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Abstract

In this paper a version of the Brooks-Jewett theorem on the conver-
gence of sequences of set functions which have ranges in an arbitrary
uniform space (without considering any algebraic operation on it) is
proved. :
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The Brooks-Jewett theorem [1], as an additive version of the Nikodym
convergence theorem, was considered and generalized also for non-additive
set functions (3], [4], [5], (6], (7], [9], [10], [11], [12]. In all these papers the
ranges of the considered set functions (additive, subadditive, k—subadditive,
k—triangular, etc.) were endowed with some algebraic operation.

In our paper [11] we have proved a Nikodym uniform boundedness type
theorem for set functions with the values in an arbitrary uniform space.
Using the approach from paper [11] we shall obtain a version of the Brooks-
Jewett theorem for set functions defined on a quasi-o-ring and with the
values in a uniform space.
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‘Let Y be a uniform space endowed with the uniformity Z/. We shall use
the following definition of the boundedness given by J. Hejcman [8].

Definition 1. A subset B of Y is bounded ( U-bounded) if for every U € U
there ezist a finite set K C B and a natural number n such that

B c U™[K],

where U = U, U™ = U o U™ ! (o is the composition of the relations) and
U[K] is the set of all z € Y such that (z,y) € U for some y € K.

We shall use following chara.cternzatmn of the Zl—boundedness (Theorem
1.12 from [8]).

Theorem 1. A set B C Y is U-bounded if and only if it is d—bounded for
every uniformly continuous pseudo-metric d defined on Y.

Using this theorem we shall denote with D the family of all the uniformly
continuous pseudometrics defined on (Y, ).

Definition 2. A ring of sets Y is called a quasi-o-ring if any disjoint se-
quence in Y posseses a subsequence which belongs to the family of dz.s]omt
sequences {A,} in Y for which

{nUMAn:McN}CZ.

L]

In the whole paper ) will always denote a quasi-o-ring.

Definition 3. A set function p: Yy, — Y is said to be zo—ezhaustive, for
zo €Y, if foreachd € D

Jim_ d(u(Bn), 20) = 0
for each sequence {E,} of pairwise disjoint sets from 3.

For d € D the d — semivariation ([11]) of the set function u, p: ¥ - Y,
with respect to a point 29 €'Y is

A3°(B) = sup{d(p(C),»zo) :CCB,Ce E} (B e E)

We shall need following (Lemma 2.2.2 from [11])
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Lemma 1. Let u: 5 — Y be an zo—ezhaustive set function, and let {A,}
be a sequence of pairwise disjoint elements from Y. Then, for each d € D
and each ¢ > 0, there exists a subsequence {An,;} of {A,} such that

By (U An.‘) <€,
il

for any I C N.

We introduced in [11} ford € D and zg € Y

oF (A,u) i= lim sup{d(u(AU B),20) : FP(B) < =, B€ 3}

(AE»Z,;L:Z—»Y).

Now we have the Brooks-Jewett type theorem.

Theorem 2. Let {u1,,} be a sequence of set functions p, p, : 5. =Y, such
that they satisfy the following conditions for an arbitrary but fized zo € Y

(i) for each d € D and for each ¢ > 0, there ezists § > 0 such that
d(pn(A),z0) < 8 and d(pn(B),z0) < § for B CA, ABe Z, neN

implies

d(pn(A\B),z0) < ¢,

(it) for each d € D and for each § > 0, there exists ® > 0 such that
d(pn(A),z0) < O, A€ Y, n € N implies

% (Aua) <8, nEN,

(iii) for each d € D
Jim d(un(E), p(E)) =0

for each E € 3.

Then pu is zo—ezhaustive if and only if Bny 0 € N, are uniformly
zo—ezhaustive.
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Proof. Suppose that u is zo—exhaustive,but the sequence {,} is not uni-
formly zo—exhaustive. Then there exists ¢ > 0, d from D and a sequence
{Ei} of pairwise disjoint sets from } and a subsequence {y,, } such that

n d(ptn, (Ek), Z0) > €.

We choose § > 0 by (i) corresponding to € > 0. Now we choose 8 > 0 by
(#1) corresponding to § > 0. By the zo—exhaustivity of 4 and the Lemma 1
there exists a subsequence {Ey, } of the sequence {E;} such that

(2) g’ (U Ek) <=
iel

for any I C N. Now, we shall take m; = pn, and A; = E; (i € N) and
i) = 1. Since we have

d(mi(Ai, ), w(Aiy)) 2 d(mi(Aiy), 20) — d(p(Aiy ), %o)

and by (iii) there exists an index #3 such that

d(mi(Ai)oH(A40) <
using also (2) we obtain
(3) d(m,-,(A.-, ),zo) < 0.

By the zo—exhaustivity of m;, we have by the Lemma that there exists a
subsequence {A?} of the sequence {A;}{2; ., such that

e (U42) < 5
icl

Hence by (3) and (ii), we have

4 (Au U U A mn)
1€l

for any I C N. By (2) d(u(A;, U A2),10) < 9 for each k € N and by (iii)
there exists an index i3 such that

d(m;, (A, U A ) 1(Ai L A})) < rY
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Then, the inequality

d(m;(A;, U A}), u(A;, U A2)) > d(m;(A;, U A?),z0) — d(p(A;, U A2), z0)
with the preceding two facts implies
(5) d(m;,(Ai, U Ai,),20) < O,

where A;, is taken from the sequence {A%}.

By zo—exhaustivity of m;,, we have by the Lemma 1 that there exists a .
subsequence {A?} of the sequence {A?}{2; ,, such that

(Miy)g° (U /\?) < %
i€l
for any I C N. Hence by (5) and (i¢), we have
d(m;, (An U4.UU A?) yTo) < &
iel
for any I C N.

Continuing this procedure we obtain two sequences {m;, } and {4;,}. K
we take Ag = Ui, Ai,, then by (ii) there exists an index kg such that

(6) d(m;, (Ao),zo) < 7 < 4.
Namely, this follows by (2) and the inequality
d(mi, (Ao), #(Ao)) 2 d(mi, (Ao), zo) — d(1(Ao), Z0).
From the procedure%of the whole previous construction, it follows that
d(mi,, (Ao\Aiy, ), 70) < 6.
Hence, using (%), we have by (6)
€ > d(mi, (Ao\(Ao\Ai,,), 7o) = d(mi, (Aiy, ), 20),

which is in contradiction with (1).

Now, if we suppose that p.(n € N) are uniformly zo—exhaustive, then
by (#it) it follows that u is zo—exhaustive.
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Corollary 1. (Theorem 1. from [9]) Let {§1,} be a sequence of k—triangular
exhaustive set functions u, : Y. — RY. If there exists

Jim pn(E) = p(E)
for each E € 3 and u is ezhaustive, then {u,} is uniformly exhaustive and

p# 18 k—triangular.

Proof. Conditions (z) and (1) follow by k—triangularity.
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REZIME

BROOKS-JEWETTOVA TEOREMA ZA NEADITIVNE
SKUPOVNE FUNKCIJE

U radu se dokazuje teorema tipa Brooksa-Jewectta o konvergenciji niza sku-
povnih funkcija sa vrednostima u proizvoljnom uniformnom prostoru (u o-
pstem sluéaju bez algebarske operacije). U tu svrhu se koriste rezultati iz
ranijeg rada [11).

Recetved by the editors September 20, 1990.



