+31: =1,for r=0,1,2,....
Then take
oo
(5)  m(g9)={a=(ar): I (27)" (2" max|ak|)" E~" < oo
r=0
for some integer E > 1}, s> 0.
We now want to show that Cest(p,s) = u(q,s). Let z € Ces(p,s),
a € u(q,s). Therefore using inequality (1), we get

[ 2]

)
Ylakzel = DD lokzl
k=1 r=0 r
- /p 1 9" s/p
< r r\8/Pr . — - r
< L2 maxlanl(2) - ()7 3 el
[ ’ oo 1
< E(Y (2 max |ay|)™(27) /P E79 4 2(2')_'(27 3 lzkl)r).
r=0 r=0 r

So ¥ laxzi| is convergent, which implies that ¥ a,z; is convergent i.e.
a € Ces*(p,s). In other words Ces*(p,s) D u(q,s). Conversely, let us
suppose that 3 a,z; is convergent and z € Ces(p,s), but a ¢ u(g,s).
Then we write that

o0
Z(Qr)s(qr-l)(2r mgxlakl)"'E_q' = oo for each s> 0
r=0

and for every E > 1. So we can find a sequence 0 = n(0) < n(1) < n(2) <
. such that for »=0,1,2,...

n(v+1)-1
M, = Y (@6 (2 max|a]) (v +2)7" /P > 1.
r=n{v)
Now define a sequence z = (z4) as follows: for each v,

ZN() = 2" lan)] ! sgn an(27) D 4+ 2)7 M2,

for n(r) <r<n(r+1)-1,and zx =0 for k& # N(r) where N(r)
is such that |ay(,)| = max, |a;|, the maximum is taken for k in [27,27+1).
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Therefore,
n(r+1)-1
2 n(v+1)-1

> am= Y, @)@y @42 =
n(u) r=n(v)
k=2

n(v+1)-1
M—l(u + 2)—1 Z (2'|0N(r)|)q' (2')’(91'-1)(1, + 2)"91'/?1' =
r=n(v)

= (v+2)7.

It follows that 322, apzx = 324(v +2)~! diverges. Moreover

- n(r+1)-1
>, @) (& Zl ) =
r=n(v)
n(v+1)-1
= X (@)@ ey + 27
r=n(v) '

M:Pr(Qf)‘(QY-l)Pr)

n(u+l-—i)
<(w+2)7*M? Z (2")’(9"-1)2"9r|a~(,)Iqr(u N s
r=n(v)
=w+2)?

Hence, 3°220(27) (3 &, lexl)” < Tilo(r +2)7 < 00 Le. z € Ces(p,s).
And this contradicts our assumption. So a € u(q,8) ie.  u(g,8) D
Ces*(p,s). Then combining these two results we get

Ces*(p,s) = u(q,5).

Let us now determine the continuous dual of Ces(p,s) by the following
theorem.

Theorem 2. Let 1 < p, < sup, p, < oo. Then Ces*(p,s) is isomorphic
to pu(q,8) which is defined by (5).
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Proof. Tt is easy to check that each z € Ces(p,s) can be written as
z =3 %2,zrer where e = (0,0,... ,1?0,0...), where 1 appears at k-th
place.

Then for any f € Ces*(p,s)

o oo
f(@) =Y zif(er) = D zrax,
k=1 k=1
where f(ex) = ax.
By theorem 1, the convergence of 3 22, arz; for every z in Ces(p, s)

implies that a € u(q, 3).

If z € Ces(p,s) and if we take - #(g,8) taken by Theorem 1,
Y2 akzr converges and clearly defines a linear functional on Ces(p, s).
Using the same kind of argument to that in Theorem 1, it is easy to check
that :

3 laxae] < E(Y_(2Y0~ (2 max|au) B0 + 1)g(2)

k=1 r=0

whenever g(z) < 1. llence > 22, arzr defines an element of Ces*(p,s).
Obviously, the map T :Ces*(p,s) — p(q,s) given by T(f) = (a1,as,...)
is linear and bijective. Hence Ces*(p,s) is isomorphic to u(g,s).

3.

In the following theorems we are going to characterize the matrix classes
(Ces(p,3),£x) and (Ces(p,s),c).

Theorem 3. Let 1< p, < sup,.p, < 00. Then A € (Ces(p,3),£00) iff
there ezists an integer E > 1 such that U(E) > oo where

U(E) — Sl’ltp i(2rAr(n))4r(2r)a(qr—I)E—qr < 00

and

irloy r=o012,....
Pr @ _
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Proof. Sufficiency. Suppose there exists an integer E > 1 and consider
the hypothesis. Then by inequality (1), we have

o0 oo
S langzel = 3 lan szl
k=1 r=0 7

< E(i(TA,(n))?' (27 )%/

r=0
> 1
BT 4+ 3(20) (5 3 ")) < oo,
r=0 r

Therefore A € (Ces(p,s),lx).
Necessity. Suppose that A € (Ces(p, s), %) but that

sup Z(2’A,(n))"'(2')’(""'1)E"'r = oo for every integer E > 1.
n

r=0
Then Y32, a,xzx convergences for every n and for every z € Ces(p,s),
whence (@nk)k=1,. € Ces*(p,s) for every n.

By Theorem 1, it follows that each A, defined by A, (z) = Y32, an xZk
is an element of Ces*(p,s). Since Ces(p,s) is complete and since
sup, |An(z)] < o0 on Ces(p,s), by the uniform boundedness principle
there exists a number L independent of n and z and a number 6 < 1 such
that
(6) |Ana(2)] < L

for every z € §[0,6] and every n, where S5[0,4] is the closed sphere in
Ces(p,s) with centre the origin ©® and radius 4.

Now choose an integer @ > 1 such that

Q&M > L.

~ Since -
sup Z(grAr(n))qr(gf_)’(qr—I)Q—qr = 00,
n r=0

there exists an integer mg > 1 such that

(1) R =3 (2 A, (m)fr (@Y e-DQ= 5 1,

r=0
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Define a sequence z = (z;) as follows:
T = 0if k 2 2m°+l

and
ZN(r) = 26/ (sgn 0 )

|a’n.N(r) lq'-l R—IQ"‘"/Pr (21‘ )a(q,_l)

zr =0(k# N(r),for 0<r < mg) where N(r) is the smallest integer
such that |a, n(,)| = max, |a, i|. Then one can easly show that g(z) <6
but |Aa(z)|” > L, which contradicts to (6).

This completes the proof of the Theorem.

Theorem 4. Let 1< p, < sup,p, < 0. Then A € (Ces(p,s),c)

(4.1) an k. — op(n — 00,k fized )
(4.2)  there ezists an integer E > 1 such that U(FE) < oo,
where U(E)is defined as in Theorem 3.

Proof. Suppose A € (Ces(p,s),c). Then A,(z) exists foreach n <1
and lim, A.(z) exists, for every z € Ces(p,s). Therefore, by a similar
argument to that in Theorem 3, we have condition (4.2). The condition (4.1)
is obtained by taking z = e, € Ces(p,s), where e = (0,0,...1,0,0,0,...)
where 1 appearsat k-th place.

For the sufficiency the conditions of the Theorem imply that
o0
®) Y (2 max|ay)*(27) )
r=0 T
E™" < U(E) < oo.
By using (8), it is easy to check that Y 5>, o,z is absolutely conver-

gent for each z € Ces(p,s). Moreover, for each z € Ces(p, s), there exists
an integer mg > 1, such that

gmo(2) = Y (27)* —Elz,.l)rr <1l

r=mo
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If gmo(z) # 0 the by the proof of Theorem 2 and by inequality (1) we
have

(9) E Ia,,,,, — ay| |zl S E( E (2f)l(q,-—1)
m“ . r=mo
k=2

(2" B,(n))* E™* + 1)gmo(2)'/™,
where B,(n) = max, |a,x — ail. |
Cleraly (9) holds if gum,(z) = 0. Since

3 (@)@ B ()" E* <2U(E) < oo,

r=mo

from (9), it follows immediately that lim, oo ). @nxZk = Y. axzs. This
shows that A € (Ces(p,s),c) which proves the Theorem.

Remark. To be able to get the necessary and sufficient confition for
A € (Ces(p,s),cq), where ¢ is the space of null sequences, it would be
enough to take o =0 in the above theorem.

Finally we are grateful to the referee for his suggestions and some useful
remarks. ‘
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REZIME

NIZOVNI PROSTOR Ces(p,s) I ODNOSNE MATRICNE
TRANSFORMACIJE

Glavna svrha rada je da se definise i ispita nizovni prostor Ces(p, 3), te da
se odrede matrice klasa (Ces(p, 38),£s0) i (Ces(p,s),c) gde su £, i ¢ prostori
ogranitenih, odnosno konvergentnih kompleksnih nizova, a za p = (p3) sa
inf p > 0, prostor Ces(p, s) je definisan za s > 0 sa:

= —as 1
Ces(p,8) = {z = (21) : 2(2) (5 . lenl)P" < o0},
r=0 r
gde 3", oznatava sumu po svim k:
ZT s k s 2"‘+1.

Prostori Ces(p, s) se mogu posmatrati kao Ces(p) prostori sa tezinama,
koji uopstavaju Ces(p) prostore.
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