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Abstract

Earlier results concerning the commutativity of rings with unity
due to Quadri and Khan (Math. Japon., 33(2) (1988), 275-279) and
Psomopoulos (Math. Japon., 29 (3) (1984), 371-373) have been ob-
tained under a different set of conditions. The method of proof is
based on an iteration technique.
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1. Introduction

Recently, Psomopoulos (3], Quadri and Khan [4] proved some interesting
commutativity theorems for rings with unity. While the work of Quadri and
Khan [4] generalized a famous result due to Bell [1], the result of Psomopou-
los [3] is new in its own right.

In this paper, we shall present some results on the commutativity of rings
using polynomial identities as considered by the above authors but under a
different set of conditions and employmg an entlrely new technique of proof

-which was given earlier by Tong [5].
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Throught this note, R stands for a ring with unity 1. As usual, we write
[z,y] = zy—y=z, where z and y are arbitrary elements from R. The following
well-known results will be frequently used in the sequel.

Lemma 1.1 ([2]). Let R be a ring with unity 1 and f : R — R be a function
such that f(z + 1) = f(z), for every z in R. If for some positive integer
n,z" f(z) = 0 for all z in R or f(z)z™ = 0 for all z in R, then necessarily

f(z)=0.

Lemma 1.2 ({5]). Let R be a ring with unity 1. Let Ij(z) = z". If k > 1,
let I}(z) = I} _(z+1)~I[_ (). Then, I7_i(z) = 3(r=1)ri+rlz; I7(z) = r!,
and I7(z) =0 for j > r.

2. Results

In a recent paper, Wei Zong Xuan [6] proved that a semi prime ring R is
commutative if for all z,y,z in R any one of the following conditions is
satisfied

(i) [z%y? - zy*z, 2] = 0,
(ii) [z%y% — yz?y,2] = 0.

Two of our results in this section are motivated by the above polynomial
identities. Our conditions are in fact borrowed from a pre-print entitled ”
On a commutativity condition for rings ” by M.A. Quadri et. al.

Theorem 2.1 Let R be a ring with unity having the property: "there erxist
positive integers m and n such that

(A) [z™y" — zy"z,2] = 0

holds for all z,y in R.” If every commutator in R is 2(n!)(m!) - torsion free,
then R must be commutative.

Proof. We can write condition (A) of the theorem as

(1) z"[z,9"] - z[z,y"]z = 0.
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If n = 1, then (1) gives

(1) z™[z,y] = z[z,y]z.

If n > 1, firstly, we shall apply iteration on y* in (1). To do this, let
Ii(y) = I(y), for j = 0,1,2,3,... Then (1) can be expressed as

(2) 2™z, Io(y)] - z[z, lo(y)]z = 0.

Let us put y = y + 1 in (2). Then, we obtain

2™ [z, Io(y + 1)] - z[z, Io(y + 1)]= = 0.
Now,using Lemma 1.2, we have
g™z, Ii(y) + To(y)] - z[z, [i(y) + To(y)]z = 0.

Using (2), we obtain

3) =™z, i (y)] - z[z, hi(y)lz = 0.
Again, letting y = y + 1 in relation (3) and using Lemma 1.2, we get

(4) =™z, o(y)] - zlz, o(y)]= = 0.

Finally, replacing y by y + 1 in (4) and then iterating (n — 1) times, we

obtain
2™z, In-1(y)] - z(z, In-1(y)}z = 0.

But by Lemma 1.2, I,_1(y) = (»!)y + 3(n — 1)n!. So,
(5) ("!){zmh:? y] - z[za y]z} =0,
and (1’) follows immediately from (5).

If m > 1, we shall iterate z™. To achieve it, we let Ip(z) = z™ in (1°)
which then becomes '

{Io(2)[z,y] - z[z,y]x} = 0.
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Let us replace z by z + 1 in the above expression getting thereby

{Io(z + 1)[z,9] - (= + D[z, y)(z + 1)} = 0.

Then, as before, we get
(6) {L(2)[=, 9] - [2, 9] - [z, 3]z — z[=, 9]} = 0.
Now, replacing z by z + 1 in (6) and using (6), we get

(M {L2(2)[2, 3] - 2[z, 9]} = 0.

Again, putting z = z + 1 in (7), we have

{I2(z + V)[z,y] - 2[z,3]} = 0,
which when combined with (7) gives
(8) {I3(z)[=z,9]} = 0.
Similarly, we can get

(9) {L(z)[z,9]} = 0.

Finally, letting z = z + 1 and iterating m times, we are left with

{Im(z)[z,y]} = 0.
But by Lemma 1.2, I,(z) = m! = I?(z). So

(m))[z,y] =0 i e [z,y]=0.
If m = 1, from (1’) by iteration on z we get
z[z,y] + [z, 9]z = 0,

and then
z[z,y]=0 i. e [z,y]=0.
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Therefore, R is commutative. This completes the proof.

Now, we shall present a short and easy proof of a result due to Quadri
and Khan [4] under some extra torsion condition on commutators in the
ring.

Theorem 2.2 Let m and n be two fized positive integers and R a ring with
unity in which every commutator is (m!)(n!) - torsion free. If the condition

(B) [zy — y™z", 2] =0

holds for all z,y in R, then R must be commutative for m > 1 and n > 0,
and form > 0 and n > 1. :

Proof. Condition (B) is equivalent to
(1) zfz, ) = [z, y™)".

If m > 1, as in the proof of Theorem 2.1, we let Iy(y) = y™.
Then (1) can be re-written as

(2) Z[.’L‘,y] = [.'17, IO(y)]‘T"'

Now, letting y = y + 1 in the above expression and using (2), we get
[I, Il(y)]zn = 0.

A similar argﬁment can be used to get
(3) ' [z, L(y)lz™ = 0.

Finally, replacing y by y + 1 in (3) and iterating (m — 1) times, we obtain
(m!)[z,y)z" =0,

or equivalently
(mY)[z,yz"] = 0.
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As every commutator in R is (m!) - torsion free, we get
[z,y2"] = [z,3]e" = 0,
and from there it follows that [z,y] = 0 because of Lemma 1.1
If m =1 and n > 1, then (1) becomes
z([z,y] = [=,y]2",
and from there by iteration on z we get
(n)[z,y)=0 i.e. [z,y]=0.
Thus R is commutative.

Following the idea developed in the proofs of our Theorem 2.1 and The-
orem 2.2, one can supply another proof of a result due to Psomopoulos (3].
Here we shall only sketch of the proof for the sake of completeness.

Theorem 2.3 Let m > 1 and n > 0 be two fixed positive integers and R
a ring with unity in which every commutator is (m!) - torsion free. If the
condition

(C) [z"y — y"z,2] =0

holds for all x,y in R, then R must be commutative.

Proof. The equivalent form of condition (C) is given by
In[za y] - [Ia ym]I =0.

As in the proofs of the previous two results, firstly the iteration is appli;ed
to y™ by putting y = y + 1 to get

’ [zaIl(y)]I =0.
» Now, as before, we get
(mY)[z,y]z = 0,

which along with Lemma 1.1 for f(z) = (z,y] gives [z,y] = 0. Hence R is
commutative.

Finally, we shall present a result which is similar to our Theorem 2.1.
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Theorem 2.4 Let m > 1 and n > 0 be two fized positive integers and R a
ring with unily in which every commutator is 2(n')(m!) - torsion free and
the condition

(D) [z™y — zy"z,y] =0 -
holds for all z,y in R. Then R must be commutative.

Proof. Let m # 2. We set Iy(y) = yn. Then (D) becomes

[z™ lo(y) — zIo(y)2, y] = 0.

Now, replacing y by ¥ + 1 in the above expression and using the same
expression again, we get

[z™ 1(y) - zh(y)z,y] = 0.

Now, iterating the above expression n times we obtain

[z™ In(y) — z1a(y)z,y] = 0.

Hence,
()™ ~ 2%,9) = 0.

As every commutator in R is (n!) - torsion free, we get

[z™ - zz,y] =0, i.e. [z, y]= [z2,y].

It is not hard by iteration on z to have the last expression above reduced to

(mY[z,y)=0 if m>2, and 2z,y]=0 if m=1.

Once, again the hypothesis on commutators yields [z,y] = 0. For m = 2
and n > 1 from (D) we get by iteration on X:

[2zy™ — zy — yz,y] = 0,

2:[z,yly" = [z, 9]y + y[=, 9],
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and from there by iteration on y :

2-(nY)[z,y]=0 i. e [z,9]=0.

Thus is all cases, R must be commutative.

Remarks.

i

Psomopoulos [3] assumed R to be s-unital ring. All previous
theorems are still true for R as an s-unital ring. Namely,
for arbitrary elements z,y of an s-unital ring R there exists

e = e(z,y) in R such that ez = ze = z and ey = ye = y.

jii.

With e = e(z,y) instead of 1, Lemma 1.1 and Lemma 1.2
with I7~! = 1(r - 1)rle + r'z and I7(z) = rle, obviously are
still true for R as an s-unital ring. This permits our iteration
on z or on y by setting z + e or y + e for z or y respectively.

In the preprint of M. A. Quadri et. al, mentioned in the
beginning of this section, the ring under consideration was
semi-prime satisfying either of the conditions (A) or (D).
Concering Theorem 2.1 and Theorem 2.4, we note that for
m > 1 or n > 1, 2 divides (m!)(n!) and then every commu-
tator in R is 2 - (m!)(n!) - torsion free if and only if every
commutator in R is (m!)(n!) - torsion free.
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REZIME
NEKI USLOVI KOMUTATIVNOSTI ZA PRSTENE

Neki rezultati komutativnosti Quadrijai Khana (Math. Japon., 33(2)(1988),
275-279) i Psomopoulosa (Math. Japon., 29(3)(1984), 371-373) ovde su
dobijeni pod drugim uslovima. Nas metod dokazivanja se zasniva na jednoj
iteracionoj tehnici.
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