Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 21, 1 (1991), 57-64 Review of Research Faculty of Science Mathematics Series

CONNECTEDNESS OF THE GENERALIZED DIRECT PRODUCT OF REGULAR DIGRAPHS

Milenko V. Petrić Advanced Technical School, Školska 1, 21000 Novi Sad, Yugoslavia

Abstract

Using the spectral method a theorem is proved giving the necessary and sufficient conditions for the generalized direct product (GDP) of regular (di)graphs to be connected (di)graph.

AMS Mathematics Subject Classification (1980): Primary 05C40, Secondary 05C20.

Key words and phrases: Connectedness, product of digraphs.

1. Introduction

Let B be a set of n-tuples $\beta=(\beta_1,\beta_2,\ldots,\beta_n)$ of symbols 1,0,-1 which does not contain an n-tuple $(0,0,\ldots,0)$. If G is a digraph with at most ν parallel arcs (if there are no parallel arcs then $\nu=1$) between any two vertices or loops of a vertex in G, then complement \bar{G} of G is a digraph which has the same set of vertices as G and for any ordered pair (u,v) of vertices u and v of \bar{G} (if loops are not allowed then $u\neq v$) from u to v lead v-a arcs, where a is the number of arcs leading from u to v in G.

The following definition is introduced in [5] and [6] and represent a generalization of the definition of the GDP of graphs [7] to digraphs (digraphs can have multiple arcs and or loops).

Definition 1. The generalized direct product with a basis B of digraphs G_1, G_2 ,

..., G_n is the digraph G=GDP $(B;G_1,\ldots,G_n)$ whose set of vertices is the Cartesian product of the sets of vertices of digraphs G_1,G_2,\ldots,G_n . For two vertices $u=(u_1,\ldots,u_n)$ and $v=(v_1,\ldots,v_n)$ of G construct all the possible arc selections of the following type. For each (β_1,\ldots,β_n) from G, for which G is G in G if G i

mboxif $\beta_i = -1$. The number of arcs going from u to v in G is equal to the number of such selections.

If B consists of n-tuples of symbols 1 and 0 the resulting operation is called a non-complete extended p-sum (NEPS). Conditions, under which this operation on arbitrary digraphs is a strongly connected digraph, have been investigated in [3].

It is clear that the GDP $(B; G_1, \ldots, G_n)$ can be connected if any one of the digraphs G_1, \ldots, G_n is not connected. On the other hand, if $G_i (i = 1, \ldots, n)$ has at least two vertices, then the GDP $(B; G_1, \ldots, G_n)$ is not connected if basis B has not the property (D): that for every $j \in \{1, \ldots, n\}$ there exist in B at least one n-tuple $(\beta_1, \ldots, \beta_n)$ with $\beta_j \neq 0$. (This cond

ition implies that the GDP, effectively, depends on each G_i .) Further, if $G_j(\bar{G}_j)$, for some $j \in \{1, ..., n\}$, is not connected, then the GDP $(B; G_1, ..., G_n)$ is not connected, if each n-tuple $(\beta_1, ..., \beta_n)$ in B has $\beta_j \neq -1$ $(\beta_j \neq 1)$.

In order to get conditions for B,G_1,\ldots,G_n being GDP $(B;G_1,\ldots,G_n)$ strongly connected, we shall investigate the connectivity of the isomorphic GDP given from this one by the replacement of each non-connected digraph G_j by its complement \bar{G}_j together with the replacement in each $\beta \in B$ j-th coordinate 1 by -1 and vice versa (Proposition 3 in [5]). So we suppose that in GDP $(B;G_1,\ldots,G_n)$ all the G_1,\ldots,G_n are strongly connected. In the same manner, we shall consider the GDP whose basis B has property (E): if for any $j \in \{1,\ldots,n\}$ all β_j (j-th coordinate of $\beta \in B$) take only one value among 1 and -1, then $\beta_j \in \{1,0\}$. In this case if G_j is not connected, then GDP $(B;G_1,\ldots,G_n)$ is not connected.

A digraph is called a regular of degree r if each indegree and each outdegree equals r. The cycle, denoted by \vec{C}_p , is a connected regular digraph of degree 1 with p verices. Digraph G is called bicomplete if G is a complete bipartite graph (symmetric). Notice that the strong components of a regular digraph are its components too.

We shall investigate the connectedness of the GDP of regular digraphs by using Theorems 0.3 and 0.4 from [2].

For this purpose we need the following results of [5].

Theorem 1. ([5]). The GDP of regular digraphs is a regular digraph.

Theorem 2. ([5]). Let G be a regular digraph of order p, degree r and maximum number of parallel arcs or loops of a vertex equal to ν and let $S = \{\lambda_1 = r, \lambda_2, \ldots, \lambda_n\}$ be the spectrum of G. The complement \bar{G} of the digraph G has the spectrum given by

 $S_1 = \{\bar{\lambda}_1 = \nu \cdot p - r, \bar{\lambda}_2 = -\lambda_2, \dots, \bar{\lambda}_p = -\lambda_p\}, \text{ if loops are allowed,}$ $S_2 = \{\bar{\lambda}_1 = \nu \cdot p - \nu - r, \bar{\lambda}_2 = -\nu - \lambda_2, \dots, \bar{\lambda}_p = -\nu - \lambda_p\}, \text{ if loops are not allowed.}$

The eigenvectors correspoding to λ_i and $\bar{\lambda}_i$ are the same and the eigenvector belonging to the eigenvalue λ distinct from r in G is orthogonal to the eigenvector $(1,\ldots,1)$ belonging to the r. \square

Theorem 3. ([5]). For $i=1,2,\ldots,n$ let G_i be a regular digraph with p_i vertices, degree r_i and let λ_{ij_i} ($\bar{\lambda}_{ij_i}$) $j_i=1,2,\ldots,p_i$ be the spectrum of $G_i(\bar{G}_i$ determined by Theorem 2). Then, the spectrum of the GDP $(B;G_1,\ldots,G_n)$ consists of all the possible values of Λ_{j_1,\ldots,j_n} where

(1)
$$\Lambda_{j_1,\ldots,j_n} = \sum_{\beta \in B} \lambda_{1j_1}^{[\beta_1]} \lambda_{2j_2}^{[\beta_2]} \ldots \lambda_{nj_n}^{[\beta_n]},$$

$$\lambda_{i_{j_i}}^{[1]} = \lambda_{i_{j_i}}, \lambda_{i_{j_i}}^{[0]} = 1, \lambda_{i_{j_i}}^{[-1]} = \tilde{\lambda}_{i_{j_i}}, j_i = 1, 2, \dots, p_i; i = 1, 2, \dots, n$$

The eigenvector $x_{j_1}, \ldots, j_n = x_{1j_1} \otimes x_{2j_2} \otimes \ldots \otimes x_{nj_n}$ corresponds to the eigenvalue $\Lambda_{j_1}, \ldots, j_n$, where x_{ij_i} is the eigenvector belonging to λ_{ij_i} in G_i and \otimes denotes the Kronecker product of matrices. \square

2. Main theorems

Let h be the greatest common divisor of the lengths of all the cycles in a digraph G. The digraph G is called primitive if it is strongly connected and h = 1 [4,p.210], and imprimitive if it is strongly connected and h > 1. In the second case, h is called the index of imprimitivity (h is the index of imprimitivity of the adjacency matrix of the digraph G as well [1,p.183].

Theorem 4. Let $G_i, i=1,2,\ldots,n$ be a regular, connected, non-complete symmetric digraph of degree r_i containing $p_i(p_i \geq 2)$ vertices. Suppose also that loops are not allowed in G_i and \bar{G}_i $(i=1,2,\ldots,n)$. Further, let digraphs $G_{i_1}, G_{i_2}, \ldots, G_{i_s}(\{i_1,i_2,\ldots,i_s\} \subset \{1,2,\ldots,n\})$ be imprimitive with the imprimitivity indices $h_{i_1}, h_{i_2}, \ldots, h_{i_s}$ respectively. The GDP with the basis B satisfying conditions (D) and (E) of digraphs G_1, G_2, \ldots, G_n is a connected digraph if and only if for every non-empty subset $\{j_1, j_2, \ldots, j_k\}$ of $\{i_1, i_2, \ldots, i_s\}$ and every choice of integers $\ell_{j_1}, \ell_{j_2}, \ldots, \ell_{j_k}, 1 \leq \ell_{j_i} \leq h_{j_i} - 1, t = 1, 2, \ldots, k$ there exist $\beta \in B$ such that $\{j_1, j_2, \ldots, j_k\} \cap \{\nu \mid \beta_{\nu} \neq 0\} = I_{\beta} \neq 0$ and the following holds: for at least one $\nu \in I_{\beta}$, for which $\beta_{\nu} = -1, G_{\nu}$ is neither bicomplete nor C_3 or otherwise

$$\sum_{\nu \in I_{\beta}} (\frac{1}{2}(1+\beta_{\nu})\frac{\ell_{\nu}}{h_{\nu}} + \frac{\ell_{\nu}}{3}(1-\beta_{\nu})(p_{\nu}-2r_{\nu}))$$

is not an integer.

Proof. According to Theorems 0.3 and 0.4 from [3] a digraph G, with an adjecency matrix A, is strongly connected if and only if its index r is a simple eigenvalue and if the positive eigenvectors belong to r both in A and A^T .

Without loss of generality we may suppose that the digraphs G_1, G_2, \ldots, G_n are without multiple arcs.

By Theorem 3 the index of G=GDP $(B;G_1,\ldots,G_n)$ is $\Lambda = \sum_{\beta \in B} r_1^{[\beta_1]} r_2^{[\beta_2]} \ldots r_n^{[\beta_n]}$ and $(1,1,\ldots,1)$ is the positive eigenvector belonging to the index Λ in the adjacency matrix A of G and A^T , where $r_i^{[1]} = r_i, r_i^{[0]} = 1$ and $r_i^{[-1]} = p_i - r_i - 1$.

By the same theorem, if none of the G_i is complete, the index of GDP can be obtained only from those eigenvalues of the digraphs $G_i(\tilde{G}_i)$, i =

 $1,2,\ldots,n$ which have a modulus equal to $r_i(p_i-r_i-1)$. All these eigenvalues of G_j can be written in the form $r_j \exp(l_j \frac{2\pi}{h_j})$, $0 \le l_j \le h_j - 1$ (exp $(t) = e^{ti}$, $i^2 = -1$) (Theorem of Frobenius). Therefore, from (1) we have

(2)
$$\Lambda = \sum_{\beta \in B} \prod_{i=1}^{n} (\frac{1}{2} (\beta_{i}^{2} + \beta_{i}) r_{i} \exp(\frac{\ell_{i}}{h_{i}} 2\pi) + (1 - \beta_{i}^{2}) + \frac{1}{2} (\beta_{i}^{2} - \beta_{i}) (\bar{sg}(\ell_{i}) p_{i} - 1 - r_{i} \exp(\frac{\ell_{i}}{h_{i}} 2\pi))),$$

where $s\bar{g}(0)=1$ and $s\bar{g}(x)=0$ for x>0. From (2) it follows that the index Λ is a simple eigenvalue if for each choice of integers $\ell_{i_1},\ell_{i_2},\ldots,\ell_{i_s},0\leq \ell_{i_t}\leq h_{i_t}-1 (t=1,2,\ldots,s)$ with at least one $\ell_{i_t}>0$, at least one summand in Λ is differen from $r_1^{[\beta_1]},r_2^{[\beta_2]}\ldots r_n^{[\beta_n]}$.

For any choice of integers $\ell_{j_1}, \ell_{j_2}, \dots, \ell_{j_k}, 1 \leq \ell_{j_t} \leq h_{j_t} - 1, \{j_1, j_2, \dots, j_k\} \subset \{i_1, i_2, \dots, i_s\}$ and any $\beta \in B$ let $I_\beta = \{j_1, j_2, \dots, j_k\} \cap \{\nu \mid \beta_\nu \neq 0\}$. Then, from (2) we have $(I = \{1, 2, \dots, n\})$:

$$\begin{split} \Lambda &= \sum_{\beta \in B} (\prod_{i \in I \setminus I_{\beta}} r_i^{[\beta_i]}) (\prod_{\nu \in I_{\beta}} (\frac{1}{2} (1 + \beta_{\nu}) r_{\nu} \exp(\frac{\ell_{\nu}}{h_{\nu}} 2\pi) + \\ &+ \frac{1}{2} (1 - \beta_{\nu}) (-1 - r_{\nu} \exp(\frac{\ell_{\nu}}{h_{\nu}} 2\pi)))), \end{split}$$

or

(3)
$$\Lambda = \sum_{\beta \in B} \left(\prod_{i \in I \setminus I_{\beta}} r_i^{[\beta_i]} \right) \left(\prod_{\nu \in I_{\beta}} (r_{\nu}^2 + \frac{1}{2} (1 - \beta_{\nu}) (2r_{\nu} \cos \frac{\ell_{\nu}}{h_{\nu}} 2\pi + 1))^{\frac{1}{2}} \times \exp\left(\frac{1}{2} (1 + \beta_{\nu}) \frac{\ell_{\nu}}{h_{\nu}} 2\pi + \frac{1}{2} (1 - \beta_{\nu}) \Theta_{\nu} \right) \right).$$

Hence, index Λ is a simple eigenvalue of GDP if and only if for at least one $\beta \in B$ one of the following conditions is satisfied: (a) there exists $\nu \in I_{\beta}$ such that $\beta_{\nu} = -1$ and $(r_{\nu}^2 + 2r_{\nu}\cos\frac{\ell_{\nu}}{h_{\nu}}2\pi + 1)^{\frac{1}{2}} \neq p_{\nu} - r_{\nu} - 1$ or (b) the argument of the operator exp of the corresponding summand in Λ is different from $2k\pi, k \in Z$. From (a) the following two cases arise: $1^{\circ}p_{\nu} - r_{\nu} - 1 = (r_{\nu}^2 + 2r_{\nu}\cos\frac{\ell_{\nu}}{h_{\nu}}2\pi + 1)^{\frac{1}{2}} = r_{\nu} - 1$ and $2^{\circ}p_{\nu} - r_{\nu} - 1 = (r_{\nu}^2 + 2r_{\nu}\cos\frac{\ell_{\nu}}{h_{\nu}}2\pi + 1)^{\frac{1}{2}} = r_{\nu} + 1$ is impossible, because $\ell_{\nu} > 0$. If 1° holds then $\cos\frac{\ell_{\nu}}{h_{\nu}}2\pi = -1$, consequently G_{ν}

is bicomplete $(p_{\nu}=2r_{\nu},h_{\nu}=2l_{\nu})$ and $\Theta_{\nu}=0$. If 2° holds, then $\cos\frac{\ell_{\nu}}{h_{\nu}}2\pi=-\frac{1}{2r_{\nu}}$, which is possible only for $r_{\nu}=1$, when $p_{\nu}=2r_{\nu}+1=3$ and $h_{\nu}=3$ i.e. G_{ν} is \vec{C}_{3} . In this case $\Theta=\frac{4\pi}{3}$ if $\ell_{\nu}=1$ and $\Theta_{\nu}=\frac{2\pi}{3}$ if $\ell_{\nu}=2$. From these facts, the first part of the theorem follows.

Using condition (b) and supposing that 1° or 2° of (a) is satisfied for each $\nu \in I_{\beta}$ for which $\beta_{\nu} = -1$, we get the following condition

$$\sum_{\nu \in I_0} \left(\frac{1}{2} (1 + \beta_{\nu}) \frac{\ell_{\nu}}{h_{\nu}} 2\pi + \frac{1}{2} (1 - \beta_{\nu}) \frac{4\pi}{3} \ell_{\nu} (p_{\nu} - 2r_{\nu}) \right) \neq 2k\pi,$$

which completes the proof of the theorem.

Theorem 5. Let $G_i, i=1,2,\ldots,n$ be a regular, connected, non-complete symmetric digraph with at least two vertices. Suppose also that loops are permitted in the digtaphs. Further, let digraphs $G_{i_1}, G_{i_2}, \ldots, G_{i_s}(\{i_1,i_2,\ldots,i_s\} \subset \{1,2,\ldots,n\})$ be imprimitive with the imprimitivity indices $h_{i_1}, h_{i_2}, \ldots, h_{i_s}$ respectively. The GDP with the basis B satisfying conditions (D) and (E) of digraphs G_1, G_2, \ldots, G_n is a connected digraph if and only if for every non-empty subset $\{j_1, j_2, \ldots, j_k\}$ of $\{i_1, i_2, \ldots, i_s\}$ and for every choice of integers $\ell_{j_1}, \ell_{j_2}, \ldots \ell_{j_k}, 1 \leq \ell_{j_t} \leq h_{j_t} - 1, t = 1, 2, \ldots, k$ there exists $\beta \in B$, such that $\{j_1, j_2, \ldots, j_k\} \cap \{\nu \mid \beta_{\nu} \neq 0\} = I_{\beta} \neq \emptyset$ and the following holds: for at least one $\nu \in I_{\beta}$, for which $\beta_{\nu} = -1, G_{\nu}$ is not bicomplete or otherwise

 $\sum_{\nu \in I_{\beta}} (\frac{\ell_{\nu}}{h_{\nu}} + \frac{1}{4}(1 - \beta_{\nu}))$

is not an integer.

Proof. We use the same proof method as in Theorem 4.We also suppose that the digraphs G_1, G_2, \ldots, G_n are without multiple arcs.

If $p_i(r_i)$ denotes the number of vertices (degrees-index) of $G_i(i=1,2,\ldots,n)$, then by Theorem 3 the index of $G = \text{GDP}(B; G_1,\ldots,G_n)$ is $\Lambda = \sum_{\beta \in B} r_1^{[\beta_1]} r_2^{[\beta_2]} \ldots r_n^{[\beta_n]} \quad \text{and} \quad (1,1,\ldots,1) \text{ is the positive eigenvector}$ belonging to the index Λ in the adjacency matrix A of G and A^T , where $r_i^{[1]} = r_i, r_i^{[0]} = 1 \quad \text{and} \quad r_i^{[-1]} = p_i - r_i.$

Similarly as in the previous theorem index Λ of GDP $(B; G_1, \ldots, G_n)$ can be obtained from those eigenvalues of the digraphs $G_i(\bar{G}_i)$, $i = 1, 2, \ldots, n$

which have a modulus equal to $r_i(p_i - r_i)$ i.e. from the exspresion

(4)
$$\Lambda = \sum_{\beta \in B} \prod_{i=1}^{n} (\frac{1}{2} (\beta_{i}^{2} + \beta_{i}) r_{i} \exp(\frac{\ell_{i}}{h_{i}} 2\pi) + (1 - \beta_{i}^{2}) + \frac{1}{2} (\beta_{i}^{2} - \beta_{i}) (\bar{sg}(\ell_{i}) p_{i} - r_{i} \exp(\frac{\ell_{i}}{h_{i}} 2\pi))).$$

For any choice of integers $\ell_{j_1}, \ell_{j_2}, \dots, \ell_{j_k}, 1 \leq \ell_{j_k} \leq h_{j_k} - 1, \{j_1, j_2, \dots, j_k\} \subset \{i_1, i_2, \dots, i_s\}$ and any $\beta \in B$ let $\{j_1, j_2, \dots, j_k\} \cap \{\nu | \beta_{\nu} \neq 0\} = I_{\beta}$. Then from (4) we have $(I = \{1, 2, \dots, n\})$:

$$\Lambda = \sum_{\beta \in B} \left(\prod_{i \in I \setminus I_{\beta}} r_i^{[\beta_i]} \right) \left(\prod_{\nu \in I_{\beta}} \left(\frac{1}{2} (1 + \beta_{\nu}) r_{\nu} \exp\left(\frac{\ell_{\nu}}{h_{\nu}} 2\pi \right) + \frac{1}{2} (1 - \beta_{\nu}) (-r_{\nu} \exp\left(\frac{\ell_{\nu}}{h_{\nu}} 2\pi \right)) \right) \right)$$

Οľ

$$\Lambda = \sum_{\beta \in B} (\prod_{i \in I \setminus I_B} r_i^{[\beta_i]}) (\prod_{\nu \in I_B} r_{\nu} \exp(\frac{\ell_{\nu}}{h_{\nu}} 2\pi + \frac{1}{2} (1 - \beta_{\nu})\pi)).$$

Hence, index Λ is a simple eigenvalue of GDP if and only if for at least one $\beta \in B$ one of the following conditions is satisfied: (a) there exists $\nu \in I_{\beta}$ such that $\beta_{\nu} = -1$ and $r_{\nu} \neq p_{\nu} - r_{\nu}$ i.e. G_{ν} is not bicomplete or (b) the argument of the operator exp of the corresponding summand in Λ is different from $2k\pi$, $k \in Z$. From these facts the statement of th

is theorem follows.

The following theorem is a specialization of the previous once to undirected graphs.

Theorem 6. Let G_i , $i=1,2,\ldots,n$ be a connected regular, non complete, graph with at least two vertices and let $G_{i_1},G_{i_2},\ldots,G_{i_s}$, $\{i_1,i_2,\ldots,i_s\}\subset\{1,2,\ldots,n\}$ be bipartite. The GDP with the basis B satisfying conditions (D) and (E) of graphs G_1,G_2,\ldots,G_n is a connected graph if and only if for every non-empty subset $\{j_1,j_2,\ldots,j_k\}$ of $\{i_1,i_2,\ldots,i_s\}$, there exists $\beta\in B$ such that $\{j_1,j_2,\ldots,j_k\}\cap\{\nu|\beta_\nu\neq 0\}=I_\beta\neq\emptyset$ and one of the following conditions is satisfied:

- (i) For at least one $\nu \in I_{\beta}$, $\beta_{\nu} = -1$ and G_{ν} is not bicoprolete.
- (ii) The number of $\nu \in I_{\beta}$ for which $\beta_{\nu} = 1$ is odd. \square

This theorem holds that either loops are or are not allowed in graphs.

References

[1] Cvetković, D.M.: Kombinatorna teorija matrica. Naučna knjiga, Beograd 1980.

- [2] Cvetković, D.M., Doob, M., Sachs, H.: Spectra of graphs-theory and application. Deutscher Verlag der Weissenschaften-Academic Press, Berlin-New York 1980; second edition 1982.
- [3] Cvetković, D.M., Petrić, M.V.: Connectedness of the non-complete extended p-sum of graphs. Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat, 13(1983), 345-351.
- [4] Harary, F.: Graph Theory. Addison-Wesley, Reading 1972.
- [5] Petrić, M.V.: On the generalized direct product of graphs. Proceedings of the Eighth Yugoslav Seminar on Graph Theory (Novi Sad 1987), Novi Sad 1989, 99-105.
- [6] Petrić, M.V.: On some operations on normal digraphs. Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat., 18,1(1988), 57-67.
- [7] Šokarovski, R.: A generalized direct product of graphs. Publ. Inst. Math. (Beograd) 22 (36) (1977), 267-269.

REZIME

POVEZANOST GENERALISANOG DIREKTNOG PROIZVODA REGULARNIH DIGRAFOVA

Korištenjem spektralnog metoda dobijeni su potrebni i dovoljni uslovi (teoreme 4 i 5) da generalisani direktan proizvod (GDP) regularnih digrafova bude povezan digraf.

Recived by the editors January 11, 1989.