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1. Introduction

Let Y be a topological space; 2¥ denote a collection of all the subsets of Y.
Then :
P(Y)={De?2Y:D#},

Py(Y)={D € P(Y): D is bounded },
C(Y)={De€P(Y): Disclosed },
K(Y)={D e P(Y): D is compact }.

IfY is a subspace of a topological vector space, then Cv(Y)[Kv(Y')] denote
a collection of all the nonempty closed convex [compact convex] subsets of

Y.

Let £ be an infinite-dimensional Banach space. A function ¢ : 2 — R
is said to be a measure of noncompactness in £ if

p(caQd) = p(2)

for every Q € 2¢ (see, for example, [1],[2]). One of the well-known examples
in the Hausdorff measure of noncompactness:

x(R) = inf{e > 0: 2 has a finite ¢-net } .

We shall later use its following properties.

x1) If ; C N2, then x(1) < x(22).
x2) x(Q + N2) £ x(™) + x(2) for all Q4,922 € 2¢.
x3) x(Q)=x(§)=1,where @ ={zef:|z|| <1}, §=0Q.

The symbol E in the sequel will denote a separable Banach space. Then
the following properties should be noted. Let the interval [0,T] be equipped
with the Lebesgue measure.

x4) The Kisielewicz lemma. ({10]) Let {g,}22, be an integrally

n=1
bounded sequence of mesurable functions from [0,T] into E. Then

w:[0,7T) - Ry,
wit) = x({gn(t)}nz1
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is a summable function and
n(8)ds}32,) < / s)ds
x({ [ (s} < [ wi(o)
for every measurable set 7 C [0, T].
In the sequel, the space C([0,T]; E') will be denoted as C.

x5) If @ C C is bounded and equicontinuous, then
P(2) = sup x(Qt)) = xc(),
tefo,T)
where Q(t) = {y(t);y € } and x¢ is the Hausdorff measure of noncompact-
ness in £. ‘

Let L(E) be a space of all the bounded linear operators in E. The x-norm
of B € L(E) is defined as

|B||) :=x(BS),

where S is the unit sphere in E. We shall use the following properties of
X-norm.

‘Lemma 1.1. ([2]) If B € L(E), then
x(BD) < ||B||®¥)x(D)
Jor every D € Pb(E).

Lemma 1.2. Let B € L(E);||B||X) < 1 and I — B is invertible. Then
(7 - B)" % < (1 - ||B||™)~2.
Proof. Let R = (I — B)~1S and {r,}3, be a countable dense subset of R.

Then the sequence {5,}%%,, $n = (I — B)r, is dense in S, and using the
properties of x we have

1= X(S) = X({sﬂ}:‘;l) = X({rﬂ» - Brn}:o=l) Z
> x({ra}22s) - X({Bra}Zs) 2 X(R) - | B|®x(R) =
= (1 - |BI*))x(R).
This implies the required inequality O.

A multivalued function (multifunction) G : [0,T] — K(E) is said to be
measurable if it satisfies any of the following two equivalent conditions:
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(i) theset G"1(V) = {t € [0,T] : G(t) C V} is measurable for every open
VCE;

(ii) there exists the sequence {g,}32, of measurable functions g, : [0,T] —
E such that G(t) = {gn(t)}, for all t € [0,T] (see, for example
[61,(5))

By the symbol S}, we shall denote the set of all Bochner integrable
selectors of the multifunction G : [0,T] —» P(E), i.e.

Sk ={g€ L([0,T);E) : g(t) € G(t) a.e.}.

If SL # 0, then the multifunction G is called integrable and

/TG’(s)ds = {/r g(s)ds : g € st}

for every measurable set 7 C [0, T']. Clearly if G is measurable and integrably
bounded (i.e. there exists a € L1 ([0,7]) such that ||G(2)|| := max{||y|| : y €
G(t)} £ a(t) a.e.), then G is integrable.

Let us now prove the following generalization of the Kisielewicz lemma
(see x4),

Lemma 1.3. Let the multifunction G : [0,T] — PH(E) be integrable, in-
egrably bounded and

x(G(t)) < B(t) a.e. on [0,T],

where 8 € L} ([0,T)). Then

x( [ Go)ds) < [ Bs)ds

for every measurable set T C [0,T). In particular, if x(G(-)) € L% ([0,T)),
then '

X([ G(s)ds) < [ x(Gla))is.

Proof. Since the space E is separable, so is the space L1([0, T); E). Hence the
set S contains the dense countable subset {g,}32,. Then the set { [ gn(8)ds},
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is dense in [ G(s)ds. From the properties of the measure of noncompactness
Xx we have

x( [ G(e)ds) = x({ [ on(s)ds}eza)
and

x({gn()}nz1) < x(G(?)) < B(2) a.e..
But, then from x4, it follows that

x({ [ 9n(5)ds}20) < [ x(on(s)}i2nds <
< /1 B(s)ds O.

Let X,Y be topological spaces; a multivalued map (multimap)
H : X — C(Y) is said to be; (i) closed if its graph

Gra ={(z,9) e X xY :y € H(z)}

is a closed subset in X x Y; (ii) upper semicontinuous if H~}(V) = {z €
X : H(z) C V} is an open subset of X for every open V C Y. If multimap
H : X — K(Y) is closed and compace (i.e. H(X) is compact) then H is
upper semicontinuous (see, for example [5]).

Let X be a closed subset of a Banach space £,¢ a measure of non-
compactness in £ and k¥ 2> 0. A multimap H : X — K(£) (or a family of
multimaps G : X x [0,1] — K(£)) is called (k,¢)-contraction (or (k,¢)-
contractive ) if, respectively,

¢(H(D)) < kp(D) or
o(G(D x [0,1))) < k(D)
for every D C X.

Now, let K be a convex closed subset of £,{) C K is open in relative
topology, Qx and 89y denote the closure and the boundary of § relative to
K.Let T : Qg — Kv(K) be a closed (k, xg) -contraction, where 0 < k < 1
and x¢ is the Hausdorff measure of noncompactness in £. Assume that the
fixed point set of T |g

Fiz(T |g) = {z € : 2 € I(2)}

is compact. (It is sufficient to suppose that FigTndfg = @). Then the topo-
logical characteristic: the relative fixed points index indg (T, ) is defined
(see [13]). It has the following fundamental properties.
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1° ¥ T'(z) = yo € K then

. 1 ifgpoeQ
’"d"(r’m={ 0 ;fzz#n.

20 Let Q; (i = 1,2,...) be open in K and mutually disjoint subsets of
Q and Fizl' N (2\ UR, Q) = B. Then, the indices indx(T, ;) are
defined, only a finite number of them does not vanish and

indg(T,Q) = indg(T, %)

1=1

3% If closed (k,xe)-contractions I'o,T'; : Q¢ — Kv(K) are homotopic,
i.e. there exists the closed (k, x¢)-contractive family
G : Qg x[0,1] = Kv(K), such that Usepo,Fiz(G(.,A) |a) is compact
and G(.,0) = T,G(.,1) =Ty, then indg(Tq, ) = indk(T1,Q).

4° If indg(T,Q) # 0, then T has a fixed point in Q.

In this paper we study the existence of mild periodic solutions of the
differential inclusion
1) z"(2) € Az(t) + F(t,2(1))

in a separable Banach space E. Here A is a closed linear not necessarily
bounded operator in E and F is a multimap from R x E into E. Let F be
T-periodic in the first variable (T' > 0), i.e. F(t+ T,.) = F(T),.) for all
t € R. In the sequal we shall consider the restriction F | 7}x£ denoting it
by the same symbol F.

We shall assume that A generates an analytic semigroup e4! satisfying
the estimation

(2) lleA ) < &%

for all t € [0,T], where é§ > 0. It should be noted that condition (2) is
satisfied if the resolvent of A is completely continuous at a certain point. It
will be supposed also that 1 does not belong to the spectrum geAT of the
operator e4T; hence the operator [I — eAT]~! is well defined.

Now we shall assume that the multimap F : [0, T|x E — K v(E) sa.tlsﬁes
the following conditions.
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F1) for every e € E the multifunction F(.,e): [0,T] » Kv(F) admits a
measurable selector;

F2) for almost all ¢ € [0,T] the multimap F(t,.): E —» Kv(E) is upper
semicontinuous;

F3) for every bounded D C E there exists a function a € L1.((0,T]), p >
1 such that

IF (2, e)|l := sup{llyll : ¥ € F(t,€)} < a(?)
for all ¢ € D and almost all ¢t € [0, T);
F4) for every bounded D C E we have

x(F({t} x D)) < kéx(D)

for almost all t € [0,T], where 0 < k¥ < 1 and § is the constant from
estimation (2).

It is clear that condition F1 is satisfied if the multifunction F(.,¢) is
measurable for all e € E. From conditions F1- F3 it follows that 3}17‘(.,:(.)) #0
for every z € C (see, for example [17] ).

In the sequel we shall consider as solutions of the inclusion (1) the mild
solutions, i.e. the functions z € C of the form

z(t) = eATz(0) + /: et=2) 5 (s)ds,

where f € S},.(_'z(‘)). it should be noted that the existence of mild solutions

for differential inclusions of form (1) is considered for example in the works
of N.S. Papageorgiou [14], [16] and V.V.Obukhovskii [12].

It is clear that the question on T-periodic solutions of inclusion (1) is
reduced to the existence of solutions z € C satisfying the boundary condition
of periodicity

3) z(0) = z(T).
In the sequal the solution z € C satisfying condition (3) will be called

the T-periodic solution of (1).

Boundary value problems for differential inclusions with linear operators
in a Banach space were considered earlier in the works of P.Zecca-P.Zezza
[18] and N.Papageorgiou [15). In this paper we study the periodic problem
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under other assumptions, using a method which is new (even in the case
of differential equations) and is based on the fixed points index theory for
condensing multimaps.

2. Integral multioperator and its properties

In order to investigate T'-periodic solutions we shall consider the multivalued
integral operator I’ in the space C defined in the following way

I(z) = {y € C : y(t) = AM[I — AT]"! /OT AT~ f(s)ds+

t
N /0 A= f(s)ds, f € Sk}

Theorem 2.1. A function x € C ts a T-periodic solution of (1)} iff it is a
fized point of T.

Proof. Let z € C be a solution of (1) satisfying periodicity condition (3).
Then

z(0) = eAT2(0) + /T eAT=2) 1(3)ds,
‘ 0

where f € 5117(.,,(.))- Hence,

z(0) = [I — AT} /OT T2 f(s)ds

and r
z(t) = eI - eAT]‘I/ AT f(5)ds+
o

t
+ [ A f(s)ds,
0
ie. z € L(z).

The validity of condition (3) for the function z € FizI' can be verified
directly. 0O

Let us now describe the main properties of the multioperator I'. It follows
immediately from the properties of the multimap F' that the multioperator
I’ has nonempty convex values.
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Theorem 2.2. The multioperator T is closed.

Proof. Let

{Za)nz15{Un}nz1 CC; ¥n €ET(20)(n=1,2,...), Tn = 2, Yn > ¥.
We shall show that y € I'(z).

By assumption we have for every n € N

T
ya(t) = eI - eAT]—l/ AT~2) §(s)ds+
0

t
+/ eA(‘"")f,,(.s)ds,
o
where f, € S}(_',"(_)). From condition F4), it follows that

X{UFa(0}20) < kX ({2a()}20) = 0

for almost every t € [0,T), i.e. {fa(t)}2, is compact in E a.e. t € [0,T).
From the Diestel criterion (see [7], [17]) it then follows that the sequence
{fn}, is relatively weak compact in the space Ly([0,T); E). Therefore, we
can assume that

fn;f € Ll([O’T]’E)

We claim that f € 8} _ .
Indeed, according to the Mazur lemma (see, for example, [8]) the weak con-

vergence f, — f implies the existence of the double sequence of nonnegative
numbers {Aix}32,%2,, such that :

1) Ez?—_ikik =1foralli= 1,2,... ’

2) Aix = 0 for all k > ko(i); :

3) the sequence {£;}2,, fi(t) = T52: A J(t) converges to f with respect
to the norm of~L1([0,T]); E. Passing if necessary to a subsequence, we can
assume that {f;}32, converges to f almost everywhere on [0, T].

From condition F2), it follows that for almost all ¢t € [0,T] for a given
€ > 0 there exists the integer ip = ig(¢, t), such that

F(t,zi(t)) C V(F(t,z(1)))

for all 1 > iy, where V, denotes the e-neighbourhood of a set. But, then
fi(t) € V(F(t,z(t))) for i > ip and hence

fi(?) € V{(F(t,2(1))),
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by virtue of the convexity of V,(F(t,z(t))). Therefore,
f(t) € F(t,2(t))
i.e. f e S}!(.’z(‘)).

For each t € [0,T] the map g — [ eA(t=?)g(s)ds is a continuous linear
operator from L([0,T); E) into E. It remains continuous if these spaces are
endowed with weak topologies. Therefore, for each t € {0,T] the sequence
¥a(t) converges weakly to eA[] —eAT]! [ T eAT-2) f(s5)ds + [ eAl=2) f(s)ds.
Since by assumption y,(t) — y(t), we have y € I'(z). O

Theorem 2.3. For every bounded set 2 C C the set I'(?) is bounded and
equiconlinuous.

Proof. From condition F3), it follows that there exists a function a €
LE([0,T]), p > 1, such that for every z € @ and f € Sp () We have

Nf ()l < a(t) a.e. t €[0,T).

By virtue of the analyticity of the semigroup e, there exist constants C
and 7 such that

(4) lle#|| < Ce.
Since by assumption 1 ¢ oeAT, we have

(8) | NI -2 < K,
where K > 0.

Therefore, if y € I'(2), then

T
(o)l < K26 [ T=a(a)ds+

.
s [ oS <O,

where C is a certain constant. Therefore, I'(2) is bounded.
We now clain that the set I'(f2) is equicontinuous. To show this, we may
remark that, according to [11], the negative fractional powers A~*(0 < a <
1) of A are defined and the following estimations hold '

() Jacer < X2
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) 4~ - < Y=o

where M(a) is a certain constant dépending on a. Choose a € (0,1) such
that ag < 1, where 1/p+1/g = 1. Then,

T(l—aq)/q

)] s < ([ (ato)pas) /o | o <l T
o |t— o (t—3) ag

Now, if y € I‘(z), z € @ and t,,t; € [0,7T), t2 > 1, then

lu(t2) = y(t2)]| < [|A=*(eA2=1) — )eAts||x
T .
I = ATy [ ameAT i+
0
t
+"/ 1 A—a(eA(tz—tl) _ I)AaEA(tl_s)f(s)ds"—{-
0

t2
+] /t A=) f(s)dsl| = Jy + Ja + Ja,
1

where f € S},(_J(.)). Using (4)-(8) we have the following estimations:

M( 0) o i1 )
(9) hg == - n)ce A/ (T_s)adsg
—a (1-ag)/q
e M= Dy, T - 1y
( - a) o a(s)
(10) Jo< U ZY 4 / Tt
—a ag)/q
< M(1 )T(1 “a"L’(tz — 1)

a 1 -

(1) Js < /t ? Certa—na(s)ds < ( /t (a(s))”ds)l/”(C / eTM(ta=3) dg)1/a

1 1 t
< CyllaljL,(t2 - t1)"/°.
These estimations show that

Nw(t2) — y(@)l < Ci(t2 — t1)* + Ca(ta — t2)M/0

estabilishing the demanded equicontinuity of I'(Q2).0
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Now, consider the measure of noncompactness % : 2° — Ry

() = sup x(Q1))
tef0,T]

(see x5) ).

Theorem 2.4. The multioperator T' is a (k, y)-contraction.

Proof. If Q C C is unbounded, then #(f2) = +o0o and the inequality
P(IT'(D)) < k(1) evidently holds. Let  C € be nonempty and bounded.
Since for every z € 2 we have S;,("z(_)) C S}.(_’Q(_)) on each interval [0,%] C
[0,T], the integral

t
/ eAt=9) (s, Q(s))ds
1]
is defined for all ¢t € [0,T] and

, :
( /0 eV f(s)ds : f € Sk zy) 2 € D)
t
c [ Arentope
A |

By virtue of condition F3) the multifunction S — e(t~2) F(sQ(s)), 0 <
s < t,is integrally bounded and using Lemma 1.1 and condition F4) we have

x(e*0=VF(s,Q(s)) < [|eAC= W x(F(s,s))) <

< kb= =)3(Q(s)) < ke~ p(Q)
for almost all s € [0,1]. ‘
For each t € [0,T] we have

I(Q)(t) C eI — eAT]? /0 ' eMT-2) F(s,Q(s))ds+

)
+ / A=9) F(s, O(s))ds,
0

and now using the properties x1),x2) and Lemmas 1.1, 1.2 and 1.3, we
obtain the following estimation:

x(T(Q)(®)) < [le*|PI(T ~ eAT) 1| x
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x([ " eA(t=2) p(s, 0(s))ds} + x( / A9 p(5,Q(s))ds) <
< e ¥ (1 - e~ tT) 1kéyp(Q) /OT e 5T-2)dsy

t
+k6P() / e~8=2)gs =
0

k6p(Q)e="(1 e“T)‘l%(l — e T) 4 2(1- e8] = k(Q).
Therefore,
P(T(Q)) = sup x(T(Q)(2)) < k(Q),
tefo,T]
proving the theorem . O

Corollary 2.5. For every bounded set  C &, the multioperator T’ is a
(k,x£)-contraction on the set QNTOL (L) where x¢ is the Hausdorff measure
of noncompactness in £.

Proof. It follows immediately from the property x5) and Theorem 2.3. O

3. The existence of periodic solutions

The properties described above of the integral multioperator allow us to
use the theory of the fixed points index to search for periodic solutions of
problem (1). Indeed, the following general principle is valid.

Theorem 3.1. Let @ C C be an open bounded set; K = ¢ol'(Q);z ¢ T'(z)
for all z € 3Nk and indk(T,Nx) # 0 where Qi = QN K. Then inclusion
(1) has at least one T-periodic solution in Q.

To ensure the conditions of this theorem, we may use a priori bounds of
T-periodic solutions of (1). Consider, for example, the following statement.

Theorem 3.2. Let the multimap F satisfy conditions F1), F2), F4) and
F'3), there ezists a function a € L% ([0,T]),p > 1 such that

I e)ll < a(t)

Jor all e € E and almost all t € [0,T). Then, inclusion (1) has at least one
T— periodic solution.
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Proof. From condition F'3) it follows that the set I'(C) is bounded. Let
 C C be an open ball containing the set I'(C). Then, from the properties of
the fixed points index we have that indx (T, Qx) = 1, where K = #I'(C). D

The homotopy invariance property of the fixed points index allows us to
apply the general principle to families of differential inclusions continuously
depending on a parameter. Let the multimap F : [0,T]x Ex[0,1] — Kv(E)
satisfy the following properties: s continuously

1F)) F(-,e,)A):[0,T] — Kv(E) admits a measurable selector for all (e, ) €
E x [0,1];

2F)\) F(t,-,-) : E x [0,1] — Kv(E) is upper semicontinuous for almost all
te0,T); .

3F)) for every bounded D C E there exists a function a € L% ([0,T7]),
p > 1 such that ||F(t,e,A)|| < a(t) for all (e,A) € E x[0,1] and almost
allt e [0,7);

4F)) for every bounded D C E we have x(F({t} x D x[0,1))) < kéx(D),0 <
k <1forae. te0,T)

As an example of such a family we may regard the multimap AF,\ €
[0,1], where F satisfies the conditions F'1) — F4).

Consider the family of differential i®clusions

(1A) 2'(t) € Az(t) + F(t,z(t),A), where the multimap F satisfies the con-
ditions 1FX) — 4F}).

Modifying our previous reasonings, we may show that the family of in-
tegral multioperators

I':Cx[0,1] = Cv(C),

T
T(2,)) = {y €C : y(t) = eM[I ~ A9~ / AT f(5)ds+
0
t
‘/(; CA(t—’)f(S)de, f € S;:'(,z‘(),k)}

generated by the family (1)) has the following properties.
1T'A) The multimap I'(z, ) is closed. |
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2T'A) For every bounded £ C C, the set T(€ x [0,1]) is bounded and
equicontinuous.

3T')) The family I'(z, A) is (k,¥)— contractive. It is (k, xc)— contractive
on every set of the form 2 N&l'(2 x [0,1]), where  C C is bounded.

These properties allow us to justify the following statement as a direct
sequence of the property of homotopic invariance of the fixed pomts index
of the multimap T'(-, A).

Theorem 3.3. Let 2 C C be an open bounded set whose boundary does not
contain T-periodic solutions of the family (1), A € [0,1]. Let indg (T'(-,0),9Qk) #
0, where K = ©ol'(2 x [0,1]). Then, the differential inclusion

(12) 7'(t) € Az(t) + F(t,z(t))

has as least one T-periodic solution in (k.0

The following application of the antipodal theorem is the concretization
of this principle.

Theorem 3.4. Let @ C C be a symmetric open - bounded neighbourhood
of the origin whose boundary does not contain T- periodic solutions of the
family (1A). If

F(t,—e,0) = - F(t,e,0)
Jor all e € E and almost all t € [0,T), then the differential inclusion (12)
has at least one T-periodic solution in §).

Proof . The set K; = (K U (—K)), where K = l'(Q x [0, 1)) is sym-
metric with respect to the origin and equicontinuous. It is easy to see that
the integral multioperator I'(-,0) is odd, and hence indg, (T(:,0),9Qk,) =
1(mod 2)([14]). But, now, using the homotopy invariance property we have
indg, (I'(+, 1), 2k, ) = 1(mod 1). O

Corollary 2.5. Let 2 C C be a symmetric open-bounded neighbourhood
of the origin whose boundary does not contain T- periodic soluttons of the
family

z’(t) € Az(t) + AF(t,z(t)),
where A € [0,1) and F satisfies the properties F1) — F4). Then inclusion (1)
has at least one T-periodic solution in (.
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Note, in conclusion, that the operator method described above can be
used in the problem of the existence of optimal periodic solutions for control
systems in a Banach space. Describe briefly the scheme of this application.

Let E, E; be Banach spaces; amap f : [0,T]x E x E; — E is such that:

1) f(-,e,e1):[0,T] = E is measurable for all (e,e1) € E x Ey; -
2) f(t,-,-): E x E; — E is continuous for almost all t € [0, T].

Let a multimap U : [0,T] x E — K(F;) characterize the varying admissible
controls domain and have the following peoperties: U(-,e) is measurable for
all e € E and U(t,-) is upper semicontinuous for almost all ¢ € [0, T].

Consider a nonlinear control system with feedback
(13) 2'(t) = Az(t) + f(2, (1)), u(t))

(14) | u(t) € U(t,2(1))

Its solution is the pair (z(-), u(t)) consisting of the trajectory z(-) € C, where
z(t) = eA*z(0) + f; eA=2) f(s,z(s), u(s))ds is a mild solution of equation
(13), and the control u : [0,T] — E, where u is a measurable function
satisfying inclusion (14) for almost all ¢ € [0, T).

The multimap F : [0,T] x E — K(E), F(t,e) = f(t,e,U(t,e)) satisfies
the conditions F1) and F2) (see, for example [5]). Assume also that the
multimap F has convex values and satisfies the conditions F'3) and F4).
It should be noted that condition F4) is satisfied, if we assume that the
multimap U(t,-) is completely continuous for almost all t € [0,T], i.e. the
set U({t} x D) is relatively compact for every bounded D C E and the
map f(t,-,e1): E — E is a k§— Lipschitzian for all e; € E; and almost all
t € [0,T] (see [9] ),

Therefore the methods described can be applied to the differential inclu-
sion

(18) z'(t) € Az(t) + f(,2(2), U(t, z(2)))-

The existence of the control realizing the T— periodic solution of (15) as
the trajectory of the control systems (13), (14) follows from the Filippov
implicit functions lemma (see, for example [5] ).

The topological properties of the integral multioperator allow us to jus-
tify the following optimal control principle.
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Let the set of all T—periodic solutions of the control system (13), (14)
be nonempty and bounded. Then, there exists the control u. such that
the corresponding trajectory z, minimize the given lower semicontinuous
functional j : C — R.

It follows directly from the compactness of a fixed points set of a (k, xc)—
contractive integral multioperator T.
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REZIME

O PERIODICNIM RESENJIMA DEFIRENCIJALNIH INKLUZIJA
SA NEOGRANICENIM OPERATORIMA U BANAHOVIM
PROSTORIMA

U ovom radu se razmatra jedna operatorska metoda, koriséenjem teorije
indeksa nepokretne tacke kondenzujuleg viSeznatnog preslikavanja, za ispi-
tivanje postojanja blago periodi¢nih resenja diferencijalne inkluzije

z'(t) € Az(t) + F(t,z(t)),

gde je A linearni operator i I’ viSeznaéno preslikavanje u separabilnom Ba-
nahovom prostoru. Razmatrane su neke primene na egzistenciju optimalnih
periodiénih resenja kontrolnih sisitema u Banahovim prostorima.

Recetved by the editors January 7, 1990.



