Univ. u Novom Sadu : Review of Research
Zb. Rad. Prirod.—Mat. Fak. Faculty of Science
Ser. Mat. 21, 1 (1991), 39-56 _ Mathematics Series

A SPACE OPTIMAL ALGORITHM FOR
ENUMERATING SPANNING TREES
OF A CONNECTED GRAPH

Ladislav Novak, Zarko Karadzié
Faculty of Technical Sciences, University of Novi Sad
Trg Dositeja Obradovica 6, 21000 Novi Sad, Yugoslavia

and

Dragan M. Acketa
Institute of Mathematics, University of Novi Sad
Trg Dositeja Obradoviéa 4, 21000 Novi Sad, Yugoslavia

Abstract.

A simple space optimal algorithm is introduced for generating all
the spanning trees of a connected graph G. The algorithm is based
on a backtracking on the family F, which contains all the stars of G,
with one single exception, sorted by non-decreasing cardinality. The
efficiency of the algorithm is due to a local test, which gives the answer
to the question: "Will the addition of a new edge z to a cycle-free
subset S of edges of G make the set SUz contain a cycle of G 7”

AMS Mathematics Subject Classification (1980): Primary: 05C05 Sec-
ondary: 05C30, 68E10
Key words and phrases: Spanning trees, enumeration, backtracking

1. Imtroduction
We assume familiarity with some very basic notions of graph theory.

39

40 L. Novak, Z. Karadzié, D.M. Acketa

Let there be given a connected unoriented graph G Dby its standard
representation, that is, by a collection of (un)ordered pairs of its vertices.
We shall give an algorithm for an efficient enumeration of all the spanning
subtrees of G.

Let the vertices of G be denoted by 1,2,...,n. A star associated to a
vertex ¢ (denotation: Star(i]) is a set of edges of G, which are incident to
i. The vertex-set of G and the edge-set of G will be denoted by V(G)
and E(G) respectively. ‘

A spanning tree T of G is a cycle-free subgraph T of G (= a tree),
which is incident with all the vertices of G. Thus, if |V(G)| = n, then
|E(T)|=n-1.

This paper introduces a simple space optimal algorithm for generating
all the spanning trees of a connected graph G. The algorithm is illustrated by
an example, which includes the trace. Some experimental results concerning

i . .
the speed of the algorithm on some classes of graphs, as well as the influence
of sorting to this speed, are also discussed.

2. Algorithm

2.1 Structure of the algorithm

We are going to primarily identify the stars associated to the vertices of the
input graph G. The family of V(G)—1 stars of G may be implemented
as an array of linked lists, the elements of which are associated to edges.

It turns out (this will be explained later) that the sorting of the identified
stars w.r.t. their non-decreasing cardinalities is a useful operation in the
stage of preprocessing.

The algorithm uses a standard backtracking on the stars, by keeping
a current candidate for tree (a cycle-free set of edges), which is expanded
whenever the addition of a new edge to the candidate would not produce a
cycle within the enlarged candidate and reduced whenever there are no new
possibilities for expansion:

The main shell BACKTRACK of the backtracking process seems as fol-
lows:

A space optimal algorithm for enumeration of spanning trees 41

PROCEDURE BACKTRACK;
BEGIN
(* Let C denote a (current) tree candidate
(a subgraph of G which has no cycles), and
let z denote a current edge of G,
which we will try to add to C. *)

C := the empty set ; (* Initialization *)
x := the first edge from the first star ;

REPEAT
IF the set C Uz does not contain a cycle of G THEN
IF |CUz| = [V(G)| -1 THEN BEGIN
output (CUz); (* new tree is generated *)
BACKWARDS
END
.ELSE
FORWARDS
ELSE
BACKWARDS
UNTIL stop
(* the TRUE value of the global boolean variable ”stop”
should be set during the last call of BACKWARDS *)
END; (* BACKTRACK *)

" Thus the backtracking is directed backwards in the cases when the addi-
tion of new edge z closes a cycle, as well as in the cases of a final success,
that is, in the cases when a new spanning tree is produced by addition of
z. In both cases the edge z is deleted from the current candidate and a
new attempt should be made; that is, a new edge z should be found.

PROCEDURE BACKWARDS;
BEGIN
Give up from the addition of the new edge and choose the following
edge z, for which a new addition atempt will be made
END;

PROCEDURE FORWARDS;
BEGIN

42 L. Novak, Z. Karadzié, D.M. Acketa

Add the new edge to the current candidate
END;

(* Main program *)
BEGIN
Identify the stars of the input graph G;
(* Generate their associated linked lists *)

Sort the identified stars by their non-decreasing cardinalities
and delete one star with the maximal cardinality;

BACKTRACK
END.

2.2 Local test and conrol connectivity structure

The key idea of the algorithm is to introduce a local test, which decides
whether the addition of a new edge to a cycle-free set of edges will close a
cycle or not (answer to the question posed in the first IF-statement within
the main loop of the backtracking).

For this purpose, we would by no means construct the whole family
of cycles of G. That family would be an unbearably large database with
large memory requirements, which would be time-consuming even in the
construction stage, but much more time-consuming in the stage of its use
at each step of the backtracking.

Instead, we shall use a control structure, which would give exact answers
to the very question that we ask, but which would not recognize the cycles of
G themselves (such a recognition would be beyond our requirements). This
structure will be adjusted at each step of the backtracking and will consist
of a vector indexed by vertices of G, the components of which are the labels
of connected components, which correspond to the current candidate.

The crucial idea of the local test is the following:

An edge z = {u,v} is allowed to be added to a candidate C (and a
step forwards should be made) if and only if the vertices » and v belong
to different connected components of the graph G(C), which is defined in

A space optimal algorithm for enumeration of spanning trees 43

the following way:

V(G(C)) = V(G) and E(G(C))=V(C).

Namely, if the vertices « and v belong to the same connected compo-
nent of G(C), then there already exists a path P connecting them. The
addition of the edge {u,v} would close the cycle P + {u,v}, which is a
forbidden situation.

On the other hand, if the vertices u and v belong to different con-
nected components , then the addition of {u,v} would join two connected
components (trees) into one (larger tree); n — 1 consecutive joins of this
type are sufficient to produce a spanning tree.

Initially, each vertex i (1 < i < |V(G)|) is a separate connected
component labelled with the integer i. Connected components can be im-
plemented as linked lists, the elements of which are associated to the vertices
of G. Each one of these lists can be reached by two pointers, which are
attached to the head and to the tail of the list, respectively.

It is essential to note that a new control vector is produced whenever the
procedure FORWARDS is called and that the control vectors associated to
lower levels of backtracking are kept in memory, in order to make possible
their restoration in cases of back flow during the backtracking process. We
shall put these comments more precisely:

We need to have exactly n — 2 control vectors. Each control vector
v[¢] is associated to Star[i] (1 < ¢ < n — 2), the star ordering after sorting
being assumed. '

Suppose that the candidate C has j edges (1 < i< n —2) and that
the addition of a new edge {u,v} is considered, where the vertices « and

v belong to different connected components Comp, and Compy of the
graph G(C). Let

— head, and tail, be the pointers showing to Comp, ;

—~ heady and taily be the pointers showing to Comp, .
The control vector v[j + 1] is generated (this is an additional task per-

formed by the procedure FORWARDS) from the vector v[j] by application
of the following two commands:

44 L. Novak, Z. Karadzié, D.M. Acketa

(1) v[j +1] := v[j]; (* copy the previous control vector *)

(2) Replacein v[j+1] the labels (associated to Comp,) of all the vertices
from Comp: by the label associated to Comp,. (* This last label
will become the common label of the joined tree *).

Remark. Note that the labels themselves are generated at random; in
fact, they are highly dependent on the order of input data. However, their
role will be successfully performed regardless of their values; all that the
algorithm requires to know at some moment is whether the labels of the
corresponding two vertices are equal or not.

Step 2) (the label replacement) is performed during the passage through
the linked list associated to Comp;. The new linked list, which corresponds
to the joined tree, is generated by the following three operations:

~ newhead := head,;
— newtail := taily;
— taily".next = heads .

The procedure BACKWARDS requires restoration of the previous con-
trol vector solely in cases when the current star is exhausted. Then the
last control vector, say v[j + 1], is replaced by the already existing control
vector v[j]. Such a replacement will be impossible solely in the case when
j = 0. However, the last condition denotes that the whole backtracking is
completed (the value of the boolean variable stop in the above shell should
be set to TRUE at that moment).

Remark. Note that the control vector v[n — 1] is not necessary. Those
calls of the procedure FORWARDS, which complete a spanning tree, are
necessarily followed by the deletion of the last added edge, and by coming
back to the previous state, which is controlled by the vector v[n — 2].

2.3 Review of the algorithm

We shall proceed with a complete and detailed review of the above described
algorithm:

A space optimal algorithm for enumeration of spanning trees 45

ALGORITHM
for enumeration of all the spanning trees of a connected graph

ALGORITHM List-all-spanning-trees;

Input: Connected unoriented graph G represented by its edges
Output: All the spanning trees of G, without repetitions

PROCEDURE Choice-of-the-following edge;
BEGIN (* Choice-of-the-following edge *)

IF there exists the next edge in the j-th list THEN choose it
ELSE WHILE (end of the j—th list) AND (5 > 0) DO BEGIN

Make the current edge of the j—th list be equal

to the first edge of that list;

(* this is in accordance with the lexicographic principle;
later visits to the j—th list should start from the
beginning, because some move to the right
has already been made on a lower level *)

Ji=7-1

Restore the previous state of the control structure
(* this state has been kept since the previous visit *)
END '
END; (* Choice-of-the-following edge *)

Remark. Global variable j is used within the main loop by means of a
"side effect” (the same holds for the most of the variables used).

BEGIN (* List-all-spanning-trees *)

Identify each one of the n stars of G
Determine the degrees of these stars;
Sort the degrees into a non-decreasing sequence;
Delete the star with a maximal degree;
" 7:=1; (* the serial number of the current star *)

46 L. Novak, Z. Karadzi¢, D.M. Acketa

REPEAT (* main loop of the backtracking *)

IF the vertices of the current edge of the j-th
list belong to two different connected components THEN

IF j=|V(G)|-1 THEN BEGIN
(* the last edge ; there is no need to
adjust the control structure *)

Output tree;

Choice-of-the-following edge

END

ELSE BEGIN
Adjust the control structure;
j=3+1

END

ELSE
Choice-of-the-following edge

UNTIL j=0

END ; (* List-all-spanning-trees *)

3. Proof of validity of the algorithm

In this section we shall prove that the algorithm given in Section 2. is
correct. In addition, we shall show that the algorithm is space optimal.

We are primarily going to prove the following lemma:

Lemma 1. Let G be a connected graph on n vertices, let § be a subset
~of V(G) consisting of n — 1 vertices, and let T be a spanning tree of
G . Then there exists a bijection f : E(T) — S, such that each edge z of
T belongs to the star determined by the vertex f(z).

Proof. We label the vertices of T in the following way: the unique vertex
z from V(G)- S islabelled by 0, while the other vertices are labelled by
the distance (within T') from. z. Each edge z of T connects two vertices

A space optimal algorithm for enumeration of spanning trees 17

with different labels &~ 1 and & and the required bijection f can be
defined with f(z)=4%k. O

Now we are able to prove the validity of the algorithm :

Theorem 1. The algorithm given in Section 2. is correct, thatl is, it pro-
duces ezactly all the spanning trees of the input connected graph G without
duplications.

Proof. We shall separately prove three facts concerning the presented algo-
rithm. Two independent proofs will be given concerning the third of them:

(1) All the spanning trees of G are generated by our algorithm; that is.
no spanning trec of G can be missed.

(2) The only sets which are output by our algorithm are the edge-sets of
spanning trees of G .

(3) Each spanning trec of G is generated only once by our algorithm; that
is, the algorithm does not produce duplicates.

Proof of (1): The above proved lemnma implies that the set of edges of each
spanning tree T is a transversal (= a system of distinct representatives)
of the family F of stars indexed by vertices of 5. More precisely, each
edge z of T should be represented as a member of Star(f(z)). Such
a represcntation guarantces that an algorithm which passes through all the
transversals of the family F will not miss any spanning tree of T.

Proof of (2): Each output set has cardinality n — 1 and has no cycles by
construction, that is, it 1S a spanning tree of G.

The first proof of (3): Suppose that tlicre exists a spanning tree T, which
has two distinct associated transversals a;,...,a,_; and b;,...,0,—1. Thus
both sets {aj,..,an—1} and {by,...,b,_1} are equal to the set E(G)
and there exists an index ¢, such that «; # b; for some i from the set
{1,2,..,n—1}.

It is easy to conclude that there exists a sequence i = iy,...,#; of indices
such that

a;p = bz, @i =biz3, ..., ag = by

48 L. Novak, Z. Karadzi¢, D.M. Acketa

Note that, e.g., a;; = bi; implies that Star(i1) and Star(i2) have a
common edge of G. It follows that the edges {i1,:i2}, {2,143}, ..., {ik, {1}
of T constitute a cycle, which contradicts the assumption that T is a
tree.

The second proof of (3): It suffices to show that the bijection f introduced
in the above lemma is unique. In other words, we should show that the
transversal representation of a tree T w.r.t. the stars associated to the
vertices of S is unique.

Let z denote the only vertex in the difference of the sets V(G) and
S. Any edge of T, which is of the form {z,y}, must be considered as the
member of Star(y), because Star(z) is not included in our representation
of spanning trees. In a similar way, by expanding the process started in the
"root” z, we can uniquely determine the star to which each of the remaining
edges of T should be attached. O

There remains to show that our algorithm is space optimal :

Theorem 2. The given algorithm is space optimal; more precisely, its worst-
case space complezity is equal to the size of the input; that is to O(n?), where
n s the number of vertices of G.

Proof. The structures that consume most of space in our algorithm are
arrays of linked lists. Their particular lists are associated to vertices of
G; that is, to their stars. However, the space necessary to store them is
obviously of an O(n?) size. O

4. An illustrative example

We are going to give the trace of the above described algorithm , which is
applied to a small-size example :

Let the connected graph G be given on 4 vertices (numerated 1 thru
4) and 6 edges (denoted el,...,e6) as follows:
el =(1,2); e2=(2,3); €e3=(2,3)
ed =(3,4); e5=(4,1); e6=(4,2)

The linked lists which corresponding to particular connected stars seem

A space optimal algorithm for enumeration of spanning trees 49

after sorting as follows :

Star[l]: — e5 — el

Star[3]: —> e4 — €3 — €2
Star[4]: — e6 — €5 — ed
Star[2]: — e6 — €3 — €2 — el

We shall proceed with a trace of the backtracking in this example:

Applications of the procedure FORWARDS are denoted by "ADD”,
while the applications of the procedure BACKWARDS are denoted by
"TRY” or "DELETE”. "TRY” denotes an unsuccessful attempt of attaching
new edge on the same level , while "DELETE” reduces the candidate after
all the possibilities for augmentation on the previous level are exhausted.
The vector of incidencies of the vertices 1,2,3,4,5,6 (in order) to the labelled
connected components. The labels of which are the elements of the vector
are provided at each step of the algorithm.

Note that the current candidate determines uniquely the corresponding
incidence vector. However, both of them are not sufficient to determine
uniquely the position within the backtracking . Therefore, an additional
piece of information is also added (in brackets) with each position: the next
edge from the considered star, the addition of which should be attempted
at the next step; if such an edge does not exist, then the algorithm deletes
the last edge and comes back to the previous star in search of a new edge
to be added. Such a situation is denoted by "—-" in the column (next).

TRANSFORMATION CURRENT CANDIDATE (next) INCIDENCE VECTOR

————— (e5) 1234

ADD €5 €5 . (ed) 4234
ADD e4 €5 e4 (e6) 3233
ADD e6 TREE e5 ed 6 ———— - —-— -
DELETE €6 ed e4d (e5) 3233
TRY e5 e5 e4 (e4) 3233
TRY ed €d e4 -—— 3233
DELETE e4 ed (e3) 4234
ADD el ed el (e6) 4224
ADD e6 TREFE €5 e3e6 —_——— - ===
DELETE €6 e5 e3 (e5) 4224

TRY ed ed5 e3 (ed) 4224

50 ' L. Novak, Z. Karadzié, D.M. Acketa

TRANSFORMATION CURRENT CANDIDATE (next) INCIDENCE VECTOR

ADD ed TREE eb5e3ed —_——— —= == -
DELETE e4 e e3 ———— 42214
DELETE €3 eb (e2) 4234
ADD €2 e5 e2 (e6) 4224
ADD e6 TREE €5 e2eb —_———_— — ==
DELETE €6 e5 e2 (e5) - 4224
TRY €5 €5 €2 (e4) 4224
ADD ed TREE e€5¢€2ed —_——— —=———
DELETE e4 €5 €2 ———— 4224
DELETE €2 €5 —-——— 4234
DELETE 5 ————-— (el) 1234
ADD el el (ed) 1134
ADD ed el e4 (e6) 1133
ADD e6 TREE el ede6 _———— - = -
DELETE €6 el ed (e5) 1133
ADD e5 TREE el eded —_———— = ————
DELETFE €5 el e4 (e4) 1133
TRY e4 . eled -——== 1133
DELETE e4 el (e3) 1134
ADD ed el e3 (e6) 1114
ADD e6 TREE el €3 ¢6 —_———_— — === =
DELETE 6 el e3 (e5) 1114
ADD e5 TREE el e3e€5 —_——— — - ===
DELETE &5 el €3 (ed) 1114
ADD ed TREE el €3 6 ———— — -
DELETE e4 el e3 -—== 1114
DELETE €3 el (e2) 1134
ADD €2 el €2 (e6) 1114
ADD e6 TREE el e2e€6 —_———_—— - = ===
DELETE €6 el €2 (e5) 1114
ADD e5 TREE el e2e€b —_———_—— - === -
DELETFE €5 el e2 (e4) 1114
ADD ed TREE el e2e6 —_———— - = ===
DELETLE e4 el e2 -——-—-— 1114
DELETE €2 el -—~——— 1134

DELETE e1 ————— —

A space optimal algorithm for ecnumeration of spanning trees 51

Total number of trees : 13

Remark. The steps backwards in the above trace are always preceded
by either producing a tree or by an attempt to add a new edge to a candidate
which already contains that edge (the last situation is equal to the occurrence
of a cycle of size 2 within the candidate). In the general case the attempts
will also be made to close some cycles of a larger size. These attempts will
be prevented in principally the same manner by use of the control vector.

5. Experimental results on some graph classes

In this section we are going to give a number of examples, with which the
tests on the action of the above described algorithms were performed. The
obtained experimental results include the total number of trees with graphs
of a specified type, the total time (in seconds), which was used by a certain
PC AT 386 (in all cases the same one) to enumerate these trees, as well as
the average time (in 1078 seconds) of the calculation per tree.

Example 1. Let K, denote the complete graph on n vertices. It is

well-known that the total number of spanning trees of Kn is n"~2.

Experimental results for the class I'p:

n | 5 6 7 8 9 10

num.of trees | 125 1296 16807 262144 4782969 100000000
time(sec) (0.06 0.11 1.10 16.15 281.27 5664.85
107 sp.t. | 480 849 654 61.6 58.8 56.6

Conclusion: It seems that the average spced per tree does note an
increase with n. In fact, it slowly decreases (perhaps towards a limit ?),
with the exception of the first few values, where there is a great decrease.
Such a behaviour might be explained by some constant time (probably spent
with the input-output business), which does not depend on the size of the
problem.

This example suggests that the complexity of the algorithm is equal
to the size of the output (that is, that a constant time is needed for each
particular generated tree).

Example 2. Let A, denote the graph on 2-n vertices, numerated by

52

L. Novak, Z. Karadzié, D.M. Acketa

1,2,...,2-n, and the following 3-n — 2 edges:

1,1+ 1] for i=1,2,..,2-n-1
[i,2-n4+1-4 for i=1,2,...,n-1
Experimental results for the class Aj:
n |1 2 3 4 5 6 7 8 9
num. oftrees| 1 4 15 56 209 780 2911 10864 40545
time(sec) - — — — 011 0.50 3.57 1494 45.37
10spt |- — - — 5263 641.0 12264 13752 1119.0
n | 10 11 12 13
num. of trees | 151316 564719 2107560 7865521
time(sec) 322.02 1248.34 3528.20 25076.45
10~%s p/t 2128.1 2210.6 1674.1 3188.1

Example 3. Let B, denote the graphon 4-n

vertices, numerated by

1,2,...,4 - n, and the following 8.-n — 2 edges:

[, 4+ 1] - for 1=1,2,...,4-n-1
[(,4-n4+1-14] for 1=1,2,...,2-n-1
[2-i-1,2-4] for 1 =1,2,...,n
[2-i,4-n+2-2-14] for i=1,2,...,n.
Experimental results for the class B,:
n | 1 2 3 4
num. of trees { 13 533 21801 891709
time(sec) - 022 12.79 904.57
10~¢sp/t | — 412.8 586.7 279.5

Remark. Note that the graphs B, are obtained by inserting some edges
in the corresponding graphs A,. In such a case the average time per tree
decreases. It seems as if the graphs with a "higher edge density” have smaller

average time per tree and conversely.

Example 4. Let P, denote the path consisting of n edges. The time (in
hds/s = sec/100) necessary to output the only spanning subtree of P, by
our algorithm is given below for sime values of n:

n|40 50 60 70 80 90 100 110 120 130 140 150

|5 11 16 22 27 39 50

5 66 77 88 104

A space optimal aigorithm for enumeration of spanning trees 53

n|160 170 180 190 200 210 220 230 238
|115 132 148 165 187 208 225 247 263

This time has an almost linear increase, which is quite an expectable
behaviour, since a linear growth of the structure is also present.

6. On the influence of star sorting

We have made an extensive study of the dependence between the ordering
of stars (by their cardinalities) and the speed of our algorithm for generating
all the spanning trees in the following example:

Let the connected graph G be given on 7 vertices (numerated 1 thru
7) and 10 edges (denoted el,...,e10) as follows:

el =(1,2); e2=(1,3); e3=(2,3); ed=(2,5);
€5 = (3,4 6=(3,5); e7=(3,6) e8=(4,5)
€9 = (5,6); el0=(1,7);

We observe that the degrees of the vertices 1,2,3,4,5,6,7 are 3,3,5,2,4,2,1
respectively. Of course, the same holds for the cardinalities of the corre-
sponding stars. On the other hand, 7 is the only vertex of degree 1, 4 and
6 are the vertices of degree 2, 5 is the only vertex of degree 4 and 3 is the
only vertex of degree 5.

We have compared 480 runnings of our algorithm on the graph G (which
has 52 spanning trees), which differed from each other solely in the ordering
of the stars (equivalently, the corresponding vertices). These orderings were
chosen as follows:

For each one of the 120 permutations of the degree set 1,2,3,4,5, we have
introduced four corresponding orderings. We have adjoined to the degrees
(in order) either the unique corresponding vertex or (in the case of degrees
2 and 3) two corresponding vertices (there are four possible arrangements
in this last case). .

For example, given the permutation 21435, we can primarily adjoin the
auxiliary sequence 2214335 to it, which further leads to the following four
orderings: :
4,6,7,5,1,2,3; 4,6,7,5,2,1,3; 6,4,7,5,1,2,3; 6,4,7,5,2,1,3.

54 L. Novak, Z. Karadzié, D.M. Acketa

With each one of the 480 orderings, we have counted the number of steps
down (= the number of steps up) in the backtracking across the list of stars.

Observations:

1) Therc is a considerable difference between the number of counted steps,
as well as with the runtime, with distinct orderings, with this particular
graph G. It seems that the same is generally valid for the graphs with
sufficiently diverse vertex degrees.

2) There is a strong corrclation between the number of counted steps, al-
though there is also some alteration w.r.t. the expected strict direct
proportion.

Example. The first and the sccond ordering associated to the per-
mutation 41235, that is, 5746123 and 5746213 respectively, have the
respective numbers of steps 51 and 59, but the respective runtimes are
11 hds/s and 6 hds/s.

Example. As two antipodes, we might consider the ordering 7461253,
obtained lexicographically with the first permutation 12345, which has
35 steps and 5 hds/s, and the ordering 3512647, obtained lexicograph-
ically with the last permutation 54321, which has 286 steps and 44
hds/s. Al the four figures (35, 5, 286 and 44) are the absolute
extremes within this test.

3) Given a quadruple of orderings, note that one ordering can be trans-
formed to another onc according to the following scheme:

first — third , by transposition (46)
second — fourth , by transposition (46)
first — second , by transposition (12)
third — fourth , by transposition (12) .

With all the 120 quadruples of orderings, the number of steps with
the first and the third (respectively, with the second and the fourth)
ordering have tlhie same numbers of steps (although in many cases
all the four numbers are cqual). This seemingly interesting feature is
valid regardless of whether 2 is in front of 3, or conversely, in the initial
permutation.

The question is: Why does the permutation (12) , of vertices of de-
gree 3, have stronger consequences (on the number of steps) than the
permutation (46), of vertices of degree 2 ?

A space optimal algorithm for enumeration of spanning trees 55

4) In many cases we have coinciding runtimes with the first and third,
respectively with the second and the fourth ordering associated to a
permutation. However, in many other cases, the coincidence relates to
the first and the fourth, respectively the second and the third ordering.
At last, there are many cases with which there is one outstanding
(mostly greater) runtime with respect to the other three. Adding the
cases with four coincidences, these are the four by far most common
behaviours of the runtimes.

Remark. Observe that some other elementary steps should be counted
as well. Besides up and down, it would be interesting to count steps
to the right, within the particular stars.

5) It would be of extreme interest to study the relationships between the
initial permutation and the (average) number of steps and runtime
associated to the corresponding orderings. It seems that the last val-
ues are proportional to a specific function defined on permutations

P1, P2, P3, P4, P58

5
z |¢—le »

i=1

although some refinement is also necessary. (Look to the permutations
with the same value of this function!)

6) It seems reasonable to study the effect of sorting with different types of
examples. Thus after the sorting is completed, it is important which
of the following monotonously increasing behaviours is present:

a) concave b) linear c) convex d) constant

Paper [1] contains another algorithm for the enumeration of all the span-
ning trees of a connected graph. The worst-case time complexity of the
algorithm is O(n+ m + n-t), where = and m denote respectively the
number of vertices and the number of edges, while ¢ denotes the number of
spanning trees. This paper also contains a detailed comparative study of the
existing algorithms for spanning tree enumeration, as well as an extensive
list of references on the subject.

56 L. Novak, Z. Karadzié, D.M. Acketa

References

[1] Winter, P.: An algorithm for the enumeration of spanning trees, BIT
26(1986), 44-62.

REZIME

JEDAN MEMORIJSKI OPTIMALAN ALGORITAM ZA
_ NABRAJANJE
PREPOKRIVAJUCIH STABALA POVEZANOG GRAFA

Opisan je jedan jednostavan, i u pogledu memorijskih zahteva optimalan,
algoritam za generisanje svih prepokrivajucih stabala datog povezanog grafa
G. lzbor grana se vrsi bektrekingom po familiji koja sadrzi sve zvezde
grafa, sa izuaetkom jedne (proizvoljne). Efikasnost algoritma se zasniva na
lokalnosti testa, kojim se ispituje da li ¢e dodavanje jedne nove grane =z

skupu grana S, koji ne sadrzi konturu grafa G, — dovesti do togada SU=x

sadrzi takvu konturu. ‘

Received by the editors March 12, 1990.

