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Abstract

Let (X,d) and (Y,¢) be two complete metric spaces. It is proved
that if T is a mapping of X into Y and S is a mapping of Y into X
satisfying the inequalites

e*(Tz, TSy) <
c; max{d(z, Sy)e(y, Tz), d(z, Sy)e(y, TSy),e(y, Tz)e(y, TSy)}.
d*(Sy,STz) <
c; max{e(y, Tz)d(z, Sy), e(y, Tz)d(z,STz),d(z, Sy)d(z, STz)}.
forallzin X and yin Y, where 0 < ¢;-¢2 <1 or the inequalities
} e(Tz,TSy) - max{e(y, Tz),e(TSy, y)}
S ad(z,Sy) -max{d(z, Sy), e(y, TSy)}
d(Sy,STz) - max{d(z,Sy),d(z,5Tz)} <
< c2¢(y, Tz) - max{e(y, Tz), d(z,STz)}

forallzin X andyin Y., where 0 <e¢j,¢; < 1, then ST has#unique
fixed point z in X and T'S has a unique fixed point w in Y. Further,
Tz=w and Sw= 2.

Ams Mathematics Subject Ciassiﬁcation (1980). Primary 54H25, Sec-
ondary 54E40, 54E45, 54E50. '
Key words and phrases: Complete metric space, fixed point.

83



84 V. Popa

a recent paper [1], the following theorem was proved
Theorem 1. Let (X,d) and (Y, e€) be complete metric spaces. If T is a map-
ping of X intoY and S is a mapping of Y into X satisfying the inequalities
(1) e(Tz,TSy) < ¢ max{d(z,Sy),e(y,Tz),e(y, TSy)}

(2) d(Sy, STz) < ¢ max{e(y,Tx),d(z, Sy),d(z,STz)}

forallz in X andy inY, where 0 <c <1, then ST has a unique fized
point z in X and T'S has a unique fized point w in Y. Further, Tz=w
and Sw = z.

In [2] and [3] the other fixed point theorems on two metric spaces are
proved. Now, we shall prove two fixed point theorems involving two metric
spaces.

Theorem 2. Let(X,d) and (Y,e) be complete metric spaces. If T is a map-
ping of X into Y and S is a mapping of Y into X satisfying the inequalities
(3) e}(Tz,TSy) <

c1 max{d(z, §y)e(y, Tz),d(z, Sy)e(y, T Sy), e(y, Tz)e(y, TSy)}

(4) d*(Sy,5Tz) <
| ¢ max{e(y, T'z)d(z, Sy), e(y, Tz)d(z, 5Tz), d(z, Sy)d(zv STz)}

forallz in X andy inY, where 0 <'¢y-¢2 <1, then ST has a unique fized
point z in X and TS has a unique fized point w inY. Further, T2z=w
and Sw=z.

Proof. Let z be an arbitrary point in X. Define sequences {z,.} and
{yn} in X and Y respectively by

(ST)*z = 2, T(ST)" 'z =1y,
for n=1,2,.... Using inequality (4) we have

dQ(zna zﬂ+l) <
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<e ma-x{e(yn+l, yn)d(zm zn), d(zn, zn)d(zn, zn+l),

€(¥n, ¥n41)d(Zn, Tn11)} = €26(Yn, Yn+1)d(Zn; Zni1)s
which implies '
d(zn,Zn41) < €2 €(Yns Ynt1)

if d(zn,Zn41) # 0 and by using inequality (3), we have
€*(Yn» Yns1) <

¢y max{d(Zn_1,%n)e(Yn, Ynt+1)» €(Yn, Yn)e(¥n+1,¥n)s A(Tn-1,Zn)e(Yn, Yn+1)} =
1 d(Zn-1,Zn)e(Yns Yn+1),
which implies
e(¥n, ¥n+1) < €1d(Tn-1,2n)
if e(Yn,yn+1) # 0. It follows that

d(zm zn+l) < C2e(yns yn+1) <

< c16d(Zn_1,2s) £ ... £ (a162)" d(z, 1)

and since 0<c1-c2 <1, {zn} is a Cauchy sequence with a limit z in X
and {y.} is a Cauchy sequence with a limit w in Y.

Now, by using inequality (3), we have
X (Tz,yn) <

c1 max{d(z, Zn-1)e(Yn+1,T2),d(2, Zn-1)e(Yn—-1,¥n),
e(Yn-1, Yn)e(Yn-1, TZ)}.

Letting n tend to infinity we have €2(Tz,w) <0 andso Tz = w. Similarly,
we can prove that Sw =z andso STz=Sw=2,TSw=Tz=w. Thus
ST has a fixed point z and TS has a fixed point w. Now suppose that ST
has a second fixed point 2’. Then by using inequality (4), we have

d*(z,2') = d*(STZ',ST2) <

camax{e(T2',Tz)d(z,8Tz'),e(T7,Tz),d(z,8Tz),
d(z,ST2")d(z,8Tz2)} = c2e(Tz', Tz)d(z,z")
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which implies d(2’,2) < c2¢(T2’,Tz). But by using inequality (3),
eX(Tz,TZ') = ¥(T7',TST2) <
¢y max{d(z’,8Tz)e(Tz,T7'),d(z',STz)
e(Tz,TSTz),e(Tz,2)e(T2,TSTz2)} = 1d(Z',STz)e(T2, T2),

which implies _

e(TZ,Tz2) < c1d(7,85Tz) = c1d(2,2’)
and so

d(z,7') < c2¢(T2',Tz) < c1c0d(z,2').

Since, 0 < ¢;1¢2 < 1, the uniqueness of 2z follows. Similarly, w is the unique
fixed point of TS. If 3In € N that d(zn,zn4+1) = 0 0r €(Yn,yn41) =0 the
theorem is evident.

Corollary 1. Let (X,d) be a complete metric space. If S and T are map-
pings of X into itself satisfying the inequalities

(5) d*(Tz,TSy) <
¢y max{d(z, Sy)d(y,Tz),d(z, Sy)d(y,T Sy),d(y,Tz)d(y,TSy)}
(6) d*(Sy, STz) <

cz max{d(y,Tz)d(z, Sy), d(y, Tz)d(y, STz),d(z, Sy)d(z, STz)}

for all z,y in X, where 0<c¢),c2 <1, then ST has a unique fized point
z and TS has a unique fized point w. Further Tz = w and Sw = z and if
z = w, z is the unique fized point of S and T.

Proof. The existence of z and w follows from Theorem 2. If z = w, then
z is of course a common fixed point of § and T.

Now suppose that T has a second fixed point z’. Then, by using inequal-
ity (5), we have
d*(z,2") = d&*(T2',TSz) <

¢y max{d(2’,82)d(z,T2"),d(',8§2)d(z,TSz2),
d(z,TZ')d(z,TS2)} = a1d*(#, 2).

Since 0 < ¢; <1, the uniqueness of z follows. Similarly, z is the unique
fixed point of S.

The proofs of Corollaries 2 and 3 follow easily.
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Corollary 2. Let (X,d) and (Y,e) be complete metric spaces. If T is a
mapping of X into Y and S is a mapping of Y into X satisfying the in-
equalities

eX(Tz,TSy) <

< a1d(z, Sy)e(y, Tz) + brd(z, Sy)e(y, T'Sy) + cre(y, Tz)e(y, T Sy)
d*(Sy,STz) <
< aze(y,Tz)d(z,Sy) + b2d(z,STz)e(y,Tz) + c2d(z, Sy)d(z,5Tz)

forallz in X andy inY, where ay,b1,¢1,a2,b2,¢0 > 0 and (ay + b1 +¢1)-
(a2 + b2 + c2) < 1, then ST has a unique fired point z in X and TS has a
unique fized point w in Y. Further, Tz = w and Sw = 2.

Corollary 3. Let (X,d) be a complete metric space. If S and T are map-
pings of X into itself, satisfying the inequalities

d*(Tz,TSy) <

< ayd(z, Sy)d(y,Tz) + byd(z, Sy)d(y, TSy) + a1d(y, Tz)d(y,TSy)
d*(Sy,STz) <
< a2d(y,Tz)d(z, Sy) + bad(y, Tz)d(z, STz) + c2d(z, Sy)d(z, STz)

for all z,y in X, where ay,b1,c1,a2,b2,c2 > 0anday +b1+¢1 <1, a2 +
b2+ c2 <1, then ST has a unique fized point z and TS has a unique fired
point w. Further, Tz = w and Sw = z and if z = w, z is the unique fized
point of S and T.

Theorem 3. Let (X,d) and (Y,e) be complete metric spaces. If T is a map-
ping of X into Y and S is a mapping of Y into X satisfying the inequalities

(7 e(Tz,TSy) - max{e(y,Tz),e(TSy,y)}

< a1d(z, Sy) - max{d(z, Sy), e(y, T Sy)}
(8) d(Sy,5Tz) - max{d(z,Sy),d(z,S5Tz)}
< cz2e(y, Tz) - max{e(y, Tz),d(z,STz)}

forallz in X andy inY, where 0 < ¢j,c2 <1 then ST has a unique fized
point z in X and TS has a unique fized point w in Y. Further, Tz = w
and Sw = z.
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Proof. Let z be an arbitrary point in X .Define sequences {z,} and {y,}
in X and Y respectively by :
zn = (ST)'z, yo = T(ST)* 'z
for n=1,2.... Using inequality (8), we have
d(zn, Znt1) - max{d(z,,Zn41),d(Zn,2,)} <

<cz2- e(ym ?I'n+1) . ma-x{d(zm :L'-n+1), e(ym ?In+1}-

and hence
d*(Zn,Tnt1) < €26(Yns Ynt1)d(Tny Tnsr )
which implies
d(xﬂvx'n+1) < 626(3],,, y'n+1)

if d(Zn,ZTn41) # 0 or d3(Tn,ZTns1) < c26%(Yn, Yns1), which implies
d(Zn;ZTnt1) < V2 - €(Yn, Ynt1)-
Since ¢; < ,/c;, we have
d(Zn,Tn41) < ‘\/S'e(yn,yn+l)'
Using inequality (7), we have
€(Yns Yn+1) - max{e(yn, Yn+1), €(Un, ¥n)} <

< cld(zn—l ) In) . max{d(zn—l ’ .'B,,), e(ym Yn41 )}

and €*(Yn, Yn+1) < €18(Zn, Tn-1)€(Yns Yn+1), Which implies
e(Yns Yn+1) < €14(Tn, Tny1)
if €(Yn, Yns1) # 0 OF €2(Yn, Yn41) < €1d*(Zn_1,Zs), which implies
€(Yn, Yn+1) < V1 - d(Zn-1,Zn)-
Since ¢; < ,/c;, we have

e(ynv ?I'n+1) < ‘\/c_l : d(xn—l,zn)-

It follows that
d(:t,,,:tn+1) < \/c_2 e(?lm?ln+l) <
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Veicz d(Zn,2a1) < ... <
< (Veaez) d(z,zy)

and since 0 < ./Gicz < 1, {z,} is a Cauchy sequence with a limit z in X
and {y.} is a Cauchy sequence with alimit winY.

Now, by using inequality (7), we have
C(TZ, yn) ) ma'x{e(yn—l,TZ)s e(yn—ls yn)} S

< ¢ -d(z,24-1) - max{d(z,Zn-1), €(Yn, Yn+1)}.

Letting n tend to infinity, we have e2(T'z,w) < 0 and so T'z = w. Similarly,
we can prove that Sw = z and so '

STz=85w=2z2, TSw=Tz=w.

Thus ST has a fixed point z and T'S has a fixed point w.

Now, suppose that ST has a second fixed point z. Then by using in-
equality (8), we have

d(z,2') - max{d(z,S8T7'),d(2,5Tz)} = d(ST2,STz)
-max{d(z,5Tz2'),d(z,5Tz)} < c2¢(Tz,TZ')
-max{e(Tz,Tz'),d(z,5T2)} = c2¢*(T2,T7'),

which implies
d*(z,2') < ¢ - €4(Tz,T7).

But, by using inequality (7), we have
e(Tz,T2') - max{e(Tz,T='),e(Tz,TSTz)} =
= ¢(T2',TSTz) - max{e(Tz,T2"),e(TSTz,TSTz)} < c1d(z',STz)-
-max{d(z',5Tz),e(Tz,TSTz)} = a1d*(¢', 5Tz) = erd*(z,2'),

which implies
eX(T2',Tz) < ¢; - d*(2, 7).

It follows that

d*(2,2') < c26%(T2,T2') < e1¢2d%(2, ')
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and so
d%(z,2') € e1cad®(2, 7).

Since 0 < ¢ye < 1, the uniqueness of 2 follows. Similarly, w is the unique
fixed point of T'S.

If 3n € N that d(zn,Zn41) = 0 Or €(Yn,¥n+1) = the theorem is
evident.

Corollary 4. Let (X,d) be a complete metric space. If S and T are map-
pings of X into itself satisfying the inequalities

(9) d(Tz,TSy) max{d(y,Tz),d(y,TSy)} <

c1d(z, Sy) max{d(z,Sy),d(y,TSy)}
(10) d(Sy,STz)max{d(z,Sy),d(z,S5Tz)} <
czd(y,Tz)ma.x{d(y, TZ), d(zv STI)}

for all z,y in X, where 0 < ¢;,c3 <1, then ST has a unique fized point
z and TS has a unique fized point w. Further, Tz = w and Sw = z and if
z = w, z is the unique fized point of S and T.

Proof. The existence of z and w follows from Theorem 3. If z = w, the
z is of course a common fixed point of § and T

Now, suppose that T has a second fixed point 2’. Then, by using in-
equality (9), we have

d(z,2') - max{d(', Sz),d(z,TSz)} =

= d(TZ',TSz) - max{d(Z, Sz),d(z,TSz)} <
< c1d(z,TZ') - max{d(z,T2"),d(2,TS2)} = c1d*(z,?),

which implies
d*(z,7") < ad*(z,2").

Since, 0 <¢; <1, the uniqueness of z follows. Similarly, z is the unique
fixed point of S.

The proofs of Corollaries 5 and 6 follow easily.
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Corollary 5. Let (X,d) and (Y,e) be complete metric spaces. If T is a
mapping of X intoY and S is a mapping of Y into X, satisfying the in-
equalities

e(szTSy) ) max{e(?/? Ta:),e(y, TSy)}

S d(ma Sy)[ald(z, Sy) + ble(y, TS]/)]
d(Sy,5Tz) ?max{d(z,Sy),d(z,STz)} < ey, Tz)
[aze(y,Tz) + bad(z,STz))

forallz in X andy in Y, where 0< a;+0;<1,1=1,2, thenTS hasa
unique fized point z in X and T'S has a unique fized point w in Y. Further,
Tz=w and Sw = 2.

Corollary 8. Let (X,d) be a complete metric space. If S and T are map-
pings of X into itself, satisfaying the inequalities
d(Tz,TSy) - max{d(y, Tz),d(y, TSy)} <
d(z’ Sy)[al d(xa Sy) + bl d(y’ TS:I/)]
d(Sy, STz) - max{d(z, Sy),d(z,5Tz)} <
d(y,Tz)[axd(y,Tz) + bad(x, STz))

Jorallz,y in X, where 0< a;+b;<1,i=1,2, then ST has a unique
fized point z and TS has a unique fired point w. Further, Tz = w and
Sw =z and if z = w, 2 is the unique fixed point of S and T.

Remark. A condition of the following type was used in [4]:
d(Tz,5y) < f(d(z,y),d(z, Sz),d(y, Ty), d(z, Sy),d(y, Tz))
with a semi-homogeneous function f, f : Ri — R4, satisfying some

additional assumption.Similarly, conditions (3) and (4) could be written
down in the same form with

f(s,t,r,m,p,q) = max{st,sm,pq}/q, q # 0.

A similar connection is between [5] and conditions(7) and (8).
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REZIME

NEPOKRETNE TACKE NA DVA KOMPLETNA METRICKA
PROSTORA

Neka su (X,d) i (Y,e) dva kompletna metricka prostora. Dokazano je da
ako je T preslikavanje X u Y i ako je S preslikavanje Y u X tako.da su
zadovoljene nejednakosti

eX(Tz,TSy) <

cy max{d(z, Sy)e(y,Tz), d(z, Sy)e(y, TSy), e(y, Tz)e(y, T Sy)}.
d*(Sy,8Tz) <
¢ max{e(y,Tz)d(z,Sy),e(y,Tz)d(z,STz),d(z, Sy)d(z, STz)}.
zasvezu XiyuY,gdeje 0<c;-cy <1 ili nejednakosti

e(Tz,TSy) - max{e(y,Tz),e(TSy,y)}

< ad(z, Sy) - max{d(z, Sy), e(y, TSy)}
d(Sy, STz) - max{d(z, Sy),d(z,STz)} <
< c;e(y,T:c) ) ma.x{e(y,Ta:),d(z, ST:)}
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zasvezu XiyuY ,hgdeje 0<e¢,c2 <1, onda ST ima jedinstvenu
nepokretnu tacku z u X i TS ima jedinstvenu nepokretnu tatku w u Y.
Dalje, Tz=w 1 Sw= 2.
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