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Abstract

Continuous dependence of the fixed points on parameters is inves-
tigated in many papers ([1], [8], [14], [26]). In this paper we shall give
a generalization of Vorel’s result from [25] to random normed spaces.
As a corollary we shall give a generalization of the well known fixed
point theorem of Krasnoselskii in random normed spaces.
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1. _In'trodu(:’tio__h

“The notion of a probabilistic metric space was introduced by K.Menger [17]
and the notion of a random normed space by A.N.Sherstnev in [22]. The first
result about the existence of the fixed point of a probabilistic contraction
on a probabilistic metric space (S, F,min) is obtained by V.Sehgal and A.

-Bharucha - Reid in [21]. Some fixed point theorems for singlevalued and

" multivalued mappings in probabilistic metric spaces are obtained in [2], [3],

[4], (8], (6], [7], (9], [10], (18], (21], [24]. -

The continuous dependence of the fixed points on parameters for densify-
ing mappings is investigated in (1], (8], [14] and [26]. Using the probabilistic
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functions a and 3 ([6], [25]) we shall give in this paper a probabilistic gen-
eralization of Z.Vorel’s results from [26]. As an application we shall obtain
a gencralization of the Krasnoselskii fixed point theorem in random normed
spaces.

2. Preliminaries

Let A denote the set of all distribution functions F such that F(0) = 0(F
is a nondecreasing, left continuous mapping from the set of real numbers R
into [0, 1] so that sup,ep F(z) = 1) and R+ = [0, 00).

The ordered pair (5, F) is a probabilistic metric space if § is a nonempty
setand F:Sx§ — A (F(p,q) for p,q € S being denoted by Fp4) so that
the following conditions are satisfied:

1. Fuu(z) =1, for every z > 0 = u = v((u,v) € § X §),
2. I is symmetric,

3. Fuu(z)=1and Fyou(y) =12 Fuu(z+9) = 1(8,0,0) € SX Sx §
and (z,y) € RxR).

A Menger space is a triple (S, F, 1), where (S F)is a probablhstlc metric
space and t is 3 T—norm so that

Fuuw(z + y) 2 (Fy,(2), F,, w(y)), for cvery (u,p,w)ES XS XS

and every (z,y) € P.. X R

Recall that a mapping ¢ : [0,1) x [0,1] = [0,1] i5-called a T—norm if the
following conditions are saticfied: :

1. Fo: cvery a € [9,1], t(a,1) =a.
2. For every (a,b) € [0,1] x [0,1] : t(d,b) = 1(d,c).

3. For cvery (a,b,¢,d) € [0, 1] x [9,1] x [0, l]x[ 1]:a2>b, c>2d=>
(a,c) > t(b,d).

4. Fer cvery a,b,¢ € [0,1) x [0,1] x [0,1] :

t(a,t(b,c)) = t(t(a,d),c).
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Examples of such functions are: .
tm(a,b) = max{a+b— 1,0} and tmin(a,b) = min{a,b}, (a,d) € [0,1] x [0,1].

The (¢, A) - topology in a probabilistic metric space is introduced by the
family of neighbourhoods given by :
U = {Uu(& A)} (v, ))eSxR+x(0,1)
where Uy(e,\) = {u|u € S, F, () >1 - A}.

A random normed space (S, F,t) is an ordered triple where § is a real
or complex vector space, t is a T—norm which is stronger then the T—norm
tm(t > t;) and the mapping F : § — A satlsﬁes the following conditions,

. where
, <0
.H(:r) - { 1, z>0

(a) F, = H <= p =0 ( 0 is the neutral element of 5)

(b) For every p € S, every u > 0 and every r € K\{0}(K is the scalar
field ) :Fyp(u) = Fp(fy)-

(c) For every (p,q) € S x S and every (u,v) € R* xRt :
Fp—q(u + v) 2 t(Fp(u), Fo(v))-

Every random normed space is a Menger space, where F' : S x § — A is
defined by F(p,q) = F,—

If the T—norm t is continuous then § is, in the (¢,A)— topology, a
topological vector space.

Let (S, F) be a probabilistic metric space. The following two definitions
are given in [6]

~ Definition 1. Let A be a nonempty subset of S. The function D4(-), defined
on R+ by

- ) .
Dy(u) = ilé]: P'1;1€fA F,4(8), ueR7,

ts called the probabilistic diameter of the set A and the set A is probabilistic
- bounded if and only if

sup Dy(u)=1.
uveR+
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Definition 2. Let A be a probabilistic bounded subset of S. The Kuratowski
function a,(-) is defined by: '

aa(u) = sup{s | s > 0, there is a finite family A;(j € J) such that
A = UjesAj and Dy,(u) > s, for every j € J} (u € R).

The Kuratowski function has the following properties :

1. as € A,

as(u) 2> Da(u), for every u € R,

0#ACBCS = as(u) > ap(u), for every u € R,
aauB(u) = min{as(u),ap(u)}, for every v € R,

aa(u) = ag(u), for every u € R, where 4 is the closure of A,

SO A o

ay = H = A is precompact.

In [25] the function B4(-) is defined in the following way:
Ba(u) = sup{r | r > 0, there exists a finite subset A of S such that
Fana,(u) 2> r}, where for every probabilistic bounded subsets A and B of §

F4 p(u) = sup inf sup Fry(3).

s<u TEA

The function B has properties 1) - 6) for § instead of a.
If the T—norm t is tymi, then for every u € Rt

Ba(u) 2 au(u) 2 Ba(3).

Let (S, F) be a probabilistic metric spaces, K a probabilistic bounded
subset of § and T' a mapping from K into the family of all nonempty subsets
of S. Let for every probabilistic bounded subset A of §, v4: R — [0,1]. If
T(K) is a probabilistic bounded subset of S and for every B C K :

vr(B)(2) < 7B(), for every u >0 = B is precompact

then we say that the mapping T is densifying on the set K with respect to the functio
~.
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3. Continuous dependence of the fixed points on
parameters

In the next theorem we suppose that v4(:) = a4(:), for every probabilistic
bounded subset A of S or y4(-) = Ba(-) for every probabilistic bounded
subset A of S.

Theorem 1 in this paper is a generalization of Z.Vorel’s result from [26]
to random normed spaces.

Theorem 1. Let (S, F,t) be a complete random normed space, t a con-
tinuous T—norm, K a nonempty closed and probabilistic bounded subset of
S, Ti: K — S(k € NU{0}), z a fized point of the mapping Ti(k € N) and
zo the unique fized point of the mapping Tp. If the mapping To is continuous
and densifying on K with respect to the function v then the following holds:

lim zp = 29 <= lim (T} — To)zx =0
k—o0 k—o0

Proof. If limg_.o 2 = z¢ then Tizy — Tozk = zx — 2o + Tozo — Tozk
converges to 0 since Tp is a continuous mapping. Suppose that limy_, (T} —
To)zr = 0. We shall prove that an arbitrary subsequence {z,, };eN has a
convergent subsequence yx, with the limit zo. Let for every k € N,y = zp,.
Then

Yk = Tnk yk = (Tng - TO)yk + Toyk

hich implies that limyx_,o, yx — Toyxr = 0. This means that for every s >
0, limg_oo Fy,~Toy,(8) = 1. We shall prove that:

M) Y tunlkeN} () = V(Tyuy ey (u)
for every u € R*t.
First, we shall prove that:

(2) 7{yk|keN}(u) < Y{ToykaEN}(")’ for every u € Rt.

Let 4 = 8. In order to prove (2) for v = 8 we shall prove that for every
u > 0 and every s € (0,u):

(3) By eeNy (¥ = 3) < By, keN} ().
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Suppose that for some » > 0 and s € (0,u) :

(4) By, keNy(u — 8) > 0.

If (1) is not satisfied then (3) holds. In order to prove (3) we shall prove the
following implication:

(5) 0<r< ﬂ{ydkeN}(‘u - 8) =>r< ﬂ{ToyklkEN}(u)'

Let r < dyy,jkeny(s — 5). From the definition of the function f4() it
follows that there exists a finite set Ay from S such that

F{yklkEN},A,(ﬁ -8)>r.

Hence, from the definition of the function F it follows that for every n € N
there exists z(n) € Ay so that

Fymz(n)(u —8)>r.

Let é be an arbitrary element from the interval {0,7). We shall prove
that ‘

(6) B(TyyilkeNy(1) > 7 = 6.

Since the mapping ¢ is continuous and #(1,7) = r it follows that there
exists § so that the following implication holds

1>h>1-8=t(h,r)>r—6.
Let no(s,6) be such a natural number that for every k > ng(s,g)k
F,,,‘_Toy,‘(g); 1-6.
Then for every k > ng(s,8) we have that
Fryge—s(9(8 = 3) 2 { Pty (3)s Fyu—siin (8 — 9))
2 U Fryge-y(3),7) > 7= 6
From the definition of the function 84(-) and the relation

BitounikeNH¥) = Bizpy, k> mo(e5y (W)
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it follows that (6) is satisfied. Since é is an arbitrary element from the
interval (0,r) we obtain that the right side in (5) holds.

Hence (3) holds. Since the function 4(-) is left continuous we have that
Jim, By keny(v = 5) = Brykeny(v) < Biranteen) (1)
for every u > 0.
Similarly we can prove that
BluckeNy(#) > Biroy, iveN)(¥)

and so
BlyslkeN} (u) = ﬂ{ToykaEN}(u)

Suppose now that ¥ = a and prove that
oy, [keN}(#) = 0y, keN} ()
for every u € R¥,
As in the case ¥ = § we shall prove that for every s € (0,u):
gy keNy (1 = 8) < agyy, keN} (1)

Let 0 < r < ayy, |keny(u—s). Then there exists a finite family {V1,Yz,...,Y,}
(Yic S5, i€ {1,2,..,n}) so that {yx | k € N} = UL,Y; and
(7 Dy,(u—s) > r, foreveryié€{1,2,..,n}.

From (7) and the definition of D4(-) we obtain that for every z,y €
Y;, Fz—y(u—s) > r. Suppose that § is an arbitrary element from the interval

(0,7). The mapping t is continuous and since ¢(1,#(r,1)) = r it follows that
there exists § so that the following implication holds

1>v, w>1-68=tv,i(r,w))>r 6.

For every j € {1,2,...,n} let Z; C S be defined by

Z; = {z| z € S, there exists some y € Y; so that Foy(P>1- 8}).
Further, let n,(s,4) € N so that for every k > n(s,$)

AFyk—Toyk(Z) >1-4.
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Then it is easy to see that {Toyx | k > n1(s,8)} C U7-1Z;. In order to prove
that

r-8< a{Toyklk>ﬂ1(3,§)}(u)
we shall prove that Dz;(u) > r — §, for every j € {1,2,...,n}.
Let z,y € Z;. Then there exist Z and  from Y; so that

Fes(3)>1-8, Fy(3)>1-4.

Since Fz_j(u — 8) > r we have that
s s s
Fay(tt= 2) 2 Moo () U Fomi(n = ), Fymyl2))

> H(Fe-s(Ur Fy-s()) > 1= 8

and so

Dz,;(u) = sup 1nf F,_y('u,) > mf F,_y(u -) >r-4.
as<u TYE

Similarly as in the case v = 3 it can be prove that
@y, keN} (1) = a1y, keN) (), for every u € RY.

Since Tp is densifying on K in respect to 7y then {yx | k¥ € N} is precom-
pact. If it is not the case for some u € R* then
T lkeN} (%) < VTouikeN)} () = Yy, keN) (%)
whish is a contradiction.

Hence, there exists a subsequence {y, }ren such that

lim g, =2z € K and z = lim y;, ]Jm T,
r—00 r—00

ne, Y
= lim (Ty,, v, — Toyx, ) + lim Toys, = Toz.

This means that z is a fixed point of the mapping Tp and since z¢ is the
unique fixed point of the mapping Ty we have that z = 2. Hence 2o =
lim, oo ¥, and so lim,_, o, zx = Zo.

From Theorem 1 we obtain the following corollary.
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Corollary 1. Let (S, F,t) be a complete random normed space with a con-
tinuous t—norm t, K a nonempty closed and probabilistic bounded subset of
S,To : K — K a probabilistic k—contraction, T, : K — S(k € N) and
zi = Trzg(k e NU{0}). If

Jlim (i - To)ox = 0

then limg_,o zx = Zg.

Proof. Since Ty is a probabilistic k—contractien and K is closed and
probabilistic bounded from Theorem 1 [12] it follows that there exists one
and only element zg € K such that zo = Tozp. Namely, the existence of zq
follows from Theorem 1 [12] and the uniqueness follows easily. In Theorem
1 [12] it is proved that Tp is densifying in respect to the function 3. Hence,
all the conditions of Theorem 2 are satisfied and so limg_, ., x = z¢.

In order to obtain a generalization of the Krasnoselskii fixed point the-
orem [27] we shall give the definition of the notion of an admissible subset
in a topological vector space which is given in the paper of V.Klee [26]. -

Definition 3. Let X be a topological vector space and K a nonempty subset
of X. The subset K is said to be admissible if for every compact subset A
of K and every neighbourhood U of zero in X there exists a continuous
mapping h : A — K so that the following conditions are satisfied:

1. dim Linh(A) < oo, (Lin- linear hull ).
2. Foreveryz € A, z - h(z) € U.
If K = X then X is an admissible space.

The notion of the admissibility is very important in the fixed point the-
ory, because by means of this notion many results from the fixed point theory
in locally convex topological vector spaces can be generalized to topological
vector spaces which are not necessarily locally convex. The admissibility of
a class of random normed spaces is investigated in [20].

~ Further information about the admissibility can be found in the book
[19].

The admissibility of the space 5(0,1) (the space of all classes of Lebesgues
measurable real functions defined on the interval (0, 1)) is proved by T.Riedrich
in [35).
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In [21] S.Hahn and K.F.Pétter obtained the following generalization of
the well known Tihonov fixed point theorem.

Theorem 2. Let X be a Hausdorff topological vector space, K a nonempty
closed conver and admissible subset of X and f : K — K a continuous
mapping such that f(K) is compact. Then there ezists x € K such that
z = fz.

This theorem will be used in the proof of the next corollary. Since every
nonempty, closed and convex subset of a topological vector space, which is
locally convex, is admissible the above fixed point theorem is a generalization
of Tihonov’s fixed point theorem.

Corollary 2. Let (S, F,t) be a complete random normed space with a con-
tinuous T—norm t,0 # K C S a closed, convez, admissible and probabilistic
bounded set, Ty and T, continuous mappings from K into S so that the
following conditions are satisfied:

1) T]I{ + TzI\" C K.
it) Ty is a probabilistic k— contraction.

iti) T2(K) is a compact subset of S.
Then there exists x € K such that x = Tz + Tsz.

Proof.  Since Ty is a probabilistic k—contraction it follows that for
every z € ToK there exists one and only one elément z(z) from K such
that z(2) = Thz(z) + z. We shall prove that the mapping z — z(2)(z €
T,K) is continuous using Theorems 1 and 2. Suppose that {zx}ren is a
sequence from T5(K) such that limg_,o, 2z = 2. We have to prove that
limg_, oo z(2x) = z(2). Let, for every k € N : Tpz = Tz + z4(z € K) and
Tox = Tz + 2. The mapping Tj is a probabilistic k—contraction and from
Theorem 1 [12] it follows that Ty is densifying on K in respect to the function
B. Further, limy_,o(Tx — To)u = limp_,0 2k — 2 = 0 for every u € K and
hence limg—oo(Tk — To)z(2x) = 0. This implies that all the conditions of
Theorem 1 are satisfied and so limg_,o z(2¢) = 2(2). Let fu = z(Thu),
for every u € K. The mapping f : K — K satisfies the conditions of the
Theorem of Hahn and Potter and so there exists z € K such that z = fz.
It is easy to see that z = Tz + Tyz.
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REZIME

NEPREKIDNA ZAVISNOST NEPOKRETNE TACKE OD
PARAMETARA U SLUCAJNIM NORMIRANIM PROSTORIMA

Neprekidna zavisnost nepokretne tacke od parametara je ispitivana u mnogim
radovima ([1], [8], [14], [26]). U ovom radu je dato uopstenje Vorelovog
rezultata iz [25] na sluéajne normirane prostore. Kao posledica dobijeno je
uopstenje poznate teoreme o nepokretnoj tacki Krasnoseljskog u sluéajnim
normiranim prostorima.
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